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Introduction: Salt stress is a major global issue that negatively affects plant

growth and physiological processes. Plant growth-promoting rhizobacteria

(PGPR) are known to alleviate salt stress and promote plant growth. This study

aimed to isolate and characterize salt-tolerant PGPR from salinity-affected soils

in Tamil Nadu, India, and assess their potential to enhance growth and salt

tolerance in sesame (Sesamum indicum L.).

Methods: Salt-tolerant PGPR were isolated and screened for plant

growth-promoting traits. One isolate, designated PAS1, demonstrated

significant capabilities, including the production of indole-3-acetic acid

(IAA; 48.56 µg ml−1), siderophore production (89.20 ± 0.65%), phosphate

solubilization (7.8 mm zone of clearance), ammonia, and hydrogen cyanide

(HCN) production. PAS1 was identified as Bacillus flexus. Sesame plants were

inoculated with B. flexus and grown under different salt concentrations (0, 100,

and 200 mM NaCl) for 45 days.

Results: Inoculation with B. flexus significantly improved the biochemical

parameters of sesame plants under salt stress, including increased chlorophyll

content (4.4 mg g−1), proline (0.0017 mg g−1), soluble sugars (61.34 mg g−1),

amino acids (1.10 mg g−1), and proteins (3.31 mg g−1). Additionally, antioxidant

enzyme activities were enhanced, as indicated by DPPH scavenging activity

(60.25%), superoxide dismutase (231.29 U mg g−1 protein), peroxidase (6.21

U mg g−1 protein), catalase (3.38 U mg g−1 protein), and a reduction in

malondialdehyde (23.32 µmol g−1).

Discussion: The study demonstrates that inoculation with salt-tolerant B. flexus

can effectively improve sesame plant growth and enhance tolerance to salt

stress. These findings suggest that halo-tolerant PGPR strains like B. flexus could

serve as promising biofertilizers to improve crop productivity in salt-affected

agricultural soils.
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GRAPHICAL ABSTRACT

Role of Bacillus flexus in enhancing sesame growth under salt stress through PGPR mechanisms and improved physiological responses.

Highlights

• Salt-tolerant PGPR strain protects inoculated sesame plants
against salinity stress.
• The effect of PAS1 treatment on sesame plant showed

restoration of physiological traits from salinity stress
condition to normal condition.
• Bacillus flexus inoculation increased antioxidant defense

mechanisms under salt conditions.
• The findings of this study strongly support future efforts to

manage plant salinity stress with the development of effective
bioinoculants for agricultural use.

Introduction

Climate change is the most pressing challenge of our
era, impacting the earth in diverse ways. Rising sea levels,
driven by climate change, are causing saltwater intrusion into
agricultural lands, increasing soil salinity. This salinization
ultimately contributes to global food insecurity and diminished
agricultural productivity (Khan et al., 2021; Mukhopadhyay et al.,
2021; Gulzar et al., 2025). Globally, 20% of irrigated lands are
severely damaged by salinity (Singh, 2022; Patel et al., 2023), and
this land degradation is projected to reach 50% by 2050 (Dias

et al., 2021). Approximately 70% of yield loss in cereal crops,
including wheat, rice, sorghum, sesame, and barley, is attributed
to soil contamination from salinity and sodicity (Sagar et al., 2022a;
Awaad, 2023).

Salinity, an abiotic chemical stress, is characterized by the
accumulation of soluble salts in the rhizosphere, adversely affecting
plant metabolism in two primary ways (Kalam et al., 2020;
Khan et al., 2021). First, high salt concentrations create hyper-
osmotic and hypertonic environments that damage the root system,
impairing water and nutrient uptake (Seleiman et al., 2022; Zhang
et al., 2024). This leads to secondary stresses, such as oxidative
stress, which induces membrane instability through DNA and
protein denaturation and lipid peroxidation. Ultimately, these
effects trigger programmed cell death (apoptosis) and cause the
deterioration of the entire plant (Debnath et al., 2021; Paes de Melo
et al., 2022).

Remediation of saline soils traditionally involves inorganic
amendments (e.g., gypsum, lime, sulfuric acid derivatives, and
synthetic fertilizers) and organic amendments (e.g., green manure,
farmyard manure, and industrial wastes such as press mud)
(Kapadia et al., 2021; Kour et al., 2021). However, these methods
have shown limited success in improving stress tolerance in
economically important crops under field conditions due to several
factors (Soto-Gómez and Pérez-Rodríguez, 2022). Plant growth-
promoting rhizobacteria (PGPR) has recently gained attention
as a sustainable and eco-friendly approach to enhance crop
production in salt-affected lands (Nasab and Sayyed, 2019; Sagar
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et al., 2022b; Kapadia et al., 2022; Jabborova et al., 2025). These
beneficial bacteria colonize plant roots, thrive in hyper-saline
environments, and improve plant growth and yield (Choudhary
et al., 2022; Kumawat et al., 2022). Rhizobacteria have been
reported to promote plant growth effectively, even under saline
conditions (Ayuso-Calles et al., 2021; Basu et al., 2021). Halophilic
and halo-tolerant PGPR employ several mechanisms to withstand
severe environmental stresses and minimize yield loss (Hernández-
Canseco et al., 2022). These include synthesizing osmolytes to
maintain cellular osmotic balance, regulating ion transporters to
reduce the toxic effects of Na+ and Cl− ions, and activating plant
defense systems to scavenge reactive oxygen species (ROS) and
alleviate oxidative stress (Kusale et al., 2021; Chattha et al., 2022).
Furthermore, these microorganisms produce phytohormones, fix
nitrogen, solubilize phosphate, generate volatile compounds, and
produce antifungal or antibacterial metabolites (Hamid et al., 2021;
Koza et al., 2022; Dave et al., 2024; Praveen et al., 2024; Anbalagan
et al., 2025; Bright et al., 2025). They also aid in mobilizing
mineral ions, enhancing photosynthesis, and regulating osmotic
pressure through the heterodimerization of acids (Burnap, 2023;
Sethi et al., 2025). Additionally, PGPR contribute to plant defense
by producing antioxidants, betaines, and other compounds that
mitigate the harmful effects of ROS and toxins (Sagar et al., 2020;
Hasanuzzaman et al., 2021).

Sesamum indicum L. is a valuable oilseed crop cultivated
widely in India, China, Thailand, Mexico, Guatemala, El
Salvador, Afghanistan, Pakistan, Bangladesh, Indonesia, Sri Lanka,
Saudi Arabia, and Turkey (Morris et al., 2023). Sesame seeds are
highly valued for their rich oil, protein, and antioxidant content,
making them essential in food, nutraceuticals, pharmaceuticals,
and various industries (Wei et al., 2022). They offer health benefits
such as reducing cancer risk, mitigating mucosal, colon, and
liver damage, lowering serum cholesterol levels, and improving
vitamin E activity and α-tocopherol availability (Zainal et al.,
2022). Sesame seeds also help reduce thiobarbituric acid reactive
substances (TBARS) (Mitsiopoulou et al., 2021). Lignan in sesame
seeds acts as a phytoestrogens and is converted to enterolactone,
which is crucial in preventing hormone-dependent cancers (e.g.,
breast and prostate) and cardiovascular diseases (Jang et al.,
2022).

The present study aimed to evaluate the role of halo-tolerant
plant growth-promoting (PGP) microorganisms in sesame. Plant
parameters for evaluation include the enhancement of growth
and yield and morpho-physiological and biochemical traits.
The findings will help explore the potential of salt-tolerant
PGPR strains as biofertilizers to mitigate yield loss caused
by salt stress in sesame crops. Ultimately, this research may
contribute to developing effective biomass solutions for managing
complex, saline soils.

Materials and methods

Isolation of potent PGPR

Plant growth promoting rhizobacteria cultures were
isolated from the saline soil of Kanniyakumari, Tamil Nadu,
India (8◦09′′20′′N, 77◦27′27′′E). Using the serial dilution

method, 100 µL aliquots were spread onto nutrient agar
(NA) plates, the plates were incubated at 30 ± 2◦C for 24 h.
Morphologically distinct bacterial colonies were selected, isolated,
and purified. The purified isolate designated PAS1 was used for
further studies.

Gram-staining and biochemical
properties of the isolate

Purified culture of each isolate was stained using Gram’s
staining and observed under an oil immersion microscope at
100 × magnification (Coico, 2006). The catalase activity of the
bacterial isolates was tested according to Whittenbury (1964)
method. A small amount of bacterial colony was mixed in a drop
of 3% hydrogen peroxide and observed for the evolution of gas
bubbles as an indication of a positive catalase test. The ability of
the isolate to utilize citrate as the sole carbon source was assessed
using Simmons citrate agar medium, as described by MacWilliams
(2009). The inoculated plates were incubated at 30◦C for 7 days and
observed for color change from green to blue as an indication of a
positive citrate test.

Evaluation of plant growth-promoting
traits

Siderophore production
The Chrome Azurol Sulfonate (CAS) agar plate method was

used to assess siderophore production (Alexander and Zuberer,
1991; Patel et al., 2018). Bacterial isolates were grown on CAS at
30◦C for 24–48 h and observed for the development of an orange
halo around the colonies. For quantitative estimation, bacterial
culture was grown in succinate medium at 30◦C for 24–48 h, and
the amount of siderophore was estimated according to Himpsl and
Mobley (2019) and expressed as siderophore units (SU), using the
following formula.

% SU =
As− Ar

Ar

where As is the absorbance of the sample (CAS reagent mixed with
the bacterial supernatant), and Ar is the absorbance of the reference
(CAS reagent mixed with uninoculated medium).

Indole acetic acid production

Production of IAA by isolates was determined using the
method of Gordon and Weber (1951). The bacterial isolates were
grown in Luria and Bertani (LB) broth enriched with tryptophan
(100 µg ml−1) at 30 ± 2◦C for 72 h. These culture supernatants
from the isolate were combined with Salkowski’s reagent in a
1:2 ratio and observed for the development of a pink color as
an indication of IAA production. The amount of IAA produced
was measured spectrophotometrically at 530 nm, using an IAA
calibration curve (10–100 µg ml−1).
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Ammonia production

For this, 24 h old bacterial cultures were individually grown
in 10 ml of peptone at 30 ± 2◦C for 48 h. Following incubation,
0.5 ml of Nessler’s reagent was added, and observed for color change
from brown to yellow as a signal of the presence of ammonia (Hills,
1940).

Hydrogen cyanide production

Hydrogen cyanide production was assessed using the procedure
described by Lorck (1948). Bacterial isolates were inoculated into
LB broth containing glycine, and Whatman No. 1 filter paper
soaked in a solution of 0.5% C6H3N3O7 and 2% Na2CO3 was
placed on top of the inside of the tubes. A color change of the filter
paper from orange to red indicated HCN production.

Phosphate solubilization

Phosphate (P) solubilization was determined using Pikovskaya’s
agar medium (Nautiyal, 1999). Bacterial colonies were spot-
inoculated at the center of the plates and incubated for 7 days
at 30◦C and observed for the formation of clear halo zones of P
solubilization around the colonies. The P solubilization ability was
quantified by calculating the Solubilization Index (SI) using the
following formula:

SI =
Colony diameter + Halo zone diameter

Colony diameter

Identification of isolate through 16s rRNA
sequencing

Genomic DNA was extracted from the screened
multifunctional PGPB strain using a commercial bacterial genomic
DNA extraction kit, following the manufacturer’s instructions.
The extracted DNA was used as a template for polymerase chain
reaction (PCR) amplification of the 16s rRNA gene, using universal
bacterial primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and
1492R (5′-GGTTACCTTGTTACGACTT-3′). The PCR reaction
mixture (25 µL) contained 1 µL of DNA template, 0.5 µL of
primer 27F, 0.5 µL of primer 1492R, 12.5 µL of 2x Taq PCR Master
Mix, and 10.5 µL of nuclease-free water. PCR conditions were
as follows: initial denaturation at 93◦C for 3 min, followed by
32 cycles of denaturation at 93◦C for 30 s, annealing at 56◦C for
30 s, and extension at 72◦C for 2 min with a final extension at
72◦C for 7 min. The amplified PCR products were subjected to
bidirectional sequencing by BGI. The obtained sequences were
assembled and analyzed using BLAST against the NCBI GenBank
database for species-level identification. A phylogenetic tree
was constructed using the neighbor-joining method in MEGA
version 11.0, and the reliability of the tree was assessed through
bootstrap analysis with 1,000 replicates (Sanschagrin and Yergeau,
2014).

Pot experiment design

Various physicochemical properties of the soil were assessed
according to the methods described by Jackson (1985). The selected
bacterial isolate B. flexus (PAS1) was grown in LB broth at 28± 1◦C
for 24 h under a shaking at 100 rpm. After incubation, the bacterial
culture was applied to the soil in pots.

Treatment 1: Control
Treatment 2: Control+PAS1
Treatment 3: NaCl 100 mM
Treatment 4: NaCl 100 mM+PAS1
Treatment 5: NaCl 200 mM
Treatment 6: NaCl 200 mM+PAS1
The experiment included treatments with B. flexus (PAS1) in

control soil and soils supplemented with NaCl at concentrations
of 0 mM, 100 mM, and 200 mM, with each treatment replicated
three times. Sesame seeds (TMV7) were soaked in the PAS1
inoculum for 1 h before being sown in the treated pots.
The physicochemical properties of the test soil were pH 8.02,
EC 3.17 dS/m, K+ 62 kg/acre, Na+ 10.12 me/L, SAR 5.72
mmolc/L, and ESP 8.12%. Based on these properties, the soil
was classified as saline. Plants were harvested after 45 days, and
root and shoot length measurements, metabolites, and antioxidant
enzymes were recorded.

Seed dormancy, germination, and
morphological traits

Sesame seeds were surface sterilized and plated on 0.6% agar
(pH 5.7) for 1 h. The seeds were then exposed to light conditions
for 4 days, and germination frequency was recorded. For light-
mediated germination assays, seeds were stored dry at 25◦C for
2–5 months before being surface sterilized, plated on 0.6% agar
with 0.01% (v/v) ethanol (mock) for 1 h, and treated with salt stress
(Bentsink and Koornneef, 2008). The growth of the radical defines
germination. After 45 days, the growth of sesame seedlings was
examined, and growth parameters such as root length and shoot
length were measured.

Determination of chlorophyll content
and carotenoids

The total chlorophyll content and carotenoids in the fresh
leaves of plants were determined using the method outlined by
Arnon (1949).

Total chlorophyll (mg/g) = 20.2 (A645)− 8.02 (A663)

Carotenoids (mg/g) = 5.02 (A480)

Primary metabolites

Estimation of carbohydrate
The total carbohydrate content of the leaf was determined using

the protocol Hedge and Hofreiter (1962). 0.5 g of dried leaves were
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ground with 10 mL of 1 N sulfuric acid, then transferred to a test
tube and heated at 100◦C for 24 h. Then, 1 mL of sugar solution
was mixed with 1 mL of 5% phenol solution, after which 5.0 mL of
sulfuric acid was added. Incubation was carried out for 20 min at
23–30◦C. The total carbohydrate content was measured at 490 nm.

Estimation of protein
The total protein content in the leaves was measured following

the method of Bradford (1976). Plant leaves were first powdered in
liquid nitrogen and then homogenized with a 50 mM Na-phosphate
buffer (pH 7.6). The homogenate was centrifuged at 6,000 × g
for 20 min at 4◦C, and the absorbance of the supernatant was
recorded at 595 nm. The protein content was estimated and the
standard curve was created using the Bovine Serum Albumin (BSA)
standards.

Estimation of amino acids

The leaf extract was blended with 3 mL of 80% (v/v) methanol
and subjected to incubation in hot water at 70◦C for 30 min.
Following this, an equal volume of 5% phenol and 1.5 ml of
concentrated H2SO4 was introduced to the mixture, which was
subsequently incubated in the dark for an additional 30 min. The
absorbance of the resulting reaction mixture was measured at
490 nm (Roland and Gross, 1954).

Estimation of proline

The proline content in fresh leaves was determined as per Bates
(1973). Fresh leaves (0.1 g) were homogenized in 3 mL of 3%
sulfosalicylic acid and heated at 95◦C for 15 min. The homogenate
was then centrifuged at 8,000 × g for 10 min. The supernatant was
mixed with equal glacial acetic acid, 2% acid ninhydrin, and 6 M
orthophosphoric acid. This mixture was heated in a boiling water
bath for 30 min and then cooled to room temperature for 30 min.
After adding 1 mL of toluene and shaking vigorously for 30 s, the
absorbance of the upper toluene phase was measured at 520 nm
using toluene as a blank. Free proline content was determined by
comparing the absorbance to a standard curve of pure L-proline
and was calculated based on fresh weight, expressed as mg per 100 g
FW.

Antioxidant enzyme activities

Scavenging of the DPPH radical analysis
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging

activity was assessed according to the method described by Brand-
Williams et al. (1995). A total of 1 g of plant powder was mixed
with 2 mL of 80% (v/v) methanol and shaken for 24 h at 25◦C. The
mixture was then centrifuged at 12,000 × g for 20 min, and the
supernatant was collected. This supernatant was combined with an
equal volume of DPPH solution (0.1 M), and the reaction mixtures
were incubated in the dark for 40 min. The absorbance was then
measured at 515 nm.

SOD, CAT, and POD enzyme activities

Superoxide dismutase (SOD) activity was assessed following
the method outlined by Flohé and Ötting (1984). One unit
of the enzyme is defined as the amount of SOD that inhibits
50% of nitro blue tetrazolium at 25◦C. The reaction mixture
consisted of 50 mM sodium phosphate buffer (pH 7.6), 13 mM
methionine, 75 µM NBT, 2 µM riboflavin, 0.1 mM EDTA, and
0–50 µL of enzyme extract, with riboflavin being added last.
The tube was then shaken and exposed to a 40-watt fluorescent
lamp for 15 min, and absorbance was subsequently measured at
560 nm.

Catalase (CAT) activity was measured by converting H2O2
to water and oxygen, following the method described by
Lück (1965a). For the peroxidase (POD) activity assay, the
reaction mixture consisted of 750 µL of 50 mM phosphate
buffer, 100 µL of 20 mM guaiacol, 100 µL of 40 mM
H2O2, and 100 µL of enzyme extract. The absorbance of
the mixture was recorded every 20 s at 470 nm for 3 min
(Lück, 1965b).

Estimation of lipid peroxidation

Two grams of fresh leaf tissue was homogenized in 600 µL of
0.1% trichloroacetic acid (TCA). The homogenate was centrifuged
at 15,000 × g for 20 min at 4◦C. A total of 1.5 mL of 20%
TCA containing 0.5% Thio barbituric acid (TBA) was added
to the supernatant, and the mixture was heated at 95◦C for
25 min. After heating, the mixture was cooled and centrifuged at
15,000 × g for 5 min at 4◦C. The absorbance of the supernatant
was then measured at 532 nm. The results were expressed as
µmol MDA per gram of fresh weight (FW) (Moore and Roberts,
1998).

Data analysis

The experiments were conducted in triplicate (n = 3).
Graphs were generated using Prism software version 5.01
(Graph Pad Software Inc., United States), and data were
analyzed using SPSS 16.0 employing One-way ANOVA. Statistical
significance was determined using Tukey’s multiple comparison
tests (P < 0.05).

Results

Isolation of salt-tolerant PGPR strains
and identification of PGPR characteristics

Bacterial isolate obtained from high-salinity areas of the
Kanyakumari district, India, produced siderophore production,
IAA, ammonia, HCN, and solubilized phosphate. It was Gram-
positive, motile, rod and exhibited catalase activity and utilized
citrate (Supplementary Table 1).
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Analysis of 16s rRNA sequencing
followed by a phylogenetic tree

PCR amplification of the 16s rRNA gene was carried out
for the identification of the selected bacterial isolate. The
amplified sequence was analyzed through the NCBI BLAST
search and has been submitted to the GenBank (NCBI accession
number: PP275111). The isolate was identified as Bacillus flexus.
A phylogenetic tree was constructed based on the 16s rRNA gene
sequence using the neighbor-joining method in MEGA version
11.0. The tree indicated that the isolate belongs to the genus Bacillus
and clustered closely with B. flexus, thereby confirming its identity
(Figure 1).

Effect of B. flexus on salt stress on
S. indicum growth parameters

The plant was grown in different concentrations of NaCl
(Control, 100 mM, and 200 mM). The shoot lengths of the
inoculated were 21.7, 19.3, and 17.1, and the shoot lengths of
the non-inoculated were 20.5, 18.6, and 16.2. This inoculated
strain gave good results when grown under NaCl compared to
the control (Figure 2a). Similar to shoot length, the root length of
the inoculated was 7.3, 5.4, 3.9, and the root length of the non-
inoculated was 6.5, 4.7, and 3.1. As mentioned above, root length
in inoculation showed better results than the control (Figure 2b).

Determination of total chlorophyll (TC)
and carotenoids in S. indicum with
B. flexus under salt stress

Chlorophyll is essential in photosynthesis and is plants’ light
energy source. As soil salinity increases, chlorophyll decreases.
The chlorophyll content in the plant was higher in the inoculated
samples (4.4, 3.1, and 2.6 mg g−1) compared to the control (4.0,
2.8, and 2.1 mg g−1) (Figure 3a). Similarly, a substantial increase
in carotenoid content was (0.97, 0.69, and 0.57 mg g−1) was
evident over the control (0.29, 0.62, and 0.48 mg g−1) (Figure 3b).
However, the amount of chlorophyll pigments and carotenoid
content decreased with increasing salinity.

Determination of primary metabolites in
S. indicum with B. flexus under salt stress

Regarding carbohydrate content, a significant increase was
observed in inoculated plants compared to control. These are 61.34,
59.83, 57.53,60.27, 57.06, and 55.03 mg g−1 inoculated and non-
inoculated, respectively (Figure 4a). Also, the protein level was
higher in inoculated plants (3.31, 3.22, and 3.10 mg g−1), than in
untreated (control) plants 3.20, 3.13, and 3.08 mg g−1 (Figure 4b).
Amino acid concentration also increased in plants grown under salt
stress. A higher amino acid content was recorded in PGPR treated
plants (1.15, 1.33, and 1.57 mg g−1) than control plants (1.15, 1.26,
and 1.48 mg g−1) (Figure 4c). Higher levels of proline contents were

observed in PGPR treated plant grown under salinity to be 0.0176,
0.0137, 0.0017 mg g−1 higher in untreated plants. Also, treated
plants exhibited lower proline levels with values of 0.0153, 0.0115,
and 0.0022 mg g−1 compared to the control (Figure 4d).

Determination of antioxidant enzyme
activity in S. indicum with B. flexus under
salt stress

2,2-diphenyl-1-picrylhydrazyl activity increased significantly
in both control and PGPR treatments. Specifically, the activity
increased by 23.8% at 100 mM NaCl and 59.5% at 200 mM NaCl,
while the PAS1-treated showed increases of 13.6% and 45.5%. SOD,
POD, and CAT activities were also higher in NaCl-treated plants
compared to control. Significant increases were observed for POD,
SOD, and CAT with 5.44%, 13.64%, and 31.14% increases in NaCl
treatment of 0, 100, and 200 mM, respectively. The lowest MDA
levels were observed in control plants, with 25.6 µmol g-1 FW for
NaCl and 24.1 µM g−1 FW for PGPR treatments. At 100 mM NaCl,
MDA increased to 34.7 µmol g−1 FW in NaCl-treated plants and
32.5 1 µmol g−1 FW in PGPR-treated plants. At 200 mM NaCl,
MDA levels increased to 42.3 µmol g−1 FW and 39.6 µmol g−1

FW, respectively. The increase in MDA was lower in PGPR-treated
plants compared to untreated plants. Co-application of B. flexus
with NaCl stress further enhanced the antioxidant enzyme activity
observed with NaCl stress. The activity of antioxidant enzymes,
including SOD, POD, CAT, and MDA content under NaCl stress,
significantly increased during the experiment in cultivars compared
to the control (Figure 5).

Pearson’s correlation coefficient analysis

A Pearson’s correlation analysis was performed to determine
the relationship between morphological, physiological,
biochemical, and antioxidant traits under salt stress (Figure 6).
The analysis revealed a strong, significant positive correlation
(p < 0.01) among shoot length (SL), root length (RL), total
chlorophyll (TCH), carotenoids, carbohydrate content (CHO),
and protein content. This indicates that these parameters are
positively associated with each other and play a major role in plant
growth promotion. Similarly, a significant positive correlation
(p < 0.01) was observed among amino acid content, proline
accumulation, DPPH activity, SOD, POD, CAT, and MDA. In
contrast, a significant negative correlation (p < 0.05) was found
between growth parameters (SL and RL) and stress such as
proline, DPPH, SOD, CAT, and MDA. TCH and carotenoids also
negatively correlated with proline, DPPH, SOD, and MDA, while
CHO was negatively correlated with MDA. Additionally, negative
correlations were noted between SL, RL and amino acids, POD;
TCH and carotenoids with amino acids, POD, CAT; CHO with
amino acids, proline, DPPH, SOD, POD, CAT; and protein with all
stress including amino acids, proline, DPPH, SOD, POD, CAT, and
MDA.
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FIGURE 1

Phylogenetic tree based on 16s rRNA gene sequences of Bacillus flexus.

FIGURE 2

The effect of plant growth-promoting rhizobacteria (PGPR) B. flexus (PAS1) on plant growth parameters was evaluated in pots subjected to salt
stress. The parameters measured were root (a) and shoot (b) length. Error bars represent the standard deviation (n = 3). Small alphabetical letters
above the error bars indicate significant differences between treatments according to Tukey’s post-hoc test (p = 0.05).

FIGURE 3

The effect of plant growth-promoting rhizobacteria (PGPR) B. flexus (PAS1) on photosynthetic pigments, total chlorophyll (a), and carotenoid (b)
levels under NaCl stress in sesame leaves was investigated. Error bars represent the standard deviation (n = 3). Small alphabetical letters above the
error bars indicate significant differences between treatments according to Tukey’s post-hoc test (p = 0.05).
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FIGURE 4

The effect of plant growth-promoting rhizobacteria (PGPR) B. flexus (PAS1) on total carbohydrate (a), protein (b), amino acids (c), and proline (d)
levels under NaCl stress in sesame leaves was investigated. Error bars represent the standard deviation (n = 3). Small alphabetical letters above the
error bars indicate significant differences between treatments according to Tukey’s post-hoc test (p = 0.05).

FIGURE 5

The effect of plant growth-promoting rhizobacteria (PGPR) B. flexus (PAS1) on DPPH % (a), SOD (b), POD (c), CAT (d), and MDA (e) content levels
under NaCl stress in sesame leaves was investigated. Error bars represent the standard deviation (n = 3). Small alphabetical letters above the error
bars indicate significant differences between treatments according to Tukey’s post-hoc test (p = 0.05).
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FIGURE 6

Pearson’s correlation analysis was performed on the morphological,
physiological, and biochemical attributes of sesame treated with
plant growth-promoting rhizobacteria (PGPR) under salt stress. The
attributes analyzed include SL (shoot length), RL (root length), TCH
(total chlorophyll), Caro (carotenoids), CHO (carbohydrate), Prot
(protein), Amino (amino acid), Prol (proline), DPPH, SOD, POD, CAT,
and MDA (lipid peroxidation).

Discussion

Various crop plants thrive in diverse regions worldwide, often
overcoming challenges from varying climatic conditions, soil types,
and pests. Among these challenges, salt stress is a significant
abiotic stress that significantly impacts agriculture (Ashraf and
Munns, 2022; Al-Turki et al., 2023). This study analyzed soil
samples collected from the rhizosphere of plants growing in saline-
affected soil. PGPR are soil-dwelling microorganisms that enhance
plant growth through direct or indirect mechanisms during root
colonization and contribute to increased crop yields (Rai et al.,
2023; Saini et al., 2023). Several studies have identified beneficial
PGPR based on their growth-promoting properties (Passari et al.,
2016; Singh et al., 2019; Bright et al., 2025; Sethi et al., 2025). For
example, various Pseudomonas and Bacillus strains promote plant
growth by producing indole-3-acetic acid (IAA), stimulating root
tip growth, and enhancing phototropism (Paravar et al., 2023; Sagar
et al., 2024). PGPR can also mitigate salinity stress and improve
nitrogen uptake by plants (Kapadia et al., 2021; Rana et al., 2022).
Phosphate solubilization, mediated by the release of inorganic
and organic acids, converts insoluble phosphate in the soil into
orthophosphate, making it available for plant uptake (Parray et al.,
2023; Yu et al., 2024). Siderophore, produced by PGPR, facilitates
iron acquisition by plants through the solubilization of organic
and inorganic minerals in the soil (Pattnaik et al., 2021; Omar
et al., 2022), thereby promoting root and shoot elongation (Meena
et al., 2020). Furthermore, PGPR can control soil-borne pathogens
by producing hydrogen cyanide (HCN), protecting plants from
diseases, particularly root damage, and indirectly promoting plant

growth (Sehrawat et al., 2022). Our study demonstrated that the
isolated PGPR produced IAA, solubilized phosphate, and generated
ammonia, siderophores, and HCN, consistent with the findings
of (Mazumdar et al., 2020). The bacterial isolate was identified as
B. flexus based on 16s rRNA gene sequencing, and a phylogenetic
tree was constructed using the neighbor-joining method (Kapadia
et al., 2022; Zhou et al., 2022). Previous studies have reported
significant reductions in root and shoot length in various crop
plants under salt stress (Kumar et al., 2021; Vafa et al., 2024).
PGPR induce physiological changes in plant tissues, promoting
growth and improving various plant parameters (Chauhan et al.,
2022; Bright et al., 2025). For example, a study on wheat treated
with P. fluorescens and B. licheniformis demonstrated improved
growth under saline conditions (Orozco-Mosqueda et al., 2020).
Similarly, Azospirillum lipoferum, Azospirillum brasilense, and
Bacillus spp. have been shown to enhance plant growth under
different salt stress concentrations (0, 50 mM) (Rabiei et al.,
2020; Sagar et al., 2022b). Our results are consistent with those
of Jalil and Ansari (2020), who demonstrated that plants protect
themselves against salt stress by producing compatible solutes
such as carbohydrates, proteins, and amino acids. These solutes
are responsible for intracellular osmotic adjustment, production
of antioxidant enzymes, excess ROS reduction, and membrane
stability maintenance (Parveen et al., 2021; Hamidian et al., 2023).
Plants employ various conservation strategies to enhance growth
and counteract the detrimental effects of salt stress (Nasab and
Sayyed, 2019; Ayub et al., 2020). In our study, proline concentration
was higher under salt stress, similar to the findings of Patriarca et al.
(2021). Proline has been shown to reduce enzymatic degradation
induced by NaCl and other stresses in plants, thereby reducing
the activity of antioxidant enzymes (Shahid et al., 2022). Proline
acts as an osmoprotectants and a scavenger of hydroxyl radicals
(Hosseinifard et al., 2022), ensuring membrane and sub-cellular
structural integrity (Maslennikova et al., 2023). It also protects
cellular functions by scavenging ROS (Feng et al., 2024). The
DPPH scavenging activity of plant extracts indicated the presence
of antioxidant activity. In our study, both plant and leaf extracts
exhibited DPPH scavenging activity under salt stress, similar to
the observations of Azeem et al. (2023). One of the primary
plant defense strategies against reactive oxygen species (ROS)
involves buffering ROS levels. Plants employ a coordinated defense
mechanism involving antioxidant enzymes such as SOD, POD, and
CAT (Kesawat et al., 2023). The activities of CAT, SOD, and POD
in salt-stressed sage plants in our study were consistent with those
reported by Hussain et al. (2023). Furthermore, the application of
NaCl enhanced the activities of CAT, SOD, and POD, indicating
oxidative damage in salt-stressed sage, similar to observations
in other crops (Sheikhalipour et al., 2024). Lipid peroxidation,
indicated by MDA levels, signifies membrane damage and leakage
under salt stress (Syeed et al., 2021). Consistent with our findings,
low MDA levels have been associated with salt tolerance in various
studies. For example, salt-tolerant tomato cultivars (Khan et al.,
2019; Raja et al., 2022) and salt-resistant tobacco plants (Wang
et al., 2022) exhibited reduced lipid peroxidation, reflecting their
ability to minimize oxidative damage under salinity. Salt stress
can induce the biosynthesis of endogenous nitric oxide (NO),
which acts as a direct ROS scavenger or a signaling molecule,
thus reducing ROS levels and oxidative damage in stressed plants
(Hasanuzzaman et al., 2021; Gao et al., 2022). PGPR improves
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the characteristics of crop plants and oilseeds and enhances yield
(Kusale et al., 2021; Nagrale et al., 2023). Each PGPR strain
uniquely supports plant growth in various polluted environments,
contributing significantly to plant growth and product quality.
The findings of this study strongly suggest that rhizobacteria,
which produce PGPR traits and possess plant growth-promoting
properties, play a key role in enhancing the ability of oil-yielding
plants like sesame to adapt to saline environments.

Conclusion

The study revealed that B. flexus from the contaminated area
was resistant to NaCl. It enhances sesame growth under salt stress,
which improves photosynthesis, transpiration, and photosynthetic
pigments. In addition, B. flexus facilitates the availability of essential
nutrients such as nitrogen, calcium, and iron in the soil. B. flexus
halo-tolerant PGPR strains act as biofertilizers when cultivated
in saline soils under salt-stressed conditions. This highlights the
potential of improving these PGPR strains to mitigate the adverse
effects of salt stress on plant growth and promote sustainable
agriculture in salt-affected areas. In conclusion, this study suggests
the critical role of B. flexus as a halo-tolerant PGPR in mitigating
salt stress and promoting plant growth. These findings have
considerable potential for practical applications in agricultural
systems such as sustainable agriculture.
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