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Phytopathogens represent a persistent threat to global agricultural productivity, 
precipitating yield losses and destabilizing food security. Conventional reliance 
on synthetic agrochemicals, while effective in phytopathogen suppression, incurs 
significant economic burdens, drives environmental toxicity, and accelerates the 
evolution of resistant microbial strains, with collateral risks to ecosystem integrity 
and public health. This review synthesizes current advancements in harnessing 
plant- and microorganism-derived extracts, bioactivity-guided fractions, and purified 
phytochemicals as eco-compatible antimicrobial agents against phytopathogenic 
bacteria and fungi. Furthermore, we propose a novel framework for standardized 
prioritization of natural products, integrating efficacy thresholds, phytochemical 
complexity, and mechanistic specificity to guide scalable antimicrobial discovery. 
Meta-analysis of published studies reveals a predominant focus on Fusarium spp. as 
model phytopathogens, with dilution in broth and agar diffusion as the predominant 
in vitro assays. Quantitative benchmarks for antimicrobial potential were established: 
bacterial Minimum Inhibitory Concentrations (MICs) ≤ 2.5 mg/mL (crude extracts), 
≤0.6 mg/mL (fractions), and ≤64 μg/mL (purified compounds), alongside fungal 
growth inhibition thresholds <52% (agar dilution assays). These criteria highlight the 
differential bioactivity of natural product tiers, emphasizing the role of compound 
purification in potency enhancement. By bridging phytochemical innovation with 
agronomic applicability, this work positions plant-derived antimicrobials as pivotal 
tools for sustainable disease management, circumventing agrochemical limitations 
while advancing One Health-aligned agricultural practices.
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1 Introduction

As the global population nears >9 billion by 2050, humanity faces a critical paradox: 
persistent hunger and caloric insufficiency coexist with rising overnutrition and obesity 
(Guldan, 2020). This dual burden of malnutrition strains health systems, exacerbates 
socioeconomic inequalities, and necessitates innovative, equitable solutions to achieve 
sustainable food security through strategic agricultural investment (Ulian et al., 2020). Plant 
cultivation has played a foundational role in agricultural systems since the advent of human 
civilization, serving as a critical driver of food security and socioeconomic development with 
substantial economic value. Nevertheless, crop productivity and quality remain persistently 
threatened by microbial pathogens including viruses, bacteria, fungi and oomycetes that 
compromise plant health and yield. Notable phytopathogens include bacteria such as 
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Pseudomonas viridiflava, Escherichia coli, Xanthomonas campestris, 
Bacillus megaterium, and Clavibacter michiganensis; fungi such as 
Aspergillus micheli, Alternaria alternata, Fusarium oxysporum, 
Penicillium digitatum, and Botrytis cinerea; oomycetes such as 
Phytophthora cinnamomi, Pythium aphanidermatum, and 
Phytophthora infestans; and plant viruses such as Dasheen mosaic 
virus (DMV), Sour cherry green ring mottle virus (CGRMV), and 
Potato leafroll virus (PLRV). These diverse pathogens are responsible 
for significant agricultural losses (Elshafie et al., 2021; Giachero et al., 
2022; Hartman, 1974; Hernández-Díaz et al., 2021; Martin and Loper, 
1999; Taliansky et al., 2003; Zhang et al., 1998). For instance, the grey 
mould fungus, Botrytis cinerea, is a significant contributor to pre- and 
post-harvest losses in fruit and vegetable production. Recently 
classified as a ‘high-risk’ necrotrophic pathogen, it exhibits a 
remarkable capacity to rapidly develop resistance to fungicides, 
primarily through drug efflux transport mechanisms (Weber and 
Petridis, 2023; Shao et al., 2021). Of particular concern, intensive and 
excessive fungicide applications have led to the emergence of 
multiresistant strains in several countries, posing a serious challenge 
to disease management strategies (Hahn, 2014).

Contemporary agricultural practices for pathogen management 
remain heavily reliant on synthetic agrochemicals. However, 
conventional pest control strategies frequently fail to account for their 
broader ecological and economic ramifications. Prolonged 
agrochemical use has been associated with adverse environmental 
impacts, including bioaccumulation within trophic networks, 
resulting in biomagnification of toxic compounds across food chains 
(Dhananjayan et  al., 2020). Human health risks, such as acute 
intoxication and chronic poisoning, further underscore the limitations 
of these chemical agents (Devi et  al., 2022; Lekei et  al., 2014). 
Moreover, the indiscriminate application of agrochemicals accelerates 
the evolution of antimicrobial resistance, wherein phytopathogenic 
strains acquire adaptive mechanisms to circumvent chemical control 
measures. This necessitates the deployment of increasingly potent 
compounds, perpetuating a cycle of environmental degradation and 
ecological imbalance (Lekei et  al., 2014). In response to these 
challenges, the scientific community has intensified efforts to identify 
sustainable alternatives that harmonize economic viability with 
ecological safety. Natural products, encompassing bioactive 
compounds, phytochemical fractions, and plant-derived 
nanoparticles, have emerged as promising candidates due to their 
biodegradability, low environmental persistence, and reduced 
propensity for resistance development (Chin et  al., 2006). By 
leveraging these resources, researchers aim to mitigate the unintended 
consequences of industrial agrochemicals while maintaining robust 
antimicrobial efficacy.

However, significant research gaps hinder their translation from 
lab to field. First, while in  vitro studies demonstrate efficacy, 
mechanistic insights into how plant-based compounds such as Olive 
mill wastewater (rich in phenolics) interact with Phytopathogenic 
bacteria like Pseudomonas savastanoi pv. savastanoi, Clavibacter 
michiganensis, and Xanthomonas campestris remain limited, impeding 
optimization (Košćak et  al., 2023). Second, the yield of bioactive 
compounds extracted from a given plant is highly variable due to the 
influence of climatic conditions and many other factors. This 
inconsistency is further compounded by the absence of standardized 
extraction protocols for isolating phytochemicals with potential 
activity against phytopathogenic microorganisms, posing a significant 

challenge to their reliable application in plant disease management 
(Bitwell et al., 2023; Kumar et al., 2017; Moomin et al., 2023). Third, 
the potential of synergistic combinations between plant-derived 
compounds and biocontrol organisms or integrated phytopathogen 
management strategies remains largely unexplored. Despite their 
promise in enhancing the effectiveness and sustainability of 
phytopathogen control, such approaches have received limited 
research attention and, when applied, are largely restricted to 
greenhouse crops (Pandit et al., 2022). Fourth, long-term ecological 
impacts—such as effects on non-target species or soil microbiomes—
are poorly documented, raising questions about holistic sustainability 
(Nadeu et al., 2023). Finally, economic barriers, including cost–benefit 
analyses and adoption incentives, are overlooked in favor of purely 
technical research, and limiting real-world uptake. This review 
critically examines recent advances in the application of natural 
products derived from plants as antiphytopathogenic agents, with a 
focus on their mechanistic action and efficacy. We further evaluate 
standardized methodologies for antimicrobial assessment and propose 
a unified criterion for interpreting antibacterial and antifungal activity 
data, aiming to establish a framework for identifying high-potency, 
environmentally sustainable phytopathogen control strategies.

2 Major phytopathogens

The agroecosystem plays a pivotal role in shaping local and global 
economies. However, agricultural productivity is frequently 
compromised by phytopathogens, leading to significant yield 
reductions and economic losses. Among viral pathogens, mosaic 
viruses (e.g., Tobacco mosaic virus) are particularly impactful 
(Palukaitis et al., 1992). Predominant fungal phytopathogens include 
genera such as Aspergillus, Fusarium, Penicillium, Alternaria, and 
Botrytis, which infect diverse plant tissues, including leaves, stems, 
roots, and fruits (Nakajima and Akutsu, 2014; Okungbowa and Shittu, 
2012; Peever et  al., 2002). Bacterial genera such as Ralstonia, 
Pseudomonas, Xanthomonas, Pectobacterium, and Dickeya, similarly 
can colonize and damage plants through either systemic or localized 
infections (Álvarez et al., 2010; Bashan and De-Bashan, 2002; Ge et al., 
2021; Rudolph, 1993). Table 1 summarizes the most prevalent fungal 
and bacterial phytopathogenic genera and their associated host crops.

Phytopathogens encompasses a diverse spectrum of pathogens, 
including viroids, viruses, prokaryotic bacteria, and eukaryotic 
organisms such as fungi, oomycetes, and nematodes (Pandit et al., 
2022). The following sections provide an overview of the major 
phytopathogenic fungi, bacteria, and selected viral pathogens, 
highlighting the diseases they cause and their economic impact on 
agricultural production systems. Particular attention is given to viral 
diseases in a dedicated section.

2.1 Fungi phytopathogens

Fungal phytopathogens play an important role in global food and 
health security issues, causing various diseases in many crops and 
fruits (Luck et al., 2011). Fungi such as Aspergillus are mainly found 
in soil, fruits, plants and have more than two hundred species such as 
A. terreus, A. fumigatus and A. oryzae. This genus produces 
conidiophores, a structure similar to the cnidarian “hydra,” which 
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allows it to reproduce and spread (Jayaprakash et  al., 2019). The 
disease caused by these fungi is mainly due to toxins such as aflatoxin 
(Amaike and Keller, 2011), a type of mycotoxin, which affects various 
stages of plant life, such as seed germination and other physiological 
processes, causing harm to humans and animals when ingested in 
contaminated foods (Abdelaziz et al., 2022). According to Eskola et al. 
(2020), between 60 and 80% of all crops in the world are damaged by 
mycotoxins such as aflatoxicins.

In the United  States, maize cultivation suffers losses of 
approximately US$160 million per year due to aflatoxin 
contamination. In developing countries, the impact is even more 
severe, reaching around US$450 million, which accounts for 38% of 
global losses caused by the presence of toxins in agricultural 
production (Jallow et al., 2021).

Another extremely important genus is Fusarium, which mainly 
infects the banana plant and fruit, and includes species such as: 
F. oxysporum, F. sporotrichoides, F. graminearum (Ploetz, 2015). 
Banana cultivation has a global market turnover of $25 billion dollars 

(Voora et  al., 2020). India is the country with the largest banana 
production in the world, growing more than 31 million tons annually, 
surpassing China with an annual production of approximately 11 
million tons and Indonesia with 8 million tons (Statista, 2024). 
Fusarium infection of the plant mainly affects the vascular system in 
the stem and root (Ploetz, 2015) and may reach the xylem (Gordon, 
2017). It also has the potential to infect animals and humans, with a 
high mortality rate (Hof, 2020). Fusarium oxysporum, the primary 
agent of vascular wilt, stands out as the most widespread pathogen, 
with global crop losses estimated at 10–50%, and even higher in India, 
where losses can reach up to 80% (Bai et al., 2018).

The genus Alternaria includes the species: A. alternata, A. arbusti, 
A. blumeae, A. brassicae, A. brassicicola, A. carotiincultae, A. conjuncta, 
A. dauci, A. euphorbiicola, A. infectoria, A. molesta, A. panax, 
A. petroselini, A. selini, A. solani, A. smyrnii, among others, are known 
to attack pre- and post-harvest fruit, especially tomatoes (Palou et al., 
2012). Infection by this fungus consists of the appearance of black 
spots on the skin of the fruit due to the production of toxins and 

TABLE 1 Major genera of bacterial, fungal, oomycetes and viruses phytopathogens and their affected plants and fruits.

Biological 
group

Phytopathogens Crops affected Reference

Bacteria

Clavibacter spp. Tomato, alfalfa, wheat, potato, bean Nandi et al. (2018) and Peritore-Galve et al. (2021)

Dickeya spp. Potato Toth et al. (2011)

Erwinia spp. Ornamental plants, apples, pear and potatoes Reiter et al. (2002) and Vrancken et al. (2013)

Pectobacterium spp.
Potato, tomato, maize, cabbage, and ornamental plants, rice, 

maize, potato

Ma et al. (2007), Toth et al. (2021), and Werra et al. 

(2021)

Pseudomonas spp. Arabidopsis sp., sweet basil Mansfield et al. (2012) and Walker et al. (2004)

Ralstonia spp. Potato, tomato, and other solanaceous plant species Pedro-Jove et al. (2021)

Xanthomonas spp. Arabidopsis thaliana, broccoli, cabbage, cauliflower, citrus fruit Papaianni et al. (2020) and Reynol (2017)

Xylella spp. Grape, olive, almond, citrus fruit, coffee Bruening et al. (2014) and Landa et al. (2022)

Fungi

Alternaria spp. Tomato, olive, carrots, citrus fruits, cereals, apples Logrieco et al. (2009) and Palou et al. (2012)

Aspergillus spp. Maize, cottonseed, peanuts, tree nuts Diener et al. (1987) and Robens and Cardwell (2003)

Botrytis spp. Strawberry, citrus fruits, grapes, chickpea, and other beans Boddy (2016) and Pande et al. (2006)

Colletotrichum spp.
Woody ornamentals and tropical foliage plants, papaya, mango, 

guava, avocado
Azevedo Dos Santos et al. (2020)

Fusarium spp. Wheat, soft red winter wheat, durum wheat, barley, bananas
Dita et al. (2018), Nelson (1992), and Nganje et al. 

(2004)

Glomerella sp. Apple Wang et al. (2015)

Penicillium spp. Apple, garlic Wang et al. (2023)

Rhizoctonia spp. Soybean, corn, alfalfa, winter wheat, spring barley Malvick (2018) and Smiley (2021)

Rhizopus spp. Sunflower, strawberry, passion fruit
Schipper and Stalpers (1984) and Thompson et al. 

(1980)

Oomycetes

Aphanomyces spp.
Pea, sugar beet, spinach

alfalfa, lentils, green beans
Wikström et al. (2025)

Peronospora sp. Alfalfa Yu et al. (2023)

Phytophthora spp. Pepper, cucumber, pumpkin, tomatoes, snapbeans Granke et al. (2012)

Pythium spp.
Avocado, pineapple, peach, chestnut, macadamia, camellia, oak, 

pine and eucalyptus
Hardham (2005) and Jung et al. (2013)

Virus

Nepovirus Cucumber, Blueberries Caglayan et al. (2025) and James et al. (2024)

Polerovirus Tobacco, wild-rice Yan et al. (2025)

Potyvirus Potato Mäkinen et al. (2023)
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diseases such as black mould rot (Yan et al., 2015). This genus can 
affect numerous plant species such as citrus fruits, pears, carrots, 
barley, oats, olives, melons, peppers, apples, raspberries, cranberries, 
grapes, sunflower seeds, melons, lentils, wheat and other grains (Crous 
et al., 2015; Logrieco et al., 2009; Patriarca et al., 2007). As recent 
research has shown (Shabeer et al., 2022), this type of genus can also 
infect humans and cause disease (Azcarate et al., 2008).

The Botrytis genus consists of 22 species such as B. cinerea, 
B. convoluta, B. fabae, among others that can cause the rust disease, 
characterized by leaf loss, black spot and decay in the stem (Bika et al., 
2021). The most commonly affected plants are strawberries, citrus 
fruits, grapes, chickpeas and lettuce (Pande et al., 2006).

The Glomerella and Colletotrichum genera mainly attack apples, 
but they can also infect strawberries, causing leaf spots of Glomerella 
(Gonzalez et al., 2006) or even bitter rot, appearing as black or brown 
spots that grow and cause necrosis in the area (Moreira et al., 2019). 
They can also cause the disease anthracnose, causing rot on plants and 
dark lesions on fruit, affecting strawberry, mango, citrus fruit, 
avocado, banana, coffee and some cereal crops (Cannon et al., 2012). 
Both genera are related to each other, as the genus Glomerella 
represents the teleomorphic (sexual) phase of the fungus while the 
asexual (anamorphic) phase is represented by the genus Colletotrichum 
(Guerber and Correll, 2001), like the life cycle of cnidarians, 
alternating between polyp and medusa. A good example of a species 
that symbolizes this relationship is G. cingulata, which is the 
teleomorph of C. cingulata. G. cingulata in the epidemic regions of 
China caused severe damage to susceptible apples, including 90% 
defoliation and diseased fruit before harvest, which resulted in 
reduced tree vigor, lower yields and poor fruit quality (Liu et al., 2023).

The genus Rhizoctonia is made up of numerous species such as 
R. fumigata, R. ferruginea, R. oryzae-sativae and R. rubi, which reduce 
the yield of a large number of plants, from aquatic to aerial, such as 
soybeans, corn, alfalfa, winter wheat and spring barley (Malvick, 
2018). It is most commonly found in damp soil, initiating the infection 
in the roots of the plant (Baker, 1970). Rhizoctonia bare spot affected 
almost 20% of the plantation (approximately 2 fields of 50 hectares), 
and the impact of the disease caused yield reductions of up to 73% on 
a winter wheat and spring barley farm (Smiley, 2021). Symptoms 
observed on a variety of hosts include seed decay, root decay, 
hypocotyl decay, crown decay, stem decay, limb and pod decay, stem 
canker, black scab and seedling blight (Ajayi-Oyetunde and 
Bradley, 2018).

The Rhizopus genus includes species such as R. oryzae, R. nigricans 
and R. sexualis, which infect sunflowers, strawberries, passion fruit 
and cause flower rot (SCHIPPER & STALPERS Schipper and Stalpers, 
1984). The disease can be on the flower head or on the peduncle. On 
the flower, the disease manifests itself as a brown spot, causing some 
seeds to taste bitter and fall off. On the peduncle the whole flower falls 
off and rots (Yildirim et al., 2010).

Oomycetes are microorganisms that produce hyphae just like 
fungi. Their cell walls are composed of cellulose, and they produce 
coenocytic hyphae, which are not composed of divided cells but rather 
a single elongated cell (Hardham, 2007). In literature studies have 
been carried out on numerous oomycetes, such as the genera 
Phytophthora and Pythium. One of the most studied oomycetes in the 
literature is Phytophthora, especially Phytophthora infestans, which 
causes late blight in potatoes (Kamoun et al., 2015). The Pythium 
genera consist of P. ultimum, P. aphanidermatum and P. irregulare. 

These microorganisms cause diseases such as Pythium damping off, 
root rot (Mavrodi et al., 2012).

Chitosan, saponins, and induced systemic resistance play a crucial 
role in managing fungal and oomycete pathogens such as Fusarium 
oxysporum, Phytophthora infestans, and Colletotrichum gloeosporioides. 
It was reported that, chitosan interacts with the negatively charged 
components of the fungal cell surface, altering membrane permeability 
and leading to the leakage of intracellular electrolytes and protein-rich 
contents (Hernández-Lauzardo et  al., 2011). Saponin-rich plant 
extracts from Balanites aegyptiaca fruit mesocarp, Quillaja saponaria 
bark, and Yucca schidigera have demonstrated effective inhibitory 
activity against phytopathogens such as Fusarium oxysporum, 
Colletotrichum coccodes, and Verticillium dahliae, with varying degrees 
of efficacy (Chapagain et al., 2007). Interestingly, systemic acquired 
resistance and induced systemic resistance are plant defense 
mechanisms triggered by prior infection or treatment, enhancing 
resistance to future pathogen attacks. Instead of directly targeting 
pathogens, they strengthen the plant’s physical and chemical barriers 
through signaling pathways, particularly salicylic acid-dependent 
cascades, that induce broad-spectrum, long-lasting resistance (Kamle 
et al., 2020).

2.2 Bacterial phytopathogens

Bacterial pathogens affect the global market for various fruits and 
vegetables commonly used in everyday cooking by the world’s 
population. A very relevant genus of phytopathogenic bacteria is 
Ralstonia, which usually infects the host through the roots, mainly 
affecting tomato plantations, responsible for bacterial wilt, a disease 
characterized mainly by the crumpling of leaves, eventually collapsing 
the plant (Tahat and Sijam, 2010). This genus includes species such as 
R. pseudosolanacearum, R. solenacearum and R. syzygii. To start the 
invasion, R. solanacearum initially releases enzymes that break down 
the cell wall of the host cell (Coll and Valls, 2013). The current widely 
accepted route of colonization by R. solanacearum involves the 
bacterium entering the root cortex of the host plant and subsequently 
progressing through the intercellular space to reach the xylem. Once 
in the xylem, the bacterium multiplies and spreads to the above-
ground parts of the host plant (Bae et al., 2015).

Another extremely important disease in crops is soft rot, which 
affects the roots of plants such as potatoes, causing the tissue to 
decompose. The pathogens responsible include Pectobacterium and 
Pseudomonas spp. The genus Pectobacterium sp. is made up of species 
such as P. carotovorum, P. atrosepticum, P. wasabiae; and the genus 
Pseudomonas sp. includes P. aeruginosa, P. putida, P. chlororaphis. 
Pectobacterium sp., which can cause soft rot on various hosts, such as 
cabbage, carrots, celery, cotton, cucumbers, cyclamen, hyacinth, corn, 
potatoes, sugar cane and tobacco (Dye, 1968). Another disease is 
blackleg, which damages profits and agriculture in general. Symptoms 
include blackening of the stem and rotting (Van der Merwe et al., 
2010). Infection begins when the bacterium comes into contact with 
the plant’s tissues through a wound, subsequently the tissue becomes 
soft due to the action of pectinolytic enzymes excreted by the 
pathogen, presenting a fetid secretion (Perombelon, 1988).

Erwinia includes species such as Erwinia amylovora and Erwinia 
carotovora. It is responsible for causing diseases such as blackleg of 
potatoes and fire blight (Reiter et al., 2002; Zeng et al., 2021). A 2024 
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study estimated the economic impact of fire blight on the orchard’s 
long-term economic performance, and, with the worst-case scenario, 
there was a reduction of up to 70% in the field’s profitability (Nieto 
et al., 2024).

Xanthomonas sp. is another genus of great importance in 
agriculture and includes species such as X. citri, X. alfalfae, X. oryzae, 
X. vasicola and X. perforans. These pathogens can cause circular, oily 
spots on leaves, stems, thorns and fruit and develop into white or 
yellow pustules that darken and thicken, forming a brown canker and 
deep craters in the fruit, which can lead to defoliation and premature 
fruit drop (Brunings and Gabriel, 2003). It is a genus of Gram-negative 
bacteria, which mainly affects citrus fruits such as lemons, oranges 
and tangerines (Starr, 1981). In 2019, according to the Fund for Citrus 
Protection (Fundecitrus 2019), in one region of Brazil, the incidence 
of symptomatic trees reached 15%, which is significant given the 
severity of the disease.

The genus Dickeya comprises bacteria that infect potato, tomato, 
chicory, artichoke, dahlia, kalanchoe, pineapple, sweet potato, banana, 
corn and others, including species such as D. zeae, D. solani and 
D. aquatica. The main symptom of infection caused by these bacteria 
is soft rot, which manifests itself as internal stem necrosis or rot 
extending from the base of the stem. Externally, however, the base of 
the stem appears healthy (Toth et al., 2011).

The Clavibacter genus includes Gram-positive bacteria such as 
C. michiganensis, C. capsici, and C. sepedonicus. During infection they 
can cause ratoon dwarfism, which is a term used to describe a problem 
prevalent in perennial crops such as sugar cane, sweet potato and 
certain varieties of banana. The term “ratoon” refers to the secondary 
plant growth that appears after the primary crop has been harvested, 
originating from the remaining shoots and buds of the original plants 
(Davis et  al., 1984). One of the main species that causes major 
economic losses is C. michiganensis, as there have been reports of 
tomato fields losing between 50 and 100% of total production, and its 
symptoms are wide-ranging, such as cankers on the stem, dehydration 
of the leaf margins, chlorotic spots on the leaves, among others 
(Rossi, 2014).

The Xylella genus can cause various plant diseases, such as citrus 
variegated chlorosis, plum leaf scald, false peach disease, olive rapid 
decline syndrome, Pierce’s grapevine disease, alfalfa dwarfing, margin 
necrosis and leaf scorch (Trkulja et al., 2022). The only member of its 
genus is X. fastidiosa, which is usually characterized by its subspecies 
as: X. fastidiosa subsp. fastidiosa, X. fastidiosa subsp. pauca, 
X. fastidiosa subsp. multiplex, X. fastidiosa subsp. sandyi, X. fastidiosa 
subsp. morus. Generally, these bacteria obstruct the transport of water 
and soluble minerals through the xylem, leading to various 
manifestations in infected plants, such as necrosis of leaf margins, 
wilting and subsequent drying of leaves and branches, along with 
stunted growth and wilting of specific parts of the plant. According to 
Schneider et al. (2020), the economic impact of ineffective control 
against Xylella subspecies would cause a batch in Italy to lose between 
US$2 billion and US$5.6 billion dollars (converted on 31/07/2024). 
Brazil, one of the higher production of citrus fruit, in 2015, had an 
orange production volume of 16.7 million tons (Pereira et al., 2022), 
and the country has been dealing with measures to protect orange and 
citrus production from citrus canker since 1957 (Behlau, 2021). 
Figure  1 illustrates the primary plant structures susceptible to 
infection by common bacterial and fungal phytopathogens in 

agricultural plantations. It highlights the specific sites of pathogen 
attack, providing insights into disease progression and potential 
impact on plant health.

Plant-derived antibacterial agents and microbiome manipulation 
represent sustainable strategies to combat bacterial phytopathogens. 
A variety of plant-derived phytochemicals (including extracts and 
essential oils) show potential as novel antibacterial agents for 
suppressing bacterial phytopathogens, offering sustainable alternatives 
to synthetic bactericides in agriculture (Abdullahi et  al., 2020). A 
current trend in sustainable agriculture involves activating the soil 
microbiome by enhancing indigenous microbial communities, which 
has been shown to reduce diseases cause by phytopathogens such as 
bacterial wilt, brown blotch, fire blight, and crown gall. This approach 
offers effective plant protection while maintaining soil health, with no 
reported adverse effects on soil properties (Haq et al., 2024).

2.3 Viral phytopathogens

Plant viral diseases pose a significant challenge to global 
agriculture, reducing crop yield and quality. Besides, the increasing 
globalization of agriculture and international trade is contributing to 
the spread of viruses and their vectors into new regions, leading to 
unpredictable impacts on food production and natural ecosystems 
(Jones and Naidu, 2019). Unlike bacterial or fungal pathogens, plant 
viruses lack independent metabolic machinery and must rely on host 
cellular mechanisms for replication and systemic spread.

Plant viruses belong to various families with distinct transmission 
mechanisms, host ranges, and disease symptoms. The Potyviridae 
family includes Potato Virus Y (PVY), which affects potatoes, 
tomatoes, and peppers, causing mosaic symptoms, leaf necrosis, and 
reduced yield (Scholthof et al., 2011). Another example is Papaya 
Ringspot Virus (PRSV), which infects papaya and cucurbits, leading to 
severe leaf distortion, mosaic patterns, and ring spots on fruit (Tripathi 
et al., 2008). The Tombusviridae family includes Tomato Bushy Stunt 
Virus (TBSV), which infects tomatoes and causes stunting, yellowing, 
and fruit malformations (Scholthof et al., 2011). Cucumber Necrosis 
Virus (CNV) is another member that affects cucumbers, causing 
necrotic lesions and stunted growth (Dijkstra and Khan, 2024). The 
Geminiviridae family includes Tomato Yellow Leaf Curl Virus 
(TYLCV), a devastating virus in tomatoes, transmitted by whiteflies 
(Bemisia tabaci), causing yellowing, curling of leaves, and severe yield 
loss (Navas-Castillo et al., 2011). Another example is Maize Streak 
Virus (MSV), which affects maize crops, causing chlorotic streaking 
and stunted growth (Bosque-Pérez, 2000).

Host resistance is a fundamental natural control mechanism. 
Some plants have evolved resistance genes (R genes) that recognize 
specific viral proteins and activate defense responses. RNA 
interference (RNAi) is another natural defense in which plants 
degrade viral RNA to prevent replication and movement (Baulcombe, 
2004). Additionally, systemic acquired resistance (SAR) primes plants 
against secondary infections by inducing defense-related proteins and 
secondary metabolites (Durrant and Dong, 2004). Beneficial 
microorganisms, including endophytic fungi, rhizobacteria, and 
mycorrhizal fungi, enhance plant immune responses against viral 
infections. Certain strains of Bacillus and Pseudomonas produce 
antimicrobial compounds and elicit induced systemic resistance (ISR), 
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reducing viral replication and symptom severity (Kloepper et  al., 
2004). Some fungal biocontrol agents, such as Trichoderma spp., 
secrete enzymes that degrade viral coat proteins, interfering with 
infection (Shoresh et al., 2010).

Many plant viruses are transmitted by insect vectors such as 
aphids, whiteflies, and thrips. Natural enemies like ladybugs 
(Coccinellidae), lacewings (Chrysopidae), and parasitoid wasps 
(Encarsia formosa) regulate vector populations, reducing virus 
transmission rates. Additionally, entomopathogenic fungi such as 
Beauveria bassiana and Metarhizium anisopliae target insect vectors 
and minimize virus spread (Baverstock et al., 2010). Certain plant 
extracts and essential oils exhibit antiviral activity by interfering with 
viral replication and cell-to-cell movement. Phytochemicals such as 
flavonoids, alkaloids, and terpenoids have shown inhibitory effects 
against plant viruses (Ma and Yao, 2020). Extracts from neem 
(Azadirachta indica) and garlic (Allium sativum) reduce infection 
severity by disrupting viral coat proteins and inhibiting vector feeding 
behavior (Thomas et al., 2021). Integrating natural control measures 
into agricultural systems requires a holistic approach. Crop rotation 
and intercropping disrupt virus life cycles and limit vector 
establishment. Companion planting with repellent species, such as 
marigold (Tagetes spp.) and basil (Ocimum basilicum), deters insect 
vectors and reduces virus incidence (Hooks and Fereres, 2006). 
Additionally, breeding programs focusing on durable resistance genes 
can provide long-term solutions against viral diseases (Garcia-
Ruiz, 2018).

3 Plant-based alternatives for 
phytopathogen control: from 
extraction to evaluation

3.1 Extraction of bioactive plant 
compounds for phytopathogen control

It is evident that phytopathogens can simultaneously affect 
multiple plant structures. Consequently, advancements in microbial 
and pest control strategies continue to evolve annually, including the 
development of agrochemicals with enhanced antimicrobial efficacy, 
the utilization of natural biopesticides, and the induction of plant 
resistance to specific pests (Douglas, 2018; Perdikis et al., 2011; Vurro 
et  al., 2019). The use of herbal medicines with various biological 
activities, such as antimicrobial, anti-inflammatory and 
anticarcinogenic, among others, is very wide and variable. There are 
different ways of extracting natural plant extracts, such as maceration, 
infusion, digestion, microwave-assisted extraction, percolation and 
steam distillation (Zhang et al., 2018). Maceration consists of crushing 
the leaves and can be done in a mortar and pestle (Ishii and Yokotsuka, 
2014). Infusion is an extraction method that basically consists of 
pouring hot water on the leaves or part of the plant. Digestion is the 
decomposition of plant material with acids and high temperatures 
(Parr et  al., 2001). Microwave-assisted extraction, as the name 
suggests, uses microwaves to heat the base material of the plant to 
obtain the extract (Kaufmann and Christen, 2002). The percolation 

FIGURE 1

Key plant structures affected by common bacterial and fungal phytopathogens in agricultural plantations.
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method of solvent extraction consists of extracting the plant material 
by continuously flowing solvent through plant material to extract 
soluble components (Kaufmann and Christen, 2002; Singh, 2008), and 
steam distillation consists of applying steam directly to the plant 
material followed by condensation to obtain the extract (Cassel et al., 
2009). In addition to the previously mentioned extraction techniques, 
advanced analytical methods such as High-Performance Liquid 
Chromatography (HPLC) and Gas Chromatography (GC) are widely 
utilized for the precise identification and quantification of bioactive 
compounds in plant-derived extracts.

Moussi et  al. (2015) used the chromatography technique to 
separate the phenolic part of the Rhamnus alaternus L. extract, where 
due to interactions with the molecules of both the mobile part 
(solvent) and the stationary part (material filling the column), only the 
molecule or class of molecules of interest were separated. In the case 
of gas chromatography, separation depends on volatility and 
interaction with the stationary part (Bartle and Myers, 2002). The 
difference between liquid and gas is what carries the sample, which 
can be gas (helium, nitrogen or hydrogen) or liquid (Giddings, 1965). 
Moussi et  al. (2015) employed High-Performance Liquid 
Chromatography (HPLC) to isolate phenolic compounds from 
Rhamnus alaternus L. extracts. In HPLC, separation is governed by 
differential interactions between analytes and two distinct phases: a 
liquid mobile phase (e.g., water, methanol, or acetonitrile) that 
transports the sample through the system, and a solid stationary phase 
(e.g., silica-based or polymer-packed columns) that selectively retains 
molecules based on polarity, size, or affinity (Snyder et al., 2011). For 
phenolic compounds, which are polar, non-volatile, and thermally 
labile molecules, HPLC is particularly advantageous, as it preserves 
their structural integrity while effectively resolving complex mixtures 
into individual components, such as flavonoids and phenolic acids, 
using gradient elution or isocratic modes (Moussi et al., 2015).

In contrast, Gas Chromatography (GC) utilizes a gaseous mobile 
phase (e.g., helium, nitrogen, or hydrogen) to transport volatilized 
analytes through a temperature-controlled column coated with a 
stationary phase (e.g., polysiloxane). Separation in GC depends 
primarily on volatility and secondarily on interactions with the 
stationary phase (Bartle and Myers, 2002). Compounds with lower 
boiling points elute faster, whereas polar or less volatile molecules 
often require derivatization, a chemical modification that enhances 
thermal stability and volatility, prior to analysis (Grob and Barry, 
2004). While GC is ideal for volatile organic compounds (VOCs) such 
as terpenes and fatty acids, it is unsuitable for non-volatile phenolics, 
as these compounds would degrade under the high-temperature 
conditions of GC (Snyder et  al., 2011). Thus, the choice between 
HPLC and GC hinges on the physicochemical properties of the 
analytes. HPLC excels in separating non-volatile, thermally sensitive 
molecules, including polyphenols and proteins, due to its gentle 
operating conditions and compatibility with polar solvents. 
Conversely, GC is reserved for volatile, thermally stable compounds 
such as hydrocarbons and essential oils, leveraging its ability to resolve 
low-molecular-weight species under elevated temperatures (Bartle 
and Myers, 2002; Grob and Barry, 2004).

A natural product extract is a concentrated preparation of active 
substances extracted from plants, vegetables, animals, bacteria and 
fungi derivatives. In several studies using natural extracts with 
antimicrobial activity, such as Pacheco-Cano et al. (2020), which used 
the crude extract of Brassica oleracea var. italica against Bacillus cereus, 

Listeria monocytogenes, P. aeruginosa, Salmonella typhimurium and 
Vibrio parahaemolyticus, and Fontana et al. (2022) witch evaluated the 
antimicrobial activity of the methanolic and hydroalcoholic extracts 
of Moringa oleifera against Erwinia amylovora. Compounds, on the 
other hand, consist of the material or chemical that has been separated 
from a mixture or source and obtained in its pure form, such as the 
isolation of a class of molecules or a specific molecule. Some studies 
have used compounds as Azevedo Dos Santos et  al. (2020), who 
evaluated the peptide portion of Capsicum chinense fruit extract 
against F. oxysporum, F. solani, Colletotrichum lindemuthianum and 
C. gloeosporioides, Kim et al. (2018) who evaluated five antifungal 
molecules from the crude methanolic extract of Trevesia palmat a 
against Alternaria porri, B. cinerea, Colletotrichum coccodes, 
F. oxysporum, Magnaporthe oryzae and Phytophthora infestans 
showing promising results.

The literature contains articles describing the antimicrobial 
evaluation of natural extracts coated with nanoparticles, materials 
with dimensions in the nanometric range, usually between 1 and 100 
nanometers (nm) (El-Naggar et al., 2024; Ndolomingo et al., 2020). 
Due to their very small size and high surface-to-volume ratio, 
nanoparticles exhibit distinct and unique properties Danish et  al. 
(2022), with green synthesis for the production of silver nanoparticles 
based on the natural extract of Cassia fistula (L.), evaluated against 
Pseudomonas syringae, Fusarium oxysporum, Rhizoctonia solani and 
Sarocladium sp.

3.2 The search for evidence: 
microbiological evaluation of plant-based 
antimicrobials

To evaluate the biological potential of extracts, fractions and 
compounds from extracts or plant products, whether coated with 
nanoparticles, some techniques can be used, such as agar dilution, 
agar diffusion, micro and macro dilution in broth, bioautography, 
among others. When the method for antimicrobial evaluation is 
carried out on agar, techniques such as agar dilution or agar diffusion 
can be  used. In literature, it is common to use different terms to 
describe the same methodological approach to assessing antifungal 
activity in filamentous fungi. Terms such as “poisoned food 
technique”(Pinto et al., 2022), “poisoned food medium assay”(Kim 
et al., 2019), “diffusion technique on PDA growth medium”(Vuerich 
et  al., 2023), and “mycelial growth inhibition by an agar-dilution 
method”(Reyes et al., 2022), to describe methods in which the tested 
substance is incorporated into the agar before solidification. and then 
inoculating the hyphae-producing microorganisms, i.e., filamentous 
fungi on the agar plate, and the result is normally presented as the 
percentage of inhibition of the growth of the hyphae of the 
microorganism compared to a control without the sample (Perrucci 
et al., 1994; Balouiri et al., 2016).

Diffusion on agar, on the other hand, can be carried out in two 
main ways: disk or well on agar. In the case of agar well diffusion, as 
carried out by Bhatti et al. (2024), the microorganisms are inoculated 
onto the agar. Subsequently, a well is made in the agar to place the 
extracts or compounds (Magaldi et al., 2004). In the case of the paper 
disk, as performed by Klančnik et al. (2009), subsequently the agar 
plates are produced normally, sequentially the microorganism will 
be inoculated into the agar, and finally, paper discs containing the 
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tested substance will be placed on the previously inoculated agar. In 
this way the tested samples will spread in part of the agar through 
diffusion (Magaldi et al., 2004). The test is interpreted by measuring 
the growth inhibition halo after the respective incubation of the 
microorganism used, thus making it possible to measure and account 
for the antimicrobial activity of the extracts and compounds (Devillers 
et al., 1989).

There are other methods such as: microdilution and 
macrodilution, which are characterized by serial dilution, and can 
be performed in tubes, in the case of macrodilution (Nikitin et al., 
2023), or in wells in 96-well plates in the case of microdilution (Chalo 
et al., 2023). After diluting the sample, microorganisms are added at 
specific concentrations to determine the Minimum Inhibitory 
Concentration (MIC), defined as the concentration of the extract, or 
nanoparticle capable of compounds inhibiting the growth of the 
microorganism or eliminating it completely (Pa, 2002). The MIC can 
be interpreted by adding an oxidoreductive salt, such as rezasurin, 
which changes color from blue to pink when in contact with living 
metabolites (Sarker et al., 2007). Another way of determining the MIC 
is by reading the optical density in a spectrophotometer, resulting in 
the absorbance of each well of the microplate.

Such tests can branch out into other different testing possibilities, 
such as the evaluation of extracts and compounds from natural 
products together with other antimicrobials against microorganisms, 
with the aim of verifying whether there is synergism or antagonism, 
as well as the inhibition of biofilm formation, among others. Table 2 
summarizes the evaluated plant species, their antimicrobial activities 
against phytopathogens, the techniques applied, and the main 
findings. The selected studies, published between 2020 and 2024, are 
open-access articles from peer-reviewed journals with an impact 
factor above 3. These studies focus on plant-derived bioactive 
compounds tested against bacterial and fungal phytopathogens. The 
articles were retrieved from the Scopus database using various 
keyword combinations, including “phytopathogen and antimicrobial 
and plant and extract,” “plant and extract and fraction and 
phytopathogens,” “plant and extract and molecule and phytopathogen,” 
“plant and extract and isolated and compounds and phytopathogen,” 
and “phytopathogen and nanoparticles and antimicrobial.”

According to Table 2, and according to database limitations, the 
most studied type of microorganism was fungi of the genus Fusarium 
sp. (16,8%). The most evaluated natural products regarding their 
antimicrobial activity were aqueous extracts (18.42%) and ethanolic 
extracts (15.79%).

Due to the lack of articles that establish clear benchmarks for 
promising antimicrobial activity against phytopathogens, this study 
proposes tentative threshold values to guide future evaluations. Values 
higher than 20.90 mm of inhibition halo are suggested as a indicative 
of promising activity. MIC values for bacteria of less than 2.5 mg/mL 
for the crude extract, 0.6 mg/mL for the fractions and 64 μg/mL for 
the compounds are proposed as benchmarks. In the case of the 
percentage inhibition of the growth of filamentous fungi, values of less 
than 52% inhibition may be considered promising.

Figure 2 illustrates the most commonly employed techniques and 
methods in the literature for assessing the activity of natural products 
against phytopathogenic microorganisms, along with their respective 
usage percentages.

The most used techniques in the articles for antimicrobial 
evaluation were dilution in broth and agar diffusion. The widespread 

of these techniques is due to their applicability, such as their use for 
solid or with difficult solubility substances, which allows the analysis 
of the growth of the microorganism in direct contact with the 
substance or compound, but there is less standardization and 
consequently variation between the results, in addition to the fact that 
the results can be difficult to interpret due to the interaction of the 
substance or compound with the agar. In the case of microdilution 
and macro-dilution in broth, the advantage is that it is well suited to 
samples that do not diffuse well in agar, such as for certain antibiotics 
(Satlin, 2019).

4 Recommended strategies, 
challenges and future directions

Effective phytopathogen control requires a multi-pronged 
strategy integrating phytochemical innovation, nanotechnology, host 
genetics, and ecological stewardship. Prioritizing standardized 
protocols, field validation, and socioeconomic feasibility will bridge 
the lab-to-field gap, advancing One Health-aligned agriculture 
(Figure 3). Plant-derived antimicrobials, including phytoalexins and 
phytoanticipins, represent a cornerstone of sustainable phytopathogen 
control. These compounds inhibit pathogens through mechanisms 
such as membrane disruption, enzyme inhibition, and interference 
with microbial signaling (González-Lamothe et al., 2009; Košćak 
et  al., 2023). For instance, saponins like avenacin in oats and 
α-tomatine in tomatoes form complexes with fungal sterols, 
destabilizing membranes and suppressing infections (González-
Lamothe et al., 2009). In addition to antagonistic bacteria and fungi, 
plant-derived bioactive compounds have emerged as promising 
biocontrol agents, demonstrating considerable efficacy in suppressing 
plant pathogen proliferation. These phytochemicals contribute to 
pathogen inhibition through direct antimicrobial activity, 
interference with virulence mechanisms, and the enhancement of 
host plant defense responses, thereby complementing microbial 
biocontrol strategies (da Silva et al., 2016; Najdabbasi et al., 2020). 
Moreover, the use of nanotechnology in plant disease diagnostics has 
transformational potential, enabling the creation of sophisticated 
instruments for the rapid and early identification of plant infections. 
Nanomaterials (1–100 nm) are well suited for this application owing 
to their superior surface-to-volume ratio and distinctive chemical, 
photonic, and electrical characteristics that fundamentally differ from 
those of bulk materials; the ability to execute precise molecular 
alterations, together with the unique optical properties of 
nanomaterials, enables ultrasensitive and effective pathogen detection 
systems (Ray et al., 2023). Genetic engineering and CRISPR-Cas9 
genome editing provide precise, targeted alterations of plant genomes 
to improve resistance to phytopathogens. This method facilitates the 
insertion or deletion of certain genes, including pathogen-responsive 
R genes or susceptibility factors, while minimizing off-target effects, 
so expediting the creation of disease-resistant cultivars. The transfer 
of resistance-conferring genes across species expands the genetic 
repertoire beyond taxonomic boundaries, while robust integration of 
transgenes guarantees heritable resistance in vegetatively propagated 
crops, surpassing the constraints of traditional breeding methods. 
These solutions jointly enhance crop resilience by customized genetic 
modifications, reducing dependence on chemical interventions 
(Dong and Ronald, 2019; Gohil et al., 2024). Finally, the paradigm of 
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TABLE 2 Main techniques and methods for the antimicrobial evaluation of natural products against phytopathogens.

Plant Phytopathogens 
evaluated

Extract or 
compounds

Techniques Results Reference

Achillea millefolium L., 

Mentha piperita L., Salvia 

officinalis L., Equisetum 

arvense L., Urtica dioica L., 

Taraxacum officinale (L.) 

Weber ex F. H. Wigg., Elymus 

repens (L.) Gould, Hypericum 

perforatum L., Rosmarinus 

officinalis Spenn., Humulus 

lupulus L., Satureja hortensis 

L., Carum carvi L., Nigella 

sativa L., Thymus vulgaris L., 

Lavandula angustifolia Mill., 

Armoracia rusticana G. 

Gaertn., B. Mey. and Scherb., 

Allium sativum L., Syzygium 

aromaticum (L.) Merr. and 

Perry, Allium cepa L., 

Curcuma longa L., 

Polygonum bistorta L. and 

Polygonum aviculare

Colletotrichum coccodes, 

Phoma exigua, Fusarium 

sambucinum, Rhizoctonia 

solani, Alternaria tenuissima, 

Streptomyces scabiei, 

Pectobacterium carotovorum, 

Alternaria alternata, 

Alternaria solani, Fusarium 

oxysporum

Water extracts, water-

glycol extract, subcritical 

carbon dioxide extracts

Agar-well diffusion and 

agar-disc diffusion 

method and macro-

broth dilution method

Inhibition zones 

between 1 and 59 mm 

for diffusion and with 

minimum inhibitory 

concentrations (MIC) 

ranging from 

approximately 0.9 to 

25 mg/mL

Steglińska et al. (2022)

33 Brassica oleracea varieties

Xanthomonas campestris, 

Agrobacterium rhizogenes, 

Fusarium oxysporum, 

Gibberella zeae, Phytophthora 

infestans

Dichloromethane extract

Kirby–Bauer disk 

diffusion method and 

two-fold serial dilution 

method

The extract showed 

zones of inhibition of 

15.90 and 28.60 mm 

and showed overall 

MICs in the range of 

7.81 to 31.25 μg/mL

He et al. (2024)

Gnaphalium uliginosum L.

Clavibacter michiganensis 

Erwinia carotovora spp. 

carotovora, Alternaria solani, 

Rhizoctonia solani

Ethanolic extract
Agar diffusion and serial 

dilutions

MIC range of 2,500 to 

78 μg/mL and 

inhibition halos of 24 

to 13 mm

Davydova et al. (2024)

Hibiscus rosa-sinensis
Xanthomonas oryzae pv. 

oryzae

Cobalt oxide 

nanoparticles

Micro-dilution, Lesion 

length in rice plants after 

treatment and Biofilm 

inhibition

Biofilm inhibition up 

to 79,65% and 

inhibition zones 

ranging from 2,40 cm 

to 2.90 cm

Ogunyemi et al. (2023)

Centaurea calcitrapa

Agrobacterium tumefaciens, 

Erwinia amylovora, 

Pseudomonas syringae pv. 

Aptata, Pseudomonas syringae 

pv. syringa, Xanthomonas 

campestris pv. campestris, 

Xanthomonas arboricola pv. 

juglandis

Methanolic extract
Well diffusion test, Two-

fold serial dilutions

Inhibition of 9.83 up 

to 30.5 mm, and MIC 

values ranging of 

25–750 μg/mL

Dimkić et al. (2020)

Camellia sinensis Fusarium equiseti Zinc oxide nanoparticles
Inhibitory activity on 

agar

Growth Inhibition up 

to 84.8%
Subba et al. (2024)

Atriplex glaucum and 

Calendula officinalis

Fusarium oxysporum, 

Colletotrichum gloeosporioides 

and Cladosporium 

cladosporioides,

Methanolic extracts
Kirby–Bauer method

(Disk diffusion)

Inhibitions halos up to 

9.32 mm

Lazcano-Ramírez et al. 

(2023)

(Continued)
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TABLE 2 (Continued)

Plant Phytopathogens 
evaluated

Extract or 
compounds

Techniques Results Reference

Dunaliella salina

Pseudomonas syringae pv. 

tomato, Bacillus subtilis and 

Pectobacterium. carotovorum 

subsp. carotovorum

Chloroform: Methanol 

extract, Ethanol extract 

and Hexane extract

Agar Disc Diffusion 

Method, broth dilution 

method and in vivo 

treatment evaluation in 

tomatoes

Inhibitions zone up to 

20.0 mm and MICs of 

0.3 mg/mL

Ambrico et al. (2020)

Hedera helix
Saccharomyces cerevisiae and 

Diplodia corticola
Aqueous Extract

Growth inhibition and 

Yeast Viability with the 

percentage of colony-

forming units

Growth Inhibition up 

to 70% and percentage 

of colony-forming 

units of 0% in certain 

conditions

Crisóstomo et al. 

(2024)

Erismadelphus exsul
Phytophthora infestans and 

Zymoseptoria tritici

Ethanolic extract and 

fractions

Microplate serial 

dilution and mycelial 

growth inhibition test in 

microplates

Growth Inhibition up 

to 100%

Essono Mintsa et al. 

(2022)

Moringa oleifera Erwinia amylovora

Methanolic, 

hydroalcoholic and 

hydroalcoholic with 

maltodextrins

Microdilution method 

and analysis of disease 

symptoms in vivo

Mic of >2 to 1 mg/mL, 

80% reduction in 

biofilm formation, and 

reducing the wilting 

area by up to 80%

Fontana et al. (2022)

Sambucus nigra

Diaporthe amygdali, 

Phytophthora megasperm and 

Verticillium dahliae

Ammoniacal aqueous 

extract

Agar dilution method 

and Ex Situ protection 

assays on excised stems

Growth Inhibition up 

to 100% with a 

effective concentration 

of 50% at 193.9 μg/

mL, and full 

protection of the stem 

at the concentration of 

1875 μg/mL

Sánchez-Hernández 

et al. (2023)

Artemisia annua L., 

Artemisia dracunculus L., 

Artemisia santonica L., 

Artemisia abrotanum L. and 

Artemisia scoparia Waldst. 

and Kit

Rathayibacter iranicus, 

Bacillus subtilis, Xanthomonas 

arboricola, Agrobacterium 

tumefacien, Alternaria solani, 

Fusarium graminearum and 

Rhizoctonia solani

Ethanol extracts

Two-fold serial dilution 

and serial dilution 

method

MIC ranging of 310 to 

>5,000 μg/mL
Nikitin et al. (2023)

Pavlova lutheri, Chaetoceros 

muelleri, Chlorella sp., 

Dunaliella tertiolecta, 

Haematococcus pluvialis, 

Isochrysis galbana, 

Nannochloropsis sp., 

Scenedesmus sp., Tetraselmis 

astigmatica, Tetraselmis chuii, 

Tetraselmis suecica, 

Limnothrix sp. and Spirulina 

sp.

Clavibacter michiganensis and 

Pseudomonas syringae

Hexane, dichloromethane 

and methanol fractions

Disc-diffusion method, 

spot-on-lawn method 

and serial dilutions

MIC of 500 μg/mL to 

1 mg/mL and 

inhibition halos up to 

18.67 mm

Alsenani et al. (2020)

Larrea nitida Cav.

Fusarium oxysporum, 

Fusarium verticillioides and 

Trichoderma harzianum

Nanodispersions 

produced from the 

methanolic extract

Agar diffusion
Growth inhibition up 

to 48%
Rocha et al. (2023)

(Continued)
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TABLE 2 (Continued)

Plant Phytopathogens 
evaluated

Extract or 
compounds

Techniques Results Reference

Baccharis trinervis Pers., 

Baccharis prunifolia Steyerm, 

Baccharis zumbadorensis 

Badillo

Botrytis cinerea
Methanol and 

dichloromethane extracts

Broth Microdilution 

Method and poisoned 

food technique

MIC ranging of 125 to 

250 μg/mL, lowest 

IC50 of 3.1 μg/mL, an 

growth inhibition up 

to 72,05%

Pinto et al. (2022)

Quercus ilex subsp. ballota 

(Desf.) Samp.

Fusarium circinatum, 

Cryphonectria parasitica, 

Phytophthora cinnamomic,

Aqueous ammonia 

extract

Agar dilution method 

and Protection Tests on 

Artificially Inoculated 

Excised Stems

EC90 values of 322, 

295, and 75 μg/mL 

and achieving 

protection at of 

782 μg/mL

Sánchez-Hernández 

et al. (2022)

Capsicum annuum, Capsicum 

baccatum

Alternaria sp., Aspergillus 

niger, Aspergillus dimorphicus, 

Fusarium oxysporum, 

Fusarium verticillioides, 

Penicillium citrinum and 

Rhizopus arrhizus

Aqueous extracts
Well diffusion method, 

broth liquid dilution

Inhibition ratio up to 

18%
Sepúlveda et al. (2024)

Retama raetam Stemphylium vesicarium
Six compounds of the 

plant extract

Spot-inoculation and 

Inhibition of the fungal 

growth

Growth inhibition up 

to 55%
Soriano et al. (2022)

Silybum marianum (L.) 

Gaertn.
Fusarium graminearum

Peptides of the plant 

extract

Hyphal growth 

inhibition assays in 

microplate

Three peptides almost 

completely inhibited 

the hyphal growth

Fernández et al. (2021)

Cassia fistula (L.)

Pseudomonas syringae, 

Fusarium oxysporum, 

Rhizoctonia solani, 

Sarocladium sp.

Silver nanoparticles
Microplate antibiofilm 

assay, growth inhibition

Inhibitory zones of 

12.2 mm and biofilm 

and fungal inhibition 

up to 78%

Danish et al. (2022)

Ceropegia fusca, 

Argyranthemum broussonetii, 

Artemisia thuscula, 

Gymnosporia cassinoides, 

Cistus symphytifolius, 

Lavandula canariensis, Salvia 

canariensis, Apollonias 

barbujana subsp. barbujana, 

Laurus novocanariensis, Ruta 

pinnata, Ruta chalepensis, 

Datura innoxia, Datura 

stramonium, Nicotiana 

glauca, Salpichroa origanifolia 

and Withania aristata.

Alternaria alternata, Botrytis 

cinerea, and Fusarium 

oxysporum

Ethanolic plant extract

Mycelial growth 

inhibition by an agar-

dilution method

Inhibition up to 

72.22%
Reyes et al. (2022)

Olive pomace

Xylella fastidiosa subsp. 

Pauca, Pseudomonas syringae 

pv. tomato and 

Pectobacterium carotovorum 

subsp. carotovorum

Phenolic extract

Disk diffusion assay, 

time-kill contact assay 

and Broth dilution assay

MIC ranging from 1.6 

to 0.4 mg/mL
Greco et al. (2024)

(Continued)
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TABLE 2 (Continued)

Plant Phytopathogens 
evaluated

Extract or 
compounds

Techniques Results Reference

Alseis yucatanensis, 

Alvaradoa amorphoides, 

Annona primigenia, 

Bakeridesia notolophium, 

Bravaisia berlandieriana, 

Byrsonima bucidifolia, Calea 

jamaicensis, Cameraria 

latifolia, Chrysophyllum 

mexicanum, Coccoloba sp., 

Croton arboreus, Croton 

itzaeus, Croton sp., Cupania 

sp., Diospyros sp., 

Erythroxylum confusum, 

Erythroxylum rotundifolium, 

Erythroxylum sp., Eugenia 

sp., Euphorbia armourii, 

Guettarda combsii, Helicteres 

baruensis, Heteropterys 

laurifolia, Hybanthus 

yucatanensis, Ipomoea 

clavata, Karwinskia 

humboldtiana, Licaria sp., 

Macroscepis diademata, 

Malpighia glabra, Morella 

cerifera, Mosannona depressa, 

Parathesis cubana, Paullinia 

sp., Piper neesianum, 

Psychotria sp., Randia 

aculeata, Serjania 

caracasana, Simarouba 

glauca, Stemmadenia donnell-

smithii, Turnera aromatica

Fusarium equiseti and 

Fusarium oxysporum

Aqueous Extracts, 

ethanolic Extracts and 

fractions

Broth microdilution

Lowest MIC of 

1,000 μg/mL and 

growth inhibition up 

to 100%

Cruz-Cerino et al. 

(2020)

Sideroxylon obtusifolium and 

Annona acutiflora
Thielaviopsis ethacetica

Ethyl acetate and butanol 

extract

Hole diffusion test, 

Mycelial inhibition test 

and growth curve, 

Microdilution test

Inhibition halos up to 

35.3 mm,and MIC of 

25 to 6 mg/mL

Duarte et al. (2022)

Monodora kerstingii Fusarium oxysporum
Crude extracts and 

fractions
Serial dilutions

MIC from >1,000 to 

23 μg/mL
Fotso et al. (2020)

Ptaeroxylon obliquum 

(Thunb.) Radlk

Aspergillus niger, Aspergillus 

parasiticus, Colletotrichum 

gloeosporioides, Fusarium 

oxysporum, Penicillium 

digitatum, Penicillium 

expansum, Penicillium 

italicum, Penicillium 

janthinellum, Rhizoctonia 

solani

Acetone crude extracts, 

fractions, and isolated 

compounds

Serial microdilution 

assay

MIC from 1,250 to 

32 μg/mL
Ramadwa et al. (2024)

(Continued)
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plant disease management should shift from a narrow focus on crop 
yield to a comprehensive approach that integrates ecological 
sustainability, social acceptability, and economic feasibility. To 
achieve this, priority should be given to developing environmentally 
sustainable biocontrol agents, applied synergistically with other 
control measures under an integrated disease management system 
(He et al., 2021).

The control of plant viral diseases traditionally relies on 
chemical pesticides targeting insect vectors, cultural practices, and 
genetic resistance. However, natural control strategies offer an 
eco-friendly, sustainable alternative that minimizes environmental 
risks and enhances crop resilience (Figure 4). The central concept 
of natural control is connected to four main strategies: host 
resistance, biological control, vector management, and plant-
derived antiviral compounds. Host resistance includes RNA 
interference and systemic acquired resistance. Vector management 
relies on natural predators and entomopathogenic fungi to limit 
insect-mediated virus transmission. Plant-derived antiviral 
compounds include flavonoids, terpenoids, and plant extracts such 
as neem and garlic, which interfere with viral replication and vector 
feeding behavior (Hudson, 2018; Jones, 2006).

The different methods used in the literature to evaluate the 
antimicrobial activity of natural products against phytopathogens 
make it difficult to compare results. An article may use the agar disk 
diffusion method and have a 20–28 mm growth inhibition halo as 
Mohamed et al. (2023) and another article a MIC result of 19.5 to 
117 μg/mL as Makhubu et  al. (2023). These two results cannot 
be  compared due to the use of different principles, making it 
necessary to develop standard or common techniques, thus being 
able to compare extracts or compounds or nanoparticles in an easier, 
safer and standardized way.

Furthermore, there are few articles that address in vivo tests such 
as infection of the microorganism in the plant or fruit itself. 

Additionally, information on the epidemiology of diseases and global 
economic losses is scarce and what is available is outdated. There are 
few articles that explore the formation of biofilms of phytopathogens 
and the use of extracts and compounds with antibiofilm properties. 
This assessment is extremely important, since most microorganisms 
available in the environment are in the form of biofilms, distancing 
themselves from the real condition of infection (Ramey et al., 2004).

Key research gaps include elucidating the mechanisms of 
action of bioactive compounds, which could facilitate the design 
of more targeted and specific molecules. Additionally, evaluating 
these natural products directly on plants under varying soil types 
and climatic conditions, while considering their interactions with 
the soil microbiome, remains largely unexplored. There is also a 
pressing need for studies integrating antimicrobial assessments 
with emerging agricultural technologies, as well as comprehensive 
investigations into the toxicity and long-term environmental 
impact of these natural extracts on a broader scale.

TABLE 2 (Continued)

Plant Phytopathogens 
evaluated

Extract or 
compounds

Techniques Results Reference

Capsicum chinense Jacq., var. 

‘Habanero Mustard’, 

‘Habanero Pastel’, ‘Trinidad 

Moruga Scorpion Red’, 

‘Trinidad Moruga Scorpion 

Choco’, ‘Carolina Reaper’, 

‘White Naga’, ‘Naga Morich 

Chocolate’

Botrytis cinerea, Guignardia 

bidwellii, Plasmopara viticola
Oleoresin

Diffusion technique, 

radial growth inhibition 

and Inhibition 

sporulation on leaf discs

Inhibition activity 

ranging from 0.001 to 

12.5 mg/mL, with the 

complete inhibition in 

certain concentration

Vuerich et al. (2023)

Cestrum nocturnum
Fusarium kuroshium, 

Fusarium solani

Methanolic Crude 

Extract and fractions

Mycelial growth 

inhibition by microplate

Some fractions 

achieve 100% of 

inhibition

Valencia-Mejía et al. 

(2022)

Zuccagnia punctata Monilinia fructicola Ethanolic extract

Broth microdilution 

technique, ex vivo 

Antifungal Assay on 

Wounded Fruits and Cell 

Viability Assay with 

MTT

MIC from 250 to 

62.5 μg/mL, and the 

treatments reduced 

the brown rot 

sporulation index 

compared to the 

control

Di Liberto et al. (2023)

FIGURE 2

Distribution of techniques and methodologies for antibacterial and 
antifungal evaluation of natural products against phytopathogens.
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5 Conclusion

The current review demonstrated that various natural products 
exhibit significant antimicrobial activity against phytopathogens, 
yielding promising and encouraging results. According to the 
literature, the most extensively evaluated natural products in terms 
of antiphytopathogenic activity were aqueous extracts and 
ethanolic extracts. The most frequently studied phytopathogens 
were Fusarium spp., while the predominant methodologies for 
antimicrobial assessment were dilution in broth and agar diffusion. 

Moreover, this review provides a comprehensive synthesis of 
existing studies to establish benchmarks for evaluating plant-
derived antimicrobials against phytopathogens, offering practical 
criteria for prioritizing natural products in sustainable agriculture. 
Investigating the antimicrobial potential of natural extracts, 
fractions, and compounds against phytopathogens represents a 
promising avenue for their future application. A deeper 
understanding of their mechanisms of action may provide valuable 
insights into effective strategies for crop protection. Given the 
devastating impact of phytopathogens on agricultural productivity, 

FIGURE 4

Schematic representation of natural control mechanisms against plant viral pathogens.

FIGURE 3

Multifaceted interventions for effective control of plant pathogens.
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advancing research in this field is crucial for the development of 
sustainable and efficient plant protection solutions.
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