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The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
RNA in sewage is well-established, but the concomitant changes in microbial 
compositions during the pandemic remain insufficiently explored. This study 
investigates the impact of the SARS-CoV-2 virus on microbial compositions in 
raw sewage, utilizing high-throughput 16S rRNA amplicon sequencing to analyze 
wastewater samples collected from six dormitories over a one-year field trial 
at the University of Tennessee, Knoxville. The concentration of SARS-CoV-2 
RNA was assessed using a reverse transcription-quantitative polymerase chain 
reaction. Significant variations in bacterial composition were evident across the 
six dormitories, highlighting the importance of independently considering spatial 
differences when evaluating the raw wastewater microbiome. Positive samples 
for SARS-CoV-2 exhibited a prominent representation of exclusive species across 
all dormitories, coupled with significantly reduced bacterial diversity compared 
to negative samples. The correlation observed between the relative abundance 
of enteric pathogens and potential pathogens at sampling sites introduces a 
significant dimension to our understanding of COVID-19, especially the notable 
correlation observed in positive SARS-CoV-2 samples. Furthermore, the significant 
correlation in the relative abundance of potential pathogens between positive 
and negative SARS-CoV-2 raw sewage samples may be linked to the enduring 
effects of microbial dysbiosis observed during COVID-19 recovery. These findings 
provide valuable insights into the microbial dynamics in raw sewage during the 
COVID-19 pandemic.
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Introduction

Although sewage is often assumed to mirror the human gut microbiome, raw sewage 
samples exhibit notable microbial differences, indicating substantial contributions from 
non-human sources. The microbial composition of sewage, while partially originating 
from the human gut, includes a diverse array of both beneficial and pathogenic species, 
with bacteria and viruses playing central roles (Newton et al., 2015). Although robust 
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evidence supports some similarity between the microbial profiles 
of raw sewage and the human gut, quantitative analyses suggest 
that the overlap is limited. The total abundance of high-level 
genera in influent sewage has been estimated at nearly 50%, a 
proportion similar to that observed in the human gut, indicating 
stool as a major contributor to sewage microbiota (Cai et  al., 
2014). However, sequences comprising approximately 78% of a 
stool sample account for only about 12% of a sewage sample; when 
extrapolated, this suggests that only 15% of amplicons in raw 
sewage originate from human stool (Newton et  al., 2015). 
Additionally, fecal-derived bacteria have been found to make up 
a relatively small fraction of taxa in collected sewage samples, 
emphasizing the substantial influence of environmental sources 
(Fierer et al., 2022). These findings raise questions about whether 
raw sewage accurately reflects the microbial composition of the 
human gut.

Crucially, COVID-19–related respiratory infections have been 
linked to alterations in gut microbiota composition (Gu et al., 
2020; Zuo et al., 2020). The dysbiosis of COVID-19 may enhance 
gut permeability, leading to secondary infections and organ 
failure. Simultaneously, disruptions in gut barrier integrity could 
facilitate the translocation of SARS-CoV-2 from the lungs to the 
intestinal lumen (Aktaş and Aslim, 2020). Gu et al. (2020) and 
Zuo et al. (2020) observed that, compared to fecal samples from 
healthy people, fecal samples from COVID-19 patients had 
significantly reduced bacterial diversity, a significantly higher 
relative abundance of opportunistic pathogens and a lower relative 
abundance of beneficial symbionts. Liu et al. (2022) even found 
that gut dysbiosis persisted even after clearance of SARS-CoV-2 
at 6 months. Patients with COVID-19 exhibit significant 
alterations in fecal microbiomes, suggesting potential changes in 
the wastewater microbiome during the pandemic. Currently, 
research on microbial compositions in wastewater with positive 
and negative SARS-CoV-2 samples remains limited, with 
Gallardo-Escárate et  al. (2021) being the sole study to explore 
such dynamics across three sampling communities using 
nanopore technology. Their findings highlighted a robust 
association between the microbiota of positive SARS-CoV-2 
wastewater samples and enteric bacteria. Notably, 
integrating the Wastewater-Based Epidemiology tool with 
metagenomic analysis, employing 16S rRNA sequencing 
technology to investigate changes in sewage microbiota during the 
COVID-19 pandemic, remains an unexplored avenue that 
warrants further research.

This study employed 16S rRNA sequencing to analyze 
microbial compositions in raw sewage samples, differentiating 
between those with positive and negative COVID-19 status. The 
primary goal was to identify distinct patterns or shifts in the 
bacterial community associated with the presence of the virus. 
Through the utilization of this technology, the research aimed to 
provide a nuanced understanding of the dynamics of viral 
shedding, microbial interactions, and the overall impact of SARS-
CoV-2 on the sewage microbiome over a year-long field trial 
conducted in six campus dormitories. Including COVID-19-
negative sewage samples as a control allowed for identifying 
specific changes attributable to viral presence, facilitating the 
establishment of correlations between the sewage microbiota and 
COVID-19 prevalence in human communities.

Results

Concentration of SARS-CoV-2 in raw 
sewage

The 174 raw sewage samples included in this study were collected 
from 6 different dormitories in the same sewage network across the 
University of Tennessee, Knoxville (Figure  1). Concentrations of 
SARS-CoV-2 from September 2020 to October 2021 within various 
high-density student residence halls ranged from 2.02 ± 2.19 to 
3.09 ± 3.46 log10 copies/L (Figure  2). Over the sampling period, 
SARS-CoV-2 concentrations were consistently measured at different 
levels in the respective halls: 3.09 ± 3.46 log10 copies/L in D1, 
2.02 ± 2.19 log10 copies/L in D2, 2.80 ± 3.26 log10 copies/L in D3, 
2.97 ± 3.61 log10 copies/L in D4, 2.94 ± 3.30 log10 copies/L in D5, and 
2.36 ± 2.71 log10 copies/L in D6.

Positive rates, calculated by dividing the number of positive 
samples by the total number of samples and multiplying by 100%, 
varied across the halls. Specifically, the positive rates were 70% in D1, 
39% in D2, 52% in D3, 20% in D4, 68% in D5, and 37% in D6 
(Table 1).

Characteristics of the predominant flora in 
different dormitories

Characterization on phylum, family, and genus 
level

Classification of reads revealed 56 phyla, 145 classes, 315 orders, 
548 families, and 1,170 genera. The relative abundances of the top 10 
phyla varied between dormitories (Figure  3). The phylum 
Bacteroidetes was the most abundant across all sampling sites, with 
relative abundance ranging from 46 to 27%. Firmicutes were the 
second most abundant phylum in dormitories 1, 2, 3, and 4, with 
relative abundance varying from 35 to 15%. Meanwhile, Proteobacteria 
was the second most abundant phylum in dormitories 5 and 6, with 
relative abundance ranging from 41 to 25%. Additionally, dormitories 
2 and 3 have the same four highest abundance phyla of Bacteroidetes, 
Firmicutes, Proteobacteria, and Spirochaetota. Similarly, Dormitories 
5 and 6 have the same four highest abundance phyla of Bacteroidetes, 
Proteobacteria, Firmicutes, and Campilobacterota.

The 10 most dominant families showcasing significant differences 
among the six dormitories (Figure  4). Paludibacteraceae and 
Spirochaetaceae were the dominant families, with varying relative 
abundance in D1, D2, and D3. Bacteroidaceae dominated libraries 
generated from D4, D5, and D6, with distinct relative abundance 
up to 13%.

Typical gut bacteria were also found at very high levels in the 
sewage such as Bacteroides, Acinetobacter, Prevotella, Pseudomonas, 
Blautia, Faecalibacterium, Ruminococcus, and Dorea, corresponding 
to ranks 1, 8, 10, 11, and 21 within the top 50 genera in Figure 5 (Furet 
et al., 2009; Cai et al., 2014; Bäckhed et al., 2015; Do et al., 2019). 
Among the top 50 genera, 14 genera (34%) were identified as potential 
pathogens, including Bacteroides, Arcobacter, Treponema, 
Aeromonas, Acinetobacter, Prevotella, Pseudomonas, Erysipelothrix, 
Faecalibacterium, Flavobacterium, Ruminococcus, Bifidobacterium, 
Laribacter, and Streptococcus (Cai and Zhang, 2013; Cai et al., 2014; 
Do et al., 2019; Oluseyi Osunmakinde et al., 2019; Poopedi et al., 2023).
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Dormitories D1 to D6 exhibited a varying relative abundance of 
potential pathogens, with 13 (40%), 12 (23%), 11 (18%), 12 (28%), 14 
(45%), and 14 (41%) genera recognized as such, respectively 
(Figure 5). Notably, a substantial number of these potential pathogens 
displayed an increased relative abundance in samples from D1, D5, 

and D6 compared to other sites. Among the detected enteric 
pathogens in the top  50 genera were Arcobacter, Aeromonas, and 
Laribacter, with total relative abundances of 14, 2, 5, 6, 21, and 9% 
from D1 to D6, respectively. Arcobacter and Aeromonas were identified 
across all six dormitories, while Laribacter was exclusively found in 

FIGURE 1

Map of the sampling locations on the University of Tennessee-Knoxville campus.

FIGURE 2

Experimental design and sampling points/times for microbiome sequencing. SARS-CoV-2 concentrations are indicated as yellow lines. The yellow 
points at 10 copies/L represent negative samples. The sequencing runs are indicated as black points. The virus load was estimated by qPCR in 
untreated wastewater from different dormitories: D1, D2, D3, D4, D5, and D6. The study was conducted from Sep 2020 to Oct 2021.

https://doi.org/10.3389/fmicb.2025.1589029
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al. 10.3389/fmicb.2025.1589029

Frontiers in Microbiology 04 frontiersin.org

FIGURE 3

Relative abundances of the top 10 dominant phyla in 6 dormitories.

D3, D5, and D6. Relative abundance of enteric pathogens and 
potential pathogens correlated significantly (Pearson 
Correlation = 0.842, p = 0.018). The genus Mycobacterium, which 
encompasses potential respiratory tract-associated pathogens, 
comprised between 0.02 and 0.15% of the total bacterial community 
across all six dormitories.

Diversity of bacterial communities

The analysis of the microbiota communities within the collected 
wastewater samples revealed significant distinctions across all sampled 
locations (Figure 6). At the species level, dormitory 6 (D6) exhibited 
the highest count of exclusive taxa, totaling 1,206, while the other 
dormitories (D1 to D5) displayed varying counts of exclusive taxa, 
ranging from 546 to 1,081 species. A core microbiome consisting of 
286 bacterial species was consistently observed across all 
sampled dormitories.

Alpha diversity differed significantly between dormitories 
(Figure  7). The highest diversity was observed in D6 across the 
diversity indices of observed, Shannon, InvSimpson, and Fisher. Beta 
diversity differed significantly between dormitories (Figure  8), as 
assessed through Bray-Curtis distance metrics. Clustering analysis 
revealed distinct groupings, and a permutational multivariate 
ANOVA, with semester as a covariate, showed significant differences 
in β-diversity between dormitories (p < 0.05).

Characteristics of the predominant flora in 
positive and negative samples

Characterization on phylum, family, and genus 
level

The dominant phyla and families were consistent at different 
dormitories, regardless of the COVID-19 status (Figures  9, 10). 
However, some low abundance families unveiled several noteworthy 
distinctions within the dormitories (Figure 11). Dormitory 1 showed a 
distinction between the families Lachnospiraceae and Streptococcaceae. 
Similarly, dormitory 3 exhibited significant differences in the 
relative abundances of Arcobacteraceae, Peptostreptococcaceae, 
Rhodocyclaceae, and V2072-189E03 between COVID-19 positive and 
negative samples. In dormitory 4, Peptostreptococcales-Tissierellales 
displayed significant variation in relative abundances between the two 
sample groups. In dormitory 5, Desulfovibrionaceae demonstrated a 
significant difference in relative abundances based on COVID-19 
status. Lastly, in dormitory 6, significant differences were observed in 
the relative abundances of Aeromonadaceae and Paludibacteraceae 
between COVID-19 positive and negative samples.

LEfSe analysis did not identify biomarkers associated with 
COVID-19 status across the six dormitories (Supplementary  
Figure S1). Instead, distinct biomarkers were exclusively found in 
dormitories 3, 4, and 5, suggesting unique microbial signatures 
associated with COVID-19 status in these specific dormitory  
environments.

TABLE 1 Raw wastewater data information for D1, D2, D3, D4, D5, and D6.

Dorms pH Positive Rate Relative abundance of potential pathogen

Positive SARS-CoV-2 Sample Negative SARS-CoV-2 Sample

D1 6.71–9.08 70.00% 40.04% 40.35%

D2 6.83–8.27 39.00% 21.80% 29.37%

D3 6.51–8.97 52.00% 17.58% 13.88%

D4 6.27–9.01 20.00% 30.63% 24.11%

D5 6.38–8.95 68.00% 43.49% 45.17%

D6 5.72–8.63 37.00% 41.30% 45.64%
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FIGURE 4

Relative abundances at family levels for six dormitories.

FIGURE 5

Relative abundances of top 50 genera.
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The relative abundance of potential pathogens correlated 
significantly between SARS-CoV-2 positive and negative samples 
(Pearson correlation coefficient = 0.918, p = 0.010, Table  1). 
Additionally, the relative abundance of enteric pathogens and potential 
pathogens correlated significantly in SARS-CoV-2 positive samples 
(Pearson correlation coefficient = 0.817, p = 0.024), independent of 
the relative abundance of potential pathogens in SARS-CoV-2 
negative samples (Figure 12).

Diversity of bacterial communities

Samples testing positive for SARS-CoV-2 demonstrated a higher 
diversity of taxa compared to their negative counterparts (Figure 13). 
Exclusive species were most prominently represented in positive samples 
for SARS-CoV-2 collected from D1 at 32%, while D3 exhibited the 
lowest representation at 19%. Conversely, negative samples for SARS-
CoV-2 were associated with exclusive bacterial species in wastewater 
collected from D3 (18%), with D1 displaying the lowest representation 
at 8%. Despite the SARS-CoV-2 status, the analysis further indicated a 
low representativity for exclusive bacteria found in other dormitories.

An observation revealed a correlation between the positive rate of 
sampling sites and the relative abundance of exclusive species in 
positive samples (Pearson Correlation = 0.771, p = 0.036). 
Additionally, 1,033, 914, 954, 671, 1,071, and 917 taxa were present in 
both SARS-CoV-2 positive and negative samples from D1 to D6, 
respectively.

The α-diversity of the microbiome across all locations exhibited a 
general trend of being higher in negative samples compared to positive 
samples. Specifically, the observed species index showed a significant 
difference in D5 and D6 (p < 0.05, Figure 14), as determined through 
linear regression models that incorporated semester as a covariate. 
Notably, significant differences in the measured β-diversity metrics 
were discerned in D3 and D6 between groups (p < 0.05 for the Bray-
Curtis indices, using permutational multivariate ANOVA with 
semester as a covariate), as illustrated in Figure 15.

Discussion

Dormitory (as a proxy for geographic location or shared living 
environment) has a stronger impact on microbial diversity than 
COVID status, and we  did not detect a statistically significant 
interaction between the two factors (Table 2). Therefore, our analysis 
supports the interpretation that the dormitory effect can 
be evaluated independently.

Our study did not unveil a significant universal biomarker 
distinguishing positive from negative SARS-CoV-2 sewage samples 
across all sampling locations. This contrasts with findings showing 
that specific microbial biomarkers can distinguish COVID-19 patients 
from healthy individuals (Gu et al., 2020). However, the absence of 
detectable SARS-CoV-2 in some patients does not necessarily indicate 
full recovery of the gut microbiota. Microbial restoration may require 
an extended period, even after viral clearance. Persistent dysbiosis 
following infection has been reported, with reduced bacterial diversity 
and richness observed up to 3 months post-infection compared to 
healthy controls (Zhang et al., 2023). This reduction was accompanied 
by a lower abundance of beneficial commensals and a higher 
abundance of opportunistic pathogens. Hence, the significant 
correlation in the relative abundance of potential pathogen between 
positive and negative SARS-CoV-2 sewage samples in our study may 
be attributed to the lingering effects of microbial dysbiosis observed 
in COVID-19 recovery.

FIGURE 7

Diversity index in 6 dormitories. The box-and-whisker plots show the mean (diamond), median (middle bar), first quartile (lower bar), third quartile 
(upper bar), minimum observation above the lowest fence (lower whisker), and maximum observation below the upper fence (upper whisker) of 
common α-diversity metrics for each group. The p values for the comparison between groups using linear regression models including semester as 
covariate is also shown.

FIGURE 6

Venn diagram of exclusives and shared bacteria among the 6 
dormitories.
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The identified variations at the phylum, family, and genus levels 
across the six dormitories shed light on the geographic differences in 
bacterial composition in this study (Figures  3–5). The analysis 
revealed two clusters of community types, as illustrated in Figure 3. 
Dormitories 2, 3, 1, and 4, organized by the closer relationship of 
bacterial phyla in each building, exhibited similar dominance 
patterns in these phyla, while D5 and D6 exhibited comparable 
compositions. The spatial arrangement depicted in the map (Figure 1) 
highlights that D1, D2, and D4 are in proximity, D5 and D6 are 
likewise nearby, and D3 is closer to D5 and D6. This spatial variation 
suggests a potential impact of geographic factors on the microbial 
composition in different dormitories. This observation aligns with 
the study by Fierer et al. (2022) finding five clusters of 17 different 

locations, revealing no strong relationship with the distance between 
sampling locations.

The significant alpha and beta diversity further underscore 
pronounced geographical variations in microbial communities in this 
study, aligned with Fierer et al. (2022) findings. Their emphasis on 
independently considering spatial variations when assessing the 
wastewater microbiome highlights the need to account for the 
influence of location on microbial diversity. Their research identified 
geographic variations in bacterial composition unrelated to sewer 
material, sewer depth, or resident human population on the campus. 
They attributed these variations to sample pH, with total suspended 
solids concentrations and sample volume playing a lesser role. This 
pH correlation aligns with studies by Fujii et al. (2012) and Lindström 

FIGURE 8

The scatter plots show each participant’s microbial community composition (small circles) by group, as well as each group’s centroid (large circles) and 
95% CI ellipses. The scatter plots were generated using Principal Coordinates Analysis (PCoA) ordination based on common β -diversity metrics. For 
ease of visualization, only 2 dimensions were used. The p values for the comparison between groups using permutational multivariate ANOVA models 
including semester as covariate is also show.

FIGURE 9

Relative abundances of the top 10 dominant phyla in 6 dormitories with positive and negative SARS-CoV-2 samples.
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et al. (2005), which demonstrated the close association between pH 
and shifts in bacterial community composition in aquatic 
environments. Despite the detected variations in bacterial 
composition across dormitories in our study, the pH did not exhibit 
significant changes. Future research could explore specific factors 
such as organic carbon or nutrient concentrations to better 
understand the observed geographic variations in 
microbial communities.

The analysis of the microbial community in raw sewage yielded 
results consistent with previous research, indicating the influence 
of the human gut bacterial community on the bacterial profile in 
raw sewage. Specifically, the phyla Bacteroidota was identified as 
the most abundant and variable across samples, aligning with 
findings from Arumugam et al. (2011). However, a study by Cai 

et al. (2014) reported Firmicutes as the most dominant phylum in 
influent samples, asserting its alignment with the human 
microbiome composition. The findings of Turnbaugh et al. (2006) 
and Clemente et al. (2012) clarify this discrepancy indicating that 
the gut microbiota typically showcases dominance of bacteria, 
particularly from the Bacteroidota and Firmicutes divisions. 
Furthermore, Huttenhower et  al. (2012) revealed that gut 
microbiota relationships were characterized by inverse associations 
with Bacteroidota, varying from dominance in some subjects to a 
minority in others with a greater diversity of Firmicutes. These 
nuanced observations highlight the intricate dynamics of the 
human gut microbiota and underscore the pivotal roles played by 
Bacteroidota and Firmicutes in shaping microbial profiles observed 
in raw sewage.

FIGURE 10

Relative abundances of the top 10 dominant family in 6 dormitories with positive and negative SARS-CoV-2 samples.

FIGURE 11

Significant changes at the family level between SARS-CoV-2 positive and negative samples across six dormitories. Y-axis represents the number of 
ASVs (Amplicon Sequence Variants) associated with each bacterial family.
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FIGURE 12

Relative abundances of top 50 genera and potential pathogens with positive and negative SARS-CoV-2 samples in 6 dormitories. The genera are listed 
from the highest relative abundance (top) to the least relative abundance (bottom). The pathogens are marked with an orange box around their name.

FIGURE 13

Venn diagram of exclusives and shared bacteria with positive and negative SARS-CoV-2 samples in the 6 dormitories.
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The significant differences in bacterial composition observed 
across the six dormitories prompted a recommendation for separate 
analyses of the 16S rRNA data for each dormitory. This approach aims 
to mitigate biases that may arise when combining data from diverse 
dormitory settings. The prominent representation of exclusive species 

in positive samples for SARS-CoV-2 were found across all six 
dormitories supports the findings of Gallardo-Escárate et al. (2021). 
Moreover, the observed trend of higher α-diversity in the microbiome 
of negative samples compared to positive samples across some 
locations echoes the results reported by Gu et al. (2020) and Yeoh et al. 
(2021), who documented a significant decrease in gut microbiota 
diversity and abundance in COVID-19 patients relative to 
healthy individuals.

The observed correlation between the relative abundance of 
enteric pathogen and potential pathogens at sampling sites adds a 
significant layer of understanding in the context of COVID-19, 
particularly highlighting the notable association between the 
relative abundance of enteric pathogen and potential pathogen in 
positive SARS-CoV-2 samples. The presence of three enteric genera, 
namely, Arcobacter, Aeromonas, and Laribacter, in our study, 
commonly residing in the human intestines and potentially utilizing 

FIGURE 14

Diversity index with significant difference between the positive and negative SARS-CoV-2 samples in D5 and D6. The box-and-whisker plots show the 
mean (diamond), median (middle bar), first quartile (lower bar), third quartile (upper bar), minimum observation above the lowest fence (lower whisker), 
and maximum observation below the upper fence (upper whisker) of common α-diversity metrics just for significant group. The p values for the 
comparison between groups using linear regression models including semester as covariate is also shown.

FIGURE 15

The scatter plots show each participant’s microbial community composition (small circles) by D4 and D6, as well as their centroid (large circles) and 
95% CI ellipses. The scatter plots were generated using Principal Coordinates Analysis (PCoA) ordination based on common b-diversity metrics. For 
ease of visualization, only 2 dimensions were used. The p values for the comparison between groups using permutational multivariate ANOVA models 
including semester as covariate is also shown.

TABLE 2 Two-way analysis of variance of beta diversity with dorm and 
SARS-CoV-2.

Source Df Sum of 
squares

R2 F p

Dorm 5 20.86 0.398 22.37 0.001

SARS 1 0.24 0.005 1.28 0.163

Dorm: SARS 5 1.08 0.021 1.16 0.143

Residual 162 30.22 0.577
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pathogenic mechanisms to induce gastrointestinal tract infections, 
emphasizes the relevance of these microbes in the sewage context 
during the pandemic. Notably, the Aeromonas genus ranked as the 
third leading cause of diarrhea after Campylobacter and Salmonella, 
exhibited a notably high abundance exclusively in D5 (9%) and D6 
(6%) compared to other dormitories, where the abundance ranged 
from 0.66 to 1.14%. Additionally, two Arcobacter species, A. butzleri, 
and A. cryaerophilus, are considered emerging pathogens posing 
threats to human health, adding depth to discussing potential 
pathogenic risks in the sewage microbiome. Additionally, the genus 
Laribacter, represented by the species L. hongkongensis, known for 
its associations with traveler gastroenteritis and diarrhea (Beilfuss 
et al., 2015), further contributes to understanding the microbial 
landscape in the context of COVID-19.

The low abundance of Mycobacterium in our samples aligns with 
findings from previous studies, providing a basis for comparative 
analysis. The genus Mycobacterium has been consistently detected at 
very low abundances in wastewater. In both influent and effluent 
samples, its overall abundance remained below 0.02% (Cai and 
Zhang, 2013). Similarly, Mycobacterium was observed exclusively in 
October effluent samples, also at a relative abundance below 0.02% 
(Numberger et al., 2019; Aktaş and Aslim, 2020). The 16S rRNA gene 
sequences analysis in our work determined the presence of the 
bacterial genera but not species. These genera may contain both 
pathogenic and non-pathogenic species. Therefore, the identification 
of pathogens requires further study.

Materials and methods

Raw sewage sampling and sample 
processing

Raw wastewater was systematically collected from six student 
residence halls on the University of Tennessee, Knoxville campus, 
as illustrated in Figure  1. Each of these residential dormitories 
accommodated a population of over 400 students, and a detailed 
summary of their characteristics is presented in Table 3. Sampling 

was from access points to the main sewage pipe in the basement of 
the building or at the first access point to a raw sewer 
manhole immediately outside the building, specifically 
before the convergence or merging with other sewer conduits. This 
sampling initiative occurred from September 14, 2020, to October 
11, 2021.

Grab samples (>50 ml) were collected at the manhole using a 
stainless-steel telescopic rod pole swivel dipper water swing 
sampler. Alternatively, samples were obtained from the valve by 
submerging a sterile Nalgene bottle into the flowing sewage. 
Sampling commenced at 8:00 am, and all collected samples were 
promptly transported to the BSL-2 laboratory in a cooler with ice. 
The transit time was kept to less than 3 h to ensure 
immediate processing.

Upon reaching the laboratory, sewage samples underwent 
pasteurization for 2 h at 60°C. Following pasteurization, centrifugation 
at 5,000 × g for 10 min occurred, and subsequent filtration was carried 
out through sequentially sized 0.45 and 0.22 μm nitrocellulose filters. 
These filters were individually placed in DNA LoBind tubes and stored 
at −80°C until DNA extraction. Concentration was achieved using an 
Amicon Ultra-15 filtration device, with centrifugation at either 
4,000 × g for 30 min (Swing-arm rotor) or 5,000 x g for 20 min (Fixed-
angle rotor) at room temperature. The resulting concentrated solution, 
approximately 250 μl, was carefully transferred to 2 ml DNA 
LoBind tubes.

RNA extraction was performed using the Qiagen viral RNA Mini 
Kit, following the instructions of the manufacturer, yielding 60 μl of 
extracted RNA, with a negative control using DNase/RNase-free 
water. Subsequently, the RNA samples were stored at −80°C and 
subjected to RT-qPCR analysis within 24 h following extraction (Ash 
et al., 2023; Li et al., 2023).

RT-qPCR

To quantify the concentrations of SARS-CoV-2 and PMMoV 
RNA in each sample, we  employed RT-qPCR. Specifically, 
we measured SARS-CoV-2 N1 using the TaqPath 1-Step RT-qPCR 
Master Mix, CG (Thermo Fisher Scientific) on an Applied 
Biosystems QuantStudios 7 Pro Real-Time PCR System instrument. 
Each 20 μl reaction mixture comprised 5 μl of 4X Master Mix 
(Thermo Fisher Scientific), 0.25 μl of a 10 μmol/L probe, 1 μl each 
of 10 μmol/L forward and reverse primers, 7.75 μl of nuclease-free 
water, and 5 μl of nucleic acid extract. After accurate pipetting of 
reagents into 96-well plates, a 10-s vortex mixing step followed. The 
RT-qPCR cycling conditions included an initial uracil-DNA 
glycosylase incubation for 2 min at 25°C, reverse transcription for 
15 min at 50°C, activation of the Taq enzyme for 2 min at 95°C, and 
a two-step cycling process involving 3 s at 95°C and 30 s at 55°C, 
repeated for a total of 45 cycles. A positive test result was 
determined by the presence of an exponential fluorescent curve 
intersecting the threshold within 40 cycles (cycle threshold 
[Ct] < 40).

The quantification of PMMoV was executed using the TaqPath 
1-Step RT-qPCR Master Mix, CG (Thermo Fisher Scientific) on a 
QuantStudios 7 Pro instrument. Each reaction was composed of 20 μl, 
including 5 μl of 4X Master Mix from Thermo Fisher Scientific, 0.5 μl 

TABLE 3 Demography data for D1, D2, D3, D4, D5, and D6.

Sampling 
site

Sampling 
point

Gender Student 
Number

D1 Direct Dispense 

from the valve

Male 387–504

D2 Direct Dispense 

from the valve

Female 469–531

D3 Direct Dispense 

from the valve

Mix 254–279

D4 Direct Dispense 

from the valve

Mix 529–637

D5 Direct Dispense 

from the valve

Mix 10–672

D6 Direct Dispense 

from the valve

Mix 580–672
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of 10 μmol/L probe, 1.8 μl each of 10 μmol/L forward and reverse 
primers, 8.9 μl of nuclease-free water, and 2 μl of nucleic acid extract. 
The reagents were meticulously transferred into 96-well plates using 
pipettes and subsequently mixed by vortexing for 10 s. The 
thermocycling conditions utilized in this study were as follows: 
incubation of uracil-DNA glycosylase for 2 min at 25°C, reverse 
transcription carried out for 15 min at 50°C, activation of the Taq 
enzyme for 10 min at 95°C, and a two-step cycling process consisting 
of 30 s at 95°C followed by 1 min at 60°C, repeated for a total of 
40 cycles.

In each RT-qPCR run, one positive PMMoV control and 
negative controls, comprising Mastermix and DNase/RNase-free 
water, were incorporated. The RT-qPCR reactions were carried out 
in triplicate, and the criteria for classifying a sample as positive 
included the requirement that all replicates produced positive 
results, with each individual replicate falling within the linear range 
of the standard curve. The N1 standard curve demonstrated a high 
level of efficiency, with a value of 94.669% (R2 = 1). The 
quantification of SARS-CoV-2 RNA was determined by calculating 
the average of three replicates of viral copies. The outputs of 
RT-qPCR were converted into units of copies per liter. In this study, 
the detection limit for SARS-CoV-2 and PMMoV was established at 
20 and 10 copies per liter, respectively.

DNA isolation, 16S rRNA gene 
amplification, sequencing

Before inclusion in the kit, quarter-sections of 0.45 μm and 
0.22 μm nitrocellulose filters were prepared by flame-sterilizing a 
blade and using ethanol for sterilization. Genomic DNA extraction 
was then performed using the FastDNA Spin Kit for Soil (BIO101, 
Vista, CA, USA), strictly following the guidelines of manufacturer. 
Subsequent DNA purification utilized the SELECT-A-SIZE DNA 
Clean & Concentrator Kits (Zymo Research, Irvine, CA). The quality 
of the extracted DNA was assessed by determining the 260/280 and 
260/230 ratios on a NanoDrop spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA).

After confirming successful DNA extraction, Polymerase Chain 
Reaction (PCR) was conducted on 10 μl of the extracted DNA. DNA 
libraries were prepared following the methodology outlined by 
Caporaso et al. (2012). PCR amplification of the V4 region employed 
Phusion DNA polymerase (Master Mix; Thermo Fisher Scientific, 
Waltham, MA) and universal primers 515f and barcoded 806r, 
designed to anneal to both bacterial and archaeal sequences. A 12-bp 
barcode index on the reverse primer facilitated multiplexing for 
sequencing analysis.

Subsequently, amplicon quality and size were assessed using an 
Agilent Bioanalyzer (Agilent Technologies Santa Clara, CA). 
Following the protocol of manufacturer, the DNA amplicons were 
pooled and quantified with a NEBNext Library Quant Kit for Illumina 
(New England Biolabs, Ipswich, MA). Sequencing was performed 
using a MiSeq V2 kit on an Illumina MiSeq platform (Illumina, San 
Diego, CA).

Digital sequence data from the MiSeq underwent processing 
through the QIIME2 (v1.9) pipeline on a Linux Server (Caporaso 
et al., 2010). DADA2 within QIIME2 was employed for denoising, 

and fast-join facilitated the joining of paired-end sequences. 
Subsequent demultiplexing excluded sequences with a Phred score 
below 20, and UCHIME identified and removed chimeric 
sequences. Genus-level identification of sequences utilized the 
Silva database, with operational taxonomic units (OTUs) 
determined and sample populations normalized by 
total sequence count to ascertain the relative abundance of 
each OTU.

Data analysis

Statistical analyses were conducted using R version 4.2.3. 
Initially, samples were processed by rarefying OTU tables to the 
lowest library size across all samples in each student residence 
hall. Subsequently, we  computed common α-diversity metrics 
(Observed, ACE, Shannon, Simpson, InvSimpson, Fisher, 
Coverage, and PD) and α-diversity metric (Bray-Curtis) using the 
R phyloseq package. To assess differences in α-diversity metrics 
between groups, linear regression was employed, with semesters 
included as covariates. For the evaluation of differences in 
α-diversity metrics between groups, nonmetric-multidimensional 
scaling (NMDS) was utilized, and p values for the comparison 
between groups were determined using permutational multivariate 
ANOVA models, which included semesters as covariates. A 
Pearson Correlation analysis was undertaken to explore the 
correlations between various parameters, including the relative 
abundance of enteric pathogen and potential pathogens, the 
relative abundance of enteric pathogen and potential pathogen in 
positive and negative SARS-CoV-2 samples, as well as the relative 
abundance of potential pathogen in positive and negative SARS-
CoV-2 sewage samples.
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