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Tomato (Solanum lycopersicum L.), an economically significant crop, is frequently 
cultivated in greenhouses under continuous monoculture systems. Motivated by 
intensive agricultural practices and economic incentives, continuous cropping has 
become prevalent in China, yet it often results in soil degradation, including nutrient 
imbalances and microbial community shifts. However, the mechanisms driving 
soil deterioration in prolonged greenhouse monoculture remain unclear. In this 
study, soil samples from greenhouses with varying durations of continuous tomato 
cropping (1–3 years, 5–7 years, and >10 years) were analyzed for microbial and 
chemical parameters using 16S rRNA and ITS sequencing and soil nutrient assays. 
Results demonstrated a significant increase in fungal abundance and diversity in 
>10 years samples, alongside reduced bacterial richness. Co-occurrence network 
analysis revealed opposing trends in bacterial and fungal networks, indicating 
a shift from bacterial to fungal dominance. This shift correlated with impaired 
microbial functions, including diminished metabolic activity and impaired carbon-
nitrogen cycling. PLS-PM model identified the accumulation of soil organic matter 
(SOM), nitrogen (N), and phosphorus (P) as key drivers of microbial community 
restructuring. Functional gene predictions based on 16S rRNA sequencing indicated 
that the expression of genes related to carbon (tktA/tktB, accA, acsB, cooS/acsA, 
ppc) and nitrogen (pmoA-amoA, nxrA, hao, nasA, nasB, gdh, ureC, narG, nirB, 
nirK, norB, nosZ) transformation were decreased. Mantel test further highlighted 
KD4_96 and Bacillus as critical regulators of carbon and nitrogen dynamics. 
These findings elucidate mechanisms underlying soil degradation in long-term 
greenhouse monoculture systems and provide a theoretical basis for sustainable 
soil management strategies.
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1 Introduction

China, the largest tomato producer of world, yields approximately 70 million tons annually 
(National Bureau of Statistics of China, 2023). Prolonged monoculture of tomatoes in 
greenhouses, defined as the repeated cultivation of a single crop without rotation or fallow 
periods, is widespread in northern China (Zhang and He, 2004; Chen et al., 2009). While 
economically advantageous, this practice often leads to replanting disease within 2 years and 
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becomes widespread in greenhouses after 5 years of continuous 
cropping (Tan et  al., 2021). Long-term continuous cropping has 
caused many problems, including acidification, salinization (Han 
et al., 2014), and microbial community imbalance (Zhao et al., 2019; 
Song et al., 2022; Dang et al., 2023).

Soil microbiota play pivotal roles in nutrient cycling, organic 
matter transformation, and ecosystem stability (Nunes et al., 2020; Li 
et  al., 2021). However, intensive agricultural practices disrupt 
microbial dynamics, particularly in greenhouse environments 
characterized by high planting density, elevated temperature, 
humidity, and limited leaching (Karlen et  al., 2019; Trivedi et  al., 
2020). Research has shown that soil parameters and plant community 
dynamics significantly influence microbial community structure and 
carbon (C) and nitrogen (N) cycling (Bertin et al., 2003; Chen et al., 
2020; Ning et  al., 2020; Shen W. et  al., 2021; Liu et  al., 2023). In 
greenhouse environments, conditions such as high planting density, 
elevated temperature and humidity, soil acidification, and limited 
leaching due to minimal rainfall further exacerbate changes in 
soil microflora.

Studies on various monoculture systems, including bananas and 
sweet potatoes, indicate that extended monoculture reduces bacterial 
diversity and promote harmful fungi, shifting the microflora from 
bacterial to fungal dominance (Sun et al., 2018; Gao et al., 2019). 
Similarly, research on tomato greenhouse monoculture has shown 
declines in bacterial diversity over time, accompanied by a significant 
rise in fungal abundance, often driven by the proliferation of soil-
borne pathogens like Fusarium and Aspergillus (Ning et al., 2020; 
Zhao et al., 2023; Wei et al., 2024). This shift toward fungal dominance 
weakens soil ecosystem stability (Wei et al., 2024). Understanding the 
drivers of soil deterioration in monoculture systems is essential for 
developing effective soil management strategies.

Soil properties, such as pH, fertility, and organic matter content, 
strongly influence microbial community composition. For instance, 
research has shown that changes in soil pH, fertility, and organic 
matter partly drive microbial community shifts. In cucumber 
greenhouses, variations in bacterial communities are strongly 
associated with soil pH, available potassium (AK), total phosphorus 
(TP), and total potassium (TK), while fungal communities primarily 
respond to AK and TK (Chen et al., 2018; Karlen et al., 2019; Zhao 
et al., 2019; Xu et al., 2020; Dang et al., 2023). In another study of 
tomato continuous cropping for 20 years in North-west China, 
accumulated soil nutrients, including organic matter and nitrogen, 
were shown to drive changes in microbial communities, while it is 
surprised that no significant variations in fungal flora and function 
were found after long-term monocropping (Dang et  al., 2023). 
However, in another study on continuous tomato cropping in 
northern China, accumulated soil nutrients, including organic matter, 
nitrogen and potassium, were shown to drive changes in microbial 
communities from “bacterial type” to “fungal type,” by reducing 
beneficial bacterial populations while increasing pathogenic fungi 
(Zhao et al., 2023). Research also suggests that soil chemical alterations 
in continuous monoculture weaken bacterial network stability, 
diminish metabolic functions, and enhance potential stress resistance 
functions (Dang et al., 2023). The microbial community would down-
regulate the N-cycling gene abundances following organic fertilization 
to alleviate the soil N “crisis” under microbial N limitation during the 
three-year experimental period (Shen H. et  al., 2021). While soil 
degradation in continuous monoculture greenhouse systems is a 

consistent finding, the specific effects of soil properties on microbial 
communities vary across studies and detailed research on the 
mechanisms underlying microbial community shifts in long-term 
greenhouse monoculture systems remains limited.

Hebei Province, a major vegetable-producing region in northern 
China, cultivates tomatoes across 3.24 × 104 hectares of greenhouse 
systems (Shen, 2020). This study investigates microbial and chemical 
parameters in soils under varying durations of continuous tomato 
cropping (1–3, 5–7, and >10 years) in Langfang (the largest 
greenhouses tomato planting City of Hebei province). Objectives 
include: (1) assessing microbial community composition, 
co-occurrence networks, and functional shifts under prolonged 
monoculture; and (2) deciphering the main drivers of microbial and 
functional evolution. This study provides valuable insights into the soil 
degradation process, emphasizing the distinct responses of bacterial 
and fungal flora to long-term monoculture and offering theoretical 
guidance for the subsequent soil improvement in greenhouse.

2 Materials and methods

2.1 Sample collection and chemical 
properties assay

Soil samples were collected from greenhouses in Langfang City, 
Hebei Province (116°41′01″E, 39°32′18″N), characterized by a 
subhumid continental monsoon climate. The experience’s region has 
an annual sunshine duration of 2,740 h, an average temperature of 
11.5°C, and annual precipitation of 540 mm.

Samples were sieved (2 mm), subdivided for microbial and chemical 
analyses, and stored at −80°C or air-dried, respectively. All sample sites 
followed a consistent cropping system, where tomato plants were 
uprooted after fruit harvest in May and replanted in autumn. Three sites 
per cropping duration (1–3a, 5–7a, 10a+) were sampled at 5–20 cm 
depth during the tomato flowering-fruiting period (March 2021). 
Within each site, five random sampling points were chosen, and soil 
samples were taken at a depth of 5–20 cm and approximately 20 cm from 
the tomato plants. All bulk soil samples were sieved through a 2-mm 
mesh after the removal of litter, stones, and soil earthworms and divided 
into two parts: one was stored at −80°C for microorganism analysis and 
the other was air-dried for soil chemical properties determination.

Soil chemical properties, including pH, electrical conductivity 
(EC), soil organic matter (SOM), total nitrogen (TN), total phosphorus 
(TP), total potassium (TK), alkaline hydrolysis nitrogen (AN), available 
phosphorus (AP), and available potassium (AK), were measured 
according to established protocols (Du et al., 2022; Dang et al., 2023).

2.2 DNA extraction, PCR amplification, and 
sequencing

Total microbial DNA was extracted from frozen soil samples 
using the OMEGA Soil DNA Kit (D5625-01; Omega Bio-Tek, 
Norcross, GA, United States). With the qualified soil DNA serving as 
the template and sterile water as the blank control, polymerase chain 
reaction (PCR) amplification was performed. The absence of bands on 
the gel image indicated no contamination during the amplification 
process. The target fragments for amplification were the V3–V4 region 
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of the bacterial 16SrRNA gene and the ITS-V1 region of fungi. The 
upstream and downstream primers were 338F, 806R and 1737F, 
2043R, respectively (Cui et al., 2025).

The PCR amplification system (25 μL) consisted of the following 
components: 5 μL of 5 × reaction buffer, 5 μL of 5 × GC buffer, 2 μL 
of dNTP at a concentration of 2.5 mmol L−1, 1 μL of forward primer 
at 10 μmol L−1, 1 μL of reverse primer at 10 μmol L−1, 2 μL of DNA 
template, 8.75 μL of double-distilled water (ddH₂O), and 0.25 μL of 
Q5 DNA Polymerase (5 U/μL).

The amplification conditions were as follows: initial denaturation 
at 98°C for 5 min, followed by 30 cycles of 98°C for 30 s (denaturation), 
55°C for 30 s (annealing), and 72°C for 45 s (extension). After the 
cycling, a final extension was performed at 72°C for 5 min, and the 
reaction was terminated at 4°C.

The PCR amplification products were detected via 0.8% agarose 
gel electrophoresis. The qualified products were then entrusted to 
Shanghai Pansino Biotechnology Co., Ltd. for sequencing and 
microbial diversity analysis using the Illumina NovaSeq6000 platform. 
The datasets generated for this study can be  found in the NCBI 
BioProject repository under accession number (PRJNA1273093).

2.3 Statistical analysis of data

The QIIME2 (2019.4) software was employed to carry out 
procedures such as primer trimming, quality filtering, denoising, 
sequence assembly, and chimera removal. Subsequently, the amplicon 
sequence variant (ASV) characteristic sequences and ASV tables were 
integrated. Regarding annotation, for the 16S ribosomal RNA (rRNA) 
gene of bacteria, the Greengenes database was utilized for annotation. 
For the internal transcribed spacer (ITS) sequences of fungi, the UNITE 
database was adopted for annotation purposes. A one-way analysis of 
variance (ANOVA), followed by the least significant difference (LSD) test 
at p < 0.05, was conducted using IBM SPSS Statistics 26 software to 
identify significant differences among treatments. The alpha diversity 
measures of soil fungal and bacterial populations were calculated by 
means of the “ggplot2” package within R. The microbial composition 
was investigated via principal coordinate analysis (PCoA) based on the 
Bray–Curtis distance (Bray and Curtis, 1957) using the “ape” package in 
R version. Co-occurrence network analysis was conducted by R and 
Gephi software to compare interaction complexities among bacterial and 
fungal taxa. The redundancy analysis (RDA) of the relationship between 
soil environmental factors and microbial community composition was 
conducted using Canoco 5.0 software, and corresponding graphs were 
generated. Functional predictions for bacteria and fungi were conducted 
using PICRUSt2 (Yuan et  al., 2021), and associations between soil 
microbial metabolic functions and soil properties were evaluate by the 
Mantel test using ggplot2 in R software (version 4.1.3). PLS-PM is used 
to provide an intuitive graphical representation of the dynamic 
interaction between variables (Tenenhaus, 2008).

3 Results

3.1 Soil nutrient and enzyme index

With extended years of cropping, the contents of SOM, TN, TP, 
AN, and AP in the soil first decreased and then increased, reaching 

maximum values at the 10a+ samples. Compared to the 1–3a samples, 
SOM, TN, TP, AN, and AP of 10a+ samples increased by 61.51, 73.16, 
107.72, 57.48, and 43.74%, respectively (p < 0.05). This indicates a 
substantial nutrient accumulation over time. However, soil pH 
remained relatively stable, fluctuating around 7.7, with no significant 
differences among the three cropping durations (Table  1). No 
significant differences were observed in the activities of soil enzymes 
(urease, alkaline phosphatase, sucrase, and catalase) among the three 
planting durations (Supplementary Table S1).

3.2 Number of ASVs

A total of 18,516 bacterial ASVs were identified from the nine soil 
samples, with only 885 shared ASVs, representing 4.78% of the total 
bacterial ASVs (Figure 1A). This indicates significant differences in 
bacterial community composition among the samples. In the 1–3a 
samples, 7,343 ASVs (39.66% of total bacterial ASVs) were identified, 
while the 5–7a and 10a+ samples contained 8,214 ASVs (44.36%) and 
6,881 ASVs (37.16%), respectively. This suggests a slight decline in 
bacterial diversity with prolonged cropping duration.

For fungi (Figure 1B), a total of 1,212 ASVs were detected, with 
only 95 shared ASVs, accounting for 7.84% of the total fungal ASVs. 
In the 1–3a, 5–7a and 10a+ samples, fungal ASVs numbered 374 
(30.86% of total fungal ASVs), 573 (47.28%), and 642 (52.97%), 
respectively, indicating a significant increase in fungal diversity with 
extended cropping years.

3.3 Alpha and beta diversity

The alpha diversity of bacterial communities exhibited a temporal 
decline, though no significant differences (p > 0.05) were observed 
among the three cropping durations. Notably, the Chao1 index, 
observed species richness, and Shannon index reached their highest 
values in the 5–7a samples (Table 2). In contrast, fungal community 
diversity, as indicated by the Chao1 index and observed species 
richness, differed significantly across cropping durations (p < 0.05). 
Compared to the 1–3a samples, these indices increased by 58.45 and 
58.18% in the 5–7a and 10a+ samples, respectively. While Pielou’s 
evenness, Shannon, and Simpson indices showed no significant 

TABLE 1 Soil properties in different continuous planting years.

Indicators 1–3a 5–7a 10a+

pH 7.67 ± 0.21a 7.75 ± 0.14a 7.71 ± 0.10a

SOM (g/kg) 22.32 ± 2.28b 17.66 ± 3.70b 36.05 ± 2.80a

TN (g/kg) 1.90 ± 0.29b 1.61 ± 0.06b 3.29 ± 0.39a

TP (g/kg) 2.72 ± 0.47b 2.48 ± 0.09b 5.65 ± 0.50a

TK (g/kg) 30.67 ± 0.96ab 31.39 ± 0.85a 29.53 ± 1.03b

AN (mg/kg) 124.16 ± 18.52b 116.43 ± 18.98b 195.53 ± 9.65a

AP (mg/kg) 278.73 ± 75.99b 240.70 ± 29.46b 400.64 ± 63.29a

AK (mg/kg) 634.50 ± 122.26a 542.67 ± 21.94a 625.00 ± 142.31a

SOM, soil organic matter; TN, total nitrogen; TP, total phosphorus; TK, total potassium; AN, 
alkaline hydrolysis nitrogen; AP, available phosphorus; and AK, available potassium. The 
results were given as mean ± SD (standard deviation). Different letters followed by values 
show significant differences (p < 0.05) based on analysis of variance.
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differences (p > 0.05), fungal diversity indices demonstrated an overall 
increasing trend with prolonged cropping.

Principal coordinate analysis (PCoA) revealed distinct clustering 
patterns in both bacterial (Figure  2A) and fungal (Figure  2B) 
communities across cropping durations. The first two PCoA axes 
explained 54.8 and 65.6% of the total variance for bacterial and fungal 
communities, respectively.

3.4 Composition of microbial community

The top 10 dominant bacterial phyla remained consistent across 
cropping durations, with their relative abundances ranked from 
highest to lowest in Figure  3A. Proteobacteria, Bacteroidota, and 
Gemmatimonadota exhibited a decreasing trend with prolonged 
cropping, whereas Actinobacteriota, Chloroflexi, and Firmicutes 
increased significantly. Specifically, the relative abundance of 
Actinobacteriota in the 5–7a and 10a+ samples increased by 20.09 and 
15.96%, respectively, compared to the 1–3a samples. Firmicutes 
reached its peak abundance (7.38%) in the 10a+ samples (p < 0.05) 
(Figure 3A). Similarly, the top 10 dominant bacterial genera remained 
consistent across cropping durations, with abundances ordered from 
highest to lowest (Figure 3B). Genera such as Subgroup_6, Truepera, 
Bacillus, RB41, Actinomadura, SBR1031, and KD4_96 showed 
increased abundance over time, while A4b and MND1 declined 
significantly (p < 0.05) (Figure 3B).

Among fungi, the top five dominant phyla were Ascomycota, 
Basidiomycota, Mortierellomycota, Mucoromycota, and 
Rozellomycota. Ascomycota dominated across all cropping durations, 
with relative abundances of 76.33, 90.35, and 75.91% in the 1–3a, 
5–7a, and 10a+ samples, respectively (Figure  3C). Basidiomycota 
followed a similar trend, showing abundances of 0.18, 1.28, and 0.48% 

in the same order. Mortierellomycota (0.22, 0.63, 0.98%) and 
Mucoromycota (0.01, 0.05, 0.15%; p  < 0.05) exhibited progressive 
increases with prolonged cropping.

The top five fungal genera remained unchanged across durations 
(Figure 3D). Cephaliophora abundance decreased significantly over 
time, while Myceliophthora, Fusarium, and Lophotrichus peaked in the 
5–7a samples before declining in the 10a+ samples. Notably, 
Aspergillus increased from 0.24% in 1–3a to 1.69% in 10a+ samples, 
demonstrating a significant upward trend (p < 0.05) (Figure 3D).

LEfSe linear discriminant analysis (LDA >3.0) identified key 
biomarker taxa for bacterial and fungal communities across cropping 
durations (Figures 3E–H). For bacteria, 29 taxa were significantly 
enriched: g__Terrisporobacter, g__Nocardiopsis, and g__Rhodococcus 
were primary biomarkers in 1–3a samples, whereas c__Bacilli, o__
Bacillales, and taxa affiliated with the KD4_96 lineage (o__KD4_96, 
g__KD4_96, c__KD4_96, f__KD4_96) dominated in 10a+ samples. 
For fungi, 12 taxa were enriched, with f__Pezizaceae and c__
Eurotiomycetes serving as biomarkers for 5–7a and 10a+ samples, 
respectively.

3.5 Co-occurrence networks

Distinct shifts in bacterial and fungal co-occurrence networks 
were observed with prolonged monoculture practices (Table 3 and 
Figure 4). Compared to samples from 1–3 years of cultivation, 
both bacterial and fungal networks exhibited similar trends in 
5–7a samples, characterized by increased node numbers, edge 
counts, and network density. However, divergent patterns emerged 
in 10a+ samples. For bacterial networks, key parameters including 
node count, edge connections, average degree, and modularity 
decreased significantly compared to 1–3a samples, whereas 

FIGURE 1

Venn diagram of soil bacterial (A) and fungal (B) at ASVs level under different planting years.
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TABLE 2 Soil alpha diversity index under different continuous planting years.

Microbiome Samples Chao1 Observed_
species

Pielou_e Shannon Simpson

Bacteria

1–3a 3738.97 ± 307.2a 3581.70 ± 225.99a 0.90 ± 0.01a 10.62 ± 0.03a 0.99 ± 0.01a

5–7a 3937.83 ± 94.99a 3690.20 ± 155.00a 0.90 ± 0.01a 10.71 ± 0.15a 0.99 ± 0.01a

10a+ 3471.43 ± 82.67a 3269.75 ± 53.95a 0.90 ± 0.01a 10.47 ± 0.07a 0.99 ± 0.01a

Fungi

1–3a 220.61 ± 43.02b 220.45 ± 43.20b 0.50 ± 0.19a 3.92 ± 1.61a 0.77 ± 0.24a

5–7a 322.85 ± 37.85ab 321.60 ± 36.35ab 0.62 ± 0.01a 5.19 ± 0.19a 0.93 ± 0.01a

10a+ 349.55 ± 7.11a 348.70 ± 7.07a 0.64 ± 0.01a 5.37 ± 0.05a 0.92 ± 0.01a

The results were given as mean ± SD (standard deviation). Different letters followed by values show significant differences (p < 0.05) based on analysis of variance.

FIGURE 2

Principal co-ordinates analysis of bacterial (A) and fungal (B) communities under different continuous planting years.

FIGURE 3

Bacterial (A,B) and fungal (C,D) community composition at phyla and genus levels, respectively, under different continuous planting years. Taxonomic 
cladograms of linear discriminant analysis effect size (LEfSe) analysis of tomato at three different continuous planting years, depicting ASVs with 
absolute linear discriminant analysis (LDA) scores larger than 3.0. (E,F) Biomarkers of soil bacteria from different continuous planting years of tomato. 
(G,H) Biomarkers of soil fungi from different continuous planting years of tomato.
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network density rose, suggesting tighter interactions among taxa. 
Conversely, fungal networks maintained an upward trend in 10a+ 
samples, with all parameters continuing to increase beyond levels 
observed in 5–7a samples. These contrasting dynamics highlight 
opposing temporal trends between bacterial and fungal networks 
under extended monoculture system, as visually shown in 
Figure 4.

3.6 Prediction of microbial functions

Functional gene dynamics in carbon and nitrogen cycling were 
analyzed to assess microbial metabolic potential under prolonged 
greenhouse monoculture using PICRUSt2-based predictions. A total 
of 17 differentially abundant genes were identified in the process of 
long-term greenhouse monoculture, comprising 12 nitrogen-cycling-
related genes and 5 carbon-cycling-related genes (Figure  5 and 
Table 4).

The transcriptional activity of these genes was closely linked to 
shifts in the core bacterial community structure during continuous 
tomato cultivation. In nitrogen cycling pathways, the relative 
abundance of 10 genes associated with denitrification (narG, nirK, 
norB, nosZ), nitrification (pmoA-amoA, hao, nxrA), dissimilatory 
nitrate reduction (narG, nirB), and organic N metabolism (gdh, ureC) 
declined significantly in 10a+ samples compared to 1–3a samples. 
Notably, only nasA (assimilatory nitrate reduction) exhibited 
increased abundance in long-term monoculture systems (Figure 5). 
Concurrently, carbon-cycling gene expression displayed marked 
suppression, with tktA/tktB (transketolase), accA (acetyl-CoA 
carboxylase carboxyl transferase), acsB (acetyl-CoA synthase), 
cooS/acsA (carbon monoxide dehydrogenase), and ppc 
(phosphoenolpyruvate carboxylase) showing reductions of 1.74, 45.19, 
76.86, 50.24 and 11.99%, respectively, in 10a+ samples (Table 4). These 
systematic declines in functional gene abundance suggest a progressive 
attenuation of microbial contributions to biogeochemical cycling as 
monoculture duration increases.

3.7 Relationships between soil properties 
and microbial traits

Soil nutrient parameters exhibited variable contributions to 
explaining microbial community structure (Figure 6A), with available 
phosphorus (AP; weight = 0.9735) and total phosphorus (TP; 
weight = 0.9735) demonstrating the highest explanatory power. In 
contrast, pH (0.0163), available potassium (AK; 0.4235), and total 

potassium (TK; 0.4235) showed minimal influence. Among dominant 
bacterial taxa, Bacillus (weight = 0.8318) and KD4_96 (0.9262) 
emerged as key contributors to soil microbial community dynamics. 
Pathway analysis further revealed a strong negative correlation 
between soil nutrient levels and dominant bacterial genera on one 
hand, and carbon-nitrogen (C/N) cycling genes on the other. In 
contrast, a positive correlation was observed between soil nutrient 
levels and dominant fungal genera. Notably, the direct effects of 
bacterial taxa on genes involved in soil carbon and nitrogen cycling 
were the most pronounced (path coefficients = −1.2463 and −1.3083).

LEfSe analysis and partial least squares path modeling (PLS-PM) 
identified Bacillus and KD4_96 as keystone taxa, each exhibiting 
distinct gene associations. To elucidate their functional roles in C/N 
cycling under soil degradation, Mantel tests (Figure  6B) were 
performed. Bacillus displayed significant negative correlations 
(p < 0.05) with three genes: accA (acetyl-CoA carboxylase carboxyl 
transferase, carbon fixation), ureC (urease, organic N metabolism), 
and nirB (nitrite reductase, dissimilatory nitrate reduction). In 
contrast, KD4_96 showed stronger negative associations (p < 0.01) 
with acsB (acetyl-CoA synthase, carbon fixation), cooS/acsA (carbon 
monoxide dehydrogenase), nasB (assimilatory nitrate reductase, 
carbon fixation), and moderate correlations (p  < 0.05) with 
denitrification genes norB (nitric oxide reductase, denitrification) and 
nosZ (nitrous-oxide reductase, denitrification). These antagonistic 
relationships suggest taxon-specific regulatory effects on 
biogeochemical processes, with both genera broadly suppressing C/N 
transformation pathways in long-term monoculture systems, 
highlighting the strong influence of soil microbial communities on 
these processes.

4 Discussion

4.1 Imbalance of microbial communities 
under long-term monocropping

Accumulating evidence indicates that prolonged monocropping 
drives a functional transition in soil microbial communities from 
bacterial to fungal dominance (Liu et al., 2020; Chen J. et al., 2022; 
Chen Y. et al., 2022; Wu et al., 2022). Our findings corroborate this 
trend, demonstrating a progressive decline in bacterial amplicon 
sequence variants (ASVs) alongside a marked increase in fungal ASVs 
over time (Figure  1). Fungal richness and diversity reached their 
highest levels after 10 years of monoculture, whereas bacterial alpha 
diversity showed minimal variation across cropping years (Table 2), 
aligning with prior observations (Yang et  al., 2020). This 

TABLE 3 Topological properties of molecular ecological network under different continuous planting years.

Topological 
properties

Bacteria Fungi

1–3a 5–7a 10a+ 1–3a 5–7a 10a+

Number of node 79 132 36 36 80 139

Number of edge 1,175 2,903 369 369 1,363 2,829

Average degree 29.747 43.985 20.500 20.500 34.075 40.705

Modularity 0.519 0.559 0.093 0.093 0.488 0.657

Network density 0.381 0.336 0.586 0.586 0.431 0.295
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bacterial-to-fungal shift mirrors broader ecological patterns observed 
in degraded agroecosystems, where simplified cropping systems favor 
fungal proliferation (Jin et al., 2022; Wei et al., 2023; Xie et al., 2023).

Changes in microbial taxa abundance were also observed with 
extended monoculture. Key phyla associated with nutrient cycling 
(e.g., Proteobacteria, Bacteroidota, Gemmatimonadota) and disease 
suppression (Ascomycota) exhibited declining relative abundances, 
potentially compromising soil multifunctionality (Wang et al., 2023; 

Wei et  al., 2023). Conversely, stress-tolerant taxa such as 
Actinobacteriota and Firmicutes—known for their metabolic 
versatility and sporulation capacity—increased significantly 
(Palaniyandi et al., 2013; Wu et al., 2019; Xu et al., 2020; Alami et al., 
2021). In soils with long-term monocropping, an elevation in the 
abundance of Firmicutes is commonly accompanied by a decline of 
the abundance of Proteobacteria (Wei and Yu, 2018), consistent with 
our results. The abundance of Firmicutes has been shown to increase 

FIGURE 4

Analysis of soil microbial community interaction network under different continuous planting years. (A–C) Bacterial co-occurrence networks in 1–3a, 
5–7a and 10a+, respectively. (D–F) Fungal co-occurrence networks in 1–3a, 5–7a and 10a+, respectively. The red and green lines indicated positive 
and negative interactions, respectively, between two individual nodes. The co-occurring networks are colored by module.

FIGURE 5

Variations in the expression of the key nitrogen transformation functional genes (A) and carbon fixation functional genes (B) within the soil microbial 
community under diverse continuous cropping durations.
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FIGURE 6

Partial least squares model of soil microbial communities, soil nutrients, soil carbon (C) and nitrogen (N) cycling genes in soil (A). Mantel tests of 
associations between soil factor and microbial metabolic functional genes (B). Functional genes of carbon and nitrogen transformation (based on 
PICRUST2) related to microbial community composition by partial Mantel tests.

under stressed soil conditions, likely reflecting adaptive strategies 
under nutrient-depleted and pathogen-enriched conditions (Stephens, 
1998; Xu et  al., 2020). In addition to Bacillus and Actinomadura, 
we  also noticed that the abundance of some other special genera 
changed correspondingly with soil quality degradation (Figure 4). 
Enrichment of RB41 (polycyclic aromatic hydrocarbon degradation) 
(Shen et al., 2018) and KD4_96 (organic decomposition and pathogen 
antagonism) (Li H. et al., 2022; Li M. et al., 2022) suggests microbial 
adaptation to organic pollutant stress in greenhouse soils. Conversely, 
declines in beneficial taxa—including A4b (tomato rhizosphere 
symbiont) (Wei et al., 2024) and Cephaliophora (pathogen suppression 
and pollutant degradation) (Zlotnikov et al., 2007)—may impair plant 
resilience. Notably, the proliferation of phytopathogenic fungi 
(Fusarium, Aspergillus) and the bacterial genus SBR1031 (a facilitator 
of Ralstonia solanacearum virulence) (Huang et al., 2019) highlights 
escalating disease risks under long-term monoculture.

4.2 Divergent responses of bacterial and 
fungal networks in monoculture

Soil microbial co-occurrence networks are critically shaped by 
edaphic factors, with soil physicochemical properties exerting 

dominant selective pressures (Huang et al., 2023). Our study revealed 
divergent trajectories in bacterial and fungal network architectures 
under prolonged monoculture (10a+), reflecting a systemic transition 
toward fungal-dominated community interactions. In 10a+ soils, 
fungal networks exhibited elevated node counts, edge densities, 
average degrees, and modularity—indicators of expanded scale, 
structural complexity, and functional redundancy of the fungal 
network. Conversely, bacterial networks displayed marked declines in 
these parameters, suggesting fragmentation of interspecies 
connectivity and reduced niche partitioning.

Notably, 5–7 years’ short-term monoculture elicited concordant 
enhancements in both bacterial and fungal networks, with significant 
increases in node/edge counts, average degrees, and modularity. This 
transient phase likely reflects adaptive community restructuring in 
response to nutrient enrichment (e.g., organic matter accumulation), 
which initially supports microbial cooperation and metabolic 
diversification. However, prolonged nutrient oversaturation in 10a+ 
systems appears to destabilize bacterial consortia, potentially 
through competitive exclusion or metabolic niche overlap, while 
favoring fungal taxa adapted to high-stress environments. Such 
dichotomy aligns with ecological theory which positing that fungi, 
with their hyphal networks and enzymatic versatility (Morrissey 
et al., 2023).

4.3 Functional shifts in microbial activity 
with community imbalance

Soil microbial functionality is intrinsically linked to community 
composition and structural dynamics (Lu et al., 2022), a relationship 
well-documented in agroecosystems (Saraf et  al., 2014; Shi et  al., 
2024). In this study, prolonged tomato monoculture significantly 
impaired nitrogen (N) cycling by suppressing the abundance of 
functional genes associated with N₂ fixation, denitrification, 
dissimilatory nitrate reduction to ammonium (DNRA), 
ammonification, and assimilatory N reduction. This down regulation 
of N-cycling genes likely reflects microbial adaptation to alleviate N 
limitation—a “soil N crisis”—arising from prolonged nutrient 

TABLE 4 Carbon fixation genes under different continuous cropping 
years.

Pathway Energy 
source

Environment Key 
genes

Calvin–Benson–Bassham 

cycle
Solar Aerobic tktA/tktB

3-Hydroxypropionate/4-

Hydroxybutylate cycle
Solar Aerobic accA

Reductive acetyl-CoA 

cycle
Hydrogen Anaerobic

acsB

cooS/acsA

Dicarboxylate/4-

hydroxybutyrate cycle
Hydrogen Anaerobic ppc
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depletion over a decade of monocropping. Notably, microbial nutrient 
limitation exerted selective pressure on key N-transformation 
pathways, particularly nitrification and denitrification, as evidenced 
by reduced gene expression.

PLS-PM and Mantel tests identified accumulated soil 
nutrients—including SOM, TN, TP, AN, and AP—as primary 
drivers of microbial community restructuring. While these 
nutrients typically support microbial proliferation (Jin et al., 2022; 
Qin et al., 2024), their over saturation in monoculture systems 
favored stress-tolerant taxa (e.g., SBR1031 and KD4_96) while 
suppressing beneficial genera such as A4b (rhizosphere symbiont) 
and Cephaliophora (pathogen antagonist). The result of RDA 
(Supplementary Figure S1) corroborated these shifts, revealing 
strong correlations between dominant microbial taxa and nutrient 
levels in 10a + soils. These findings suggest that nutrient 
accumulation disrupts microbial equilibrium by enriching taxa 
adapted to high-resource, high-stress environments. Taxonomic 
responses further highlighted ecological trade-offs. Species 
declining in abundance (e.g., network stabilizers negatively 
correlated with N accumulation) were replaced by taxa indicative 
of community destabilization (Ren et al., 2021; Zhao et al., 2021). 
For instance, key species KD4_96 and Bacillus (Figures  6A,B), 
whose abundance increased under monoculture, has been as an 
indicator of soil quality deterioration and associated with soil 
microbial community instability (Ren et al., 2021; Xun et al., 2021). 
Together, these results suggest that a competitive, instability-prone 
communities developed over a 10-year monoculture period in 
this study.

Mantel tests integrating these results demonstrated that long-term 
monoculture degraded bacterial co-occurrence networks and 
weakened C/N transformation capacity, whereas fungal communities 
exhibited structural and functional reinforcement. This dichotomy 
underscores a systemic shift from bacterial to fungal dominance in 
soils subjected to extended monocropping. In the case of soils 
subjected to long-term monoculture, the application of organic 
fertilizers or bio-organic fertilizers can mitigate excessive nutrient 
enrichment and restore microbial diversity (Ahsan et al., 2023). Future 
research could conduct targeted regulatory measures by identifying 
the missing and enriched microbial taxa to resolve the issue of soil 
micro-ecological imbalance. Additionally, it is essential to use large 
size sample to enhance the generalizability of the research findings (Li 
et al., 2019; Tan et al., 2021).

5 Conclusion

This study demonstrates that long-term tomato monoculture 
in greenhouses induces significant shifts in microbial communities, 
characterized by reduced bacterial diversity and increased fungal 
dominance. Co-occurrence network analysis and functional 
predictions reveal the deterioration of microbial interactions and 
nutrient cycling capacities over time. The accumulation of soil 
organic matter (SOM), nitrogen (N), and phosphorus (P) emerged 
as primary drivers of these changes. These findings emphasize the 
importance of adopting sustainable soil management practices to 
mitigate the adverse effects of prolonged monoculture and preserve 
soil health in greenhouse systems.
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