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Introduction: The global increase in antimicrobial-resistant (AMR) Escherichia

coli in the poultry supply chain poses significant food safety and public health

risks. This study aims to assess the AMR profiles and plasmid content of E. coli

isolated from imported frozen broiler carcasses available in the United Arab

Emirates (UAE) market.

Methods: A total of 253 frozen whole broiler carcasses imported from Brazil,

France, Oman, and Ukraine were screened for the presence of E. coli.

Antimicrobial susceptibility testing was conducted on 90 isolates. Whole-

genome sequencing (WGS) was performed on 33 representative isolates to

analyze sequence types (STs), resistance genes, and plasmid content using the

MOB-suite pipeline.

Results: E. coli was detected in 248 out of 253 samples. Resistance to ampicillin

(52.2%) and tetracycline (35.6%) was most common, with 68.9% of isolates

exhibiting multidrug resistance (MDR). WGS revealed 22 STs, with ST1564 being

the most prevalent (12.1%). Clinically relevant ST10 and ST58 were also identified.

Extended-spectrum β-lactamase (ESBL) genes blaCTX−M−55 and blaCTX−M−8

predominated, often co-occurring with fluoroquinolone resistance genes qnrS1

and qnrB19. A total of 197 plasmids were identified; 63.6% were classified as

conjugative. The most frequent relaxase types were MOBP (37 plasmids) and

MOBF (24 plasmids), with IncI-gamma/K1 and IncF plasmids commonly linked

to ESBL genes.

Discussion: This study provides one of the first genomic characterizations of

plasmid-mediated AMR in poultry-associated E. coli in the Middle East. The high
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prevalence of MDR and mobile resistance elements underscores the role of

international poultry trade in AMR dissemination. These findings highlight the

need for strengthened AMR surveillance and improved regulatory control over

antibiotic use in poultry production to mitigate public health risks.

KEYWORDS

Escherichia coli, antibiotic resistance, imported poultry, whole-genome sequencing,
United Arab Emirates

1 Introduction

The emergence of foodborne antimicrobial resistance (AMR)
poses an important threat to food safety worldwide. Among the
vast array of antimicrobial-resistant microorganisms, Escherichia
coli plays a particularly significant role due to its prevalence in
human and animal microbiota (Pitout and Laupland, 2008; Ramos
et al., 2020). The high genetic adaptability and ability of E. coli
to exchange genetic material make them key contributors to the
spread of genes conferring antimicrobial resistance (Ibekwe et al.,
2021). In poultry and poultry products, multi-drug resistant E. coli
strains, including the extended-spectrum β-lactams (ESBL), present
a pressing One Health challenge, giving the potential of human
exposure through food handling and consumption (Ramos et al.,
2020). As poultry products, mainly chicken meat, remain one of
the most popular internationally traded proteins of animal sources,
the global dissemination of such resistant bacteria is highly feasible
(Warren et al., 2008).

A key element of surveillance in antimicrobial resistance
research involves a comprehensive genetic analysis of the bacteria
of interest (Sanderson et al., 2023). A significant number of
genes facilitating virulence and antibiotic resistance in E. coli are
typically located on plasmids (Pitout and Laupland, 2008). Three
plasmid types are classified based on their potential to transfer
and conjugate: non-mobilizable, mobilizable, and conjugative.
Conjugative ones are capable of self-transfer, whereas mobilizable
plasmids, which lack some conjugation elements, require the
presence of a helper conjugative plasmid for transmission.
In contrast, non-mobilizable plasmids cannot transfer between
bacteria (Neffe et al., 2022). Various bioinformatics platforms can
predict the presence and mobility of plasmids from microbial
genome data (Robertson and Nash, 2018). Accurately identifying
and characterizing E. coli plasmids is essential for understanding
their epidemiological impact and public health significance
(Sanderson et al., 2023).

The United Arab Emirates (UAE) strategic position as a
global trade and tourism hub underscores the risk of receiving
and disseminating multi-drug-resistant organisms through
internationally traded foods (Habib et al., 2021). Consequently,
lapses in screening imported poultry for antimicrobial-resistant
pathogens may promote the spread of these strains within
and beyond the local market. In the UAE, previous studies
have explored antimicrobial resistance among E. coli from
locally produced fresh/chilled broiler meat, highlighting the
high prevalence (79.68%) of ESBL strains (Habib et al., 2023b).

Nevertheless, no studies specifically focused on AMR profiling of
E. coli in imported frozen broiler chicken within the UAE, where
about 85% of the volumes of broiler chicken are imported to meet
consumer demand (USDA, 2021).

This study addresses existing knowledge gaps by establishing
the first baseline on antimicrobial resistance in a subset of generic
E. coli isolated from broiler meat imported from different countries
and presented in the UAE market. Advanced genome sequencing
techniques were employed for a subset of 33 isolates to assess
genotypic diversity, identify antimicrobial resistance genes, and
analyze plasmid mobility and variability, particularly among ESBL-
resistant strains. These findings will serve as valuable data for both
local and international stakeholders, supporting the integration
of genomic tools as novel methodologies in future food safety
risk assessments.

2 Materials and methods

2.1 Samples and isolation of Escherichia
coli

The sample size was statistically calculated using a binomial
proportion-based formula for prevalence studies, assuming an
expected E. coli detection rate of 75%, a 90% confidence level, and a
5% margin of error, resulting in a minimum required sample size
of 201 (Dohoo et al., 2010). To ensure comprehensive coverage
and account for diversity in sample sources, 253 samples of whole
chicken carcass were collected frozen from the major markets in
Al-Ain and Abu Dhabi, UAE, between January and August 2023.
The samples originated from four primary exporting countries and
were distributed as 144 samples from Brazil (7 brands), 38 samples
from France (1 brand), 28 samples from Oman (2 brands), and
28 samples from Ukraine (1 brand). Each sample was labeled,
individually packed in polyethylene bags, and transferred in a
cooling box to the testing Laboratory at UAE University. Samples
were defrosted at 4◦C and tested within the following day of
collection.

Following defrosting, each chicken carcass was individually
transferred to a sterile stomacher bag, weighed, and rinsed with
1% buffered peptone water (BPW; 400 ml) of (Stearns et al.,
2024). The carcass was then manually shaken within the sealed
bag by grasping both ends of the bag and vigorously agitating it
in alternating back-and-forth and up-and-down motions for one
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minute to ensure thorough dislodgement and collection of surface-
associated microorganisms (Stearns et al., 2024). To detect the
presence of E. coli, 30 mL of the rinsate was added to 270 mL
of BPW (1:10 ratio), vortexed, and incubated at 37◦C ± 1◦C for
24 h (Brichta-Harhay et al., 2007). A 10-µL of the enriched broth
was then spread onto Tryptone Bile X-Glucuronide agar (TBX),
followed by incubation at 44◦C ± 1◦C for 24 h. Presumptive
E. coli colonies were subsequently subcultured on nutrient agar,
and after overnight incubation, isolates were characterized using
MALDI-TOF MS with the platform Autobio-MS-1000 (Autobio
Diagnostics, China) (Habib et al., 2023a).

2.2 Testing for antimicrobial
susceptibility

A random subset of 90 E. coli isolates (approximately 36.3%
of the total recovered isolates) was selected for phenotypic
antimicrobial susceptibility testing to ensure representative
coverage across different sample sources, sampling months, and
locations. The susceptibility of the isolates (n = 90) was assessed
using the method of disc diffusion on Mueller-Hinton agar,
following the Clinical and Laboratory Standards Institute (CLSI)
guide (CLSI, 2020). A panel of 12 antimicrobials: ampicillin (10
µg), azithromycin (15 µg), ciprofloxacin (5 µg), chloramphenicol
(30 µg), gentamicin (10 µg), tetracycline (30 µg), trimethoprim-
sulfamethoxazole (25 µg), cefotaxime (30 µg), cefoxitin (30 µg),
cefepime (30 µg), ceftriaxone (30 µg), and imipenem (10 µg), was
used (Habib et al., 2023b). Isolates were denoted as multidrug-
resistant (MDR) if they resisted at least one antimicrobial in ≥ 3
classes based on CLSI-defined breakpoints (Magiorakos et al.,
2012).

2.3 Isolates for whole-genome
sequencing

A subset of 33 isolates was subjected to WGS, in order
to provide initial inferences about prevalent resistance genes,
sequence types, and phylogenetic patterns. The isolates were
carefully chosen to ensure representativeness across different
sources, sampling months, and AMR profiles, thereby providing
an “initial” picture of the diversity within the population under
study. This approach aligns with the recommendations of the
European Food Safety Authority (EFSA), which state that for
epidemiological surveillance using WGS, it is not necessary to
sequence all isolates but rather to ensure that the selected
subset is representative in terms of source, geography, time, and
phenotypic traits (EFSA Panel on Biological Hazards (Biohaz),
2021). The inclusion strategy adopted in this study provides
insightful coverage to investigate the genomic characteristics and
AMR determinants of E. coli isolates present in the tested food
samples. DNA extraction utilized the Wizard R© DNA Kit (Promega,
United States), followed by a quality check (Ghazawi et al.,
2024). Short-read sequencing was done using NovaSeq platform by
Novogene (UK).

Raw sequencing reads were quality-checked using FastQC
v0.11.9 (Andrews, 2010), trimmed with fastp v0.23.2 (Chen et al.,
2018), and de novo assembled with Shovill v1.1.0 (Seemann,
2023). Analysis of the genomes was performed using a cloud-
based platform (Solu Healthcare, Inc., Finland; Saratto et al.,
2025).1 Various tools were integrated into the platform, including
BactInspector for species identification and multi-locus sequence
typing (MLST). In silico serotyping of E. coli isolates was performed
using SerotypeFinder v2.0 (Joensen et al., 2015), available through
the Center for Genomic Epidemiology (CGE) platform. Genes
conferring AMR were annotated using AMRFinderPlus, with a
gene identification threshold of 90% (Feldgarden et al., 2021;
Saratto et al., 2025). The default value AMRFinderPlus uses for
the minimum coverage is 50% (Feldgarden et al., 2021), but in
our sequenced isolates the actual coverage in most cases was
greater than 90% [available in Supplementary File (Spreadsheet) S1
(Supplementary Table 1.1)]. A phylogenetic tree was constructed
through the Solu platform based on distances of whole-genome
single-nucleotide polymorphism (SNP), defining isolates as closely
related if they shared ≤ 20 SNPs (Hasan et al., 2021). All raw
data of the genome sequencing are publicly available in the
National Center for Biotechnology Information BioProject number
PRJNA1219370.2 Assembly quality metrics of the 33 whole-
genome sequenced E. coli from frozen imported retail chicken
in the UAE are provided in Supplementary File (Spreadsheet)
S2.

2.4 Predicted plasmid mobility analysis

Plasmid mobility was predicted using the MOB suite platform
(v3.1.9) (Robertson and Nash, 2018). The identified plasmid
scaffolds are compared against a mobility clusters database (MOB-
clusters) to identify their closest match. Putative plasmids were
categorized into MOB-clusters and assigned mobility classifications
(“Conjugative,” “Mobilizable,” or “Non-mobilizable”) and relaxase
gene clusters. The relaxase gene clusters determine the specificity
and efficiency of plasmid transfer by recognizing and cleaving the
origin of transfer (oriT) sites, thereby facilitating the horizontal
transfer of antimicrobial resistance genes (ARGs) (Robertson and
Nash, 2018). The MOB-suite tool was evaluated in a benchmarking
study, comparing various plasmid assembly tools (from Illumine
sequencing data) and stood as the most efficient tool for predicting
plasmids harboring ARGs in E. coli (Paganini et al., 2021).
Additionally, compared to other platforms, MOB-suite has been
shown to be the best in predicting plasmids contributing to the
spread of ESBL genes (Paganini et al., 2021). The MOB suite results
were consolidated using the platform Solu (Saratto et al., 2025),
implementing default cut-offs of a minimum length of contigs of
1,000; minimum sequence identity for relaxases and replicons was
80%; and minimum coverage for replicons and relaxases was 80%.
Any plasmid markers detected in chromosomal contigs (possibly
indicating assembly errors) were excluded from reported results.

1 https://platform.solu.bio/

2 https://www.ncbi.nlm.nih.gov/bioproject/1219370
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FIGURE 1

Phenotypic antimicrobial resistance (%) patterns of Escherichia coli isolates (n = 90) obtained from imported frozen broiler sampled from the United
Arab Emirates market. The intermediate category (I, blue) represents the zone of inhibition between susceptible (S, green) and resistant (R, red).

3 Results

3.1 Antimicrobial resistance phenotypes
in Escherichia coli

Using enrichment culture procedures, E. coli were recovered
from 248 out of 254 tested samples of frozen broiler carcasses.
Figure 1 presents the phenotypic resistance profiles of 90 randomly
selected E. coli from the carcasses originating from different
batches from four different countries, of which 79 (87.8%) showed
resistance to at least one agent and 62 (68.9%) were denoted as
multidrug-resistant (MDR) (Figure 1). Overall isolates, the highest
frequency of phenotypic resistance among the characterized E. coli
isolates were against ampicillin (52.2%) and tetracycline (35.6%)
(Figure 1). At the same time, none showed resistance to imipenem
(Figure 1).

Country-specific analysis indicated substantial variation in
resistance profiles (Figure 1). Among the 40 isolates from Brazil, 32
(80%) exhibited an MDR profile. A significantly higher frequency
of resistance to cephalosporine (30% to ceftriaxone, 27.5% to
cefotaxime, and 20% to cefepime) was evident among isolates from
Brazilian chicken compared to other countries. Of the 18 isolates
from Oman, 14 (77.7%) were classified as MDR. In addition, the
isolates from Omani chicken carcasses had the highest rate of
resistance to chloramphenicol (33.3%). The isolates from France

and Ukraine exhibited comparatively lower resistance; 7 (46.7%)
and 4 (23.5%) were categorized as MDR, respectively. On the
other hand, fluoroquinolone resistance was highest in isolates from
Ukraine, where ciprofloxacin resistance was observed in 47.1% of
the characterized isolates.

3.2 Genotypic characterization and
phylogenetic analysis

Figure 2 presents a phylogenetic relatedness of 33 whole-
genome sequenced E. coli. Phylogenetic tree statistics and
alignment details are provided in Supplementary Figure 1.
Isolates from Brazil and Oman showed close genetic relationships
(Figure 2). However, no apparent phylogenetic clustering was
observed based on country of origin, suggesting that resistant
strains may be circulating through multiple poultry supply chains
rather than confined to specific regions. The phylogenetic analysis
revealed the identification of a diverse total of 22 distinct STs.
The most frequently detected was ST1564, which was found in
4 isolates (12.1%) from two countries [Brazil (n = 3) and Oman
(n = 1)]. One isolate (ECF55) was identified as E. coli ST10, which
belongs to an international lineage of pathogenic (extraintestinal)
E. coli of increasing clinical significance in humans. Pairwise single
nucleotide polymorphism (SNP) distances among E. coli isolates
are provided in Supplementary Table 1.2.
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FIGURE 2

Midpoint rooted maximum likelihood phylogenetic tree of 33 whole-genome sequenced Escherichia coli isolates recovered from imported frozen
broiler sampled from the United Arab Emirates market. The tree was rooted with E. coli strain K-12 substr. MG1655, assembly GCF_000005845.2 as
a reference (Alignment length: 4,641,652 bp; phylogenetic tree statistics are provided in Supplementary Figure 1, and the SNP distances are available
from Supplementary Spreadsheet Table 1.2).

3.3 Identification of ARGs

Table 1 summarizes the resistance phenotypes and associated
ARGs detected in the 33 whole-genome sequenced isolates.
Notably, 19 isolates (57.6%) harbored more than five resistance
genes, with eight isolates (24.2%) containing 10 or more. β-lactams-
encoding genes were highly prevalent, with blaTEM−1B gene, which
confers resistance to penicillins, present in 12 isolates (36.3%) from
all sources. The blaCTX−M−8 and blaCTX−M−55 were presented in
4 isolates (12.1%) (Table 1).

Resistance to aminoglycosides was commonly associated with
the gene aadA1 found in 14 (42.4%) isolates. Fluoroquinolone
resistance gene qnrS1 was present in 5 (15.2%) isolates, while

tetracycline resistance gene tetA was identified in 17 (51.5%). Genes
conferring resistance to sulfonamide sul1, sul2, and sul3 were
present in 8 (24.2%), 16 (48.5%), and 9 (27.3%) isolates, respectively
(Table 1).

3.4 Plasmid diversity and predicted
mobility

Isolate-specific plasmid details are provided in Supplementary
File S3. Figure 3 presents the mobility distribution of
plasmids in the 33 sequenced isolates, revealing that
conjugative plasmids were the most prevalent, constituting
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TABLE 1 Characterization of antimicrobial resistance profile of 33 whole-genome sequenced Escherichia coli isolates recovered from imported frozen
broiler sampled from the United Arab Emirates market.

Country Isolates Antimicrobial resistance
phenotype

Antimicrobial resistance genes

Brazil ECF21 CIP;CTX;SXT;AMP;CRO;FEP aac(3)-VIa, blaCTX−M−2 ,mdf(A),sul1, sul2

ECF22 CN;TE;CTX;SXT;AMP;CRO aac(3)-IV, aadA1, aph(3′′)-Ib, aph(3′)-Ia, aph(4)-Ia, aph(6)-Id, blaCT−M−55 ,
mdf(A), tet(A), tet(B), sul1, sul2, dfrA1, fosA3

ECF23 SXT;AMP;CRO;FOX aadA2, mdf(A), sul1

ECF24 FOX mdf(A)

ECF25 TE;CTX;AMP;CRO;FEP aph(3′′)-Ib, aph(6)-Id, blaCTX−M−55 , mdf(A), tet(B), fosA3

ECF27 CTX;AMP;CRO blaCT−M−8 , blaCTX−M−55 , mdf(A), fosA3

ECF29 C;TE;AMP aadA1, aadA2, blaTEM−1B , mdf(A), tet(A), sul3, fosA4, cmlA1

ECF31 CN;TE;CTX;SXT;AMP;CRO;FEP aac(3)-Via, aadA1, aadA2, blaCTX−M−2 , mdf(A), tet(A), sul1, sul2, sul3,
qnrB19, dfrA12, cmlA1

ECF32 CN;CTX;SXT;AMP;AZM;CRO;FEP aac(3)-Via, aadA1, blaCTX−M−2 , mdf(A), sul1, sul2

ECF35 CIP;TE;CTX;AMP;CRO;FEP blaCTX−M−55 , mdf(A), tet(A), sul2

ECF44 CN;TE;AMP aac(3)-Via, aadA1, aadA2,blaTEM−1B , mdf(A), tet(A), sul1, sul2, sul3, fosA4,
cmlA1

ECF45 CIP;CTX;SXT;AMP;CRO aadA1, aph(3′)-Iia, blaCTX−M−8 , mdf(A), sul2

ECF46 TE;CTX;AMP;CRO;FEP blaCTX−M−8 , mdf(A), tet(A), sul2

ECF50 TE;SXT;AMP aadA1, blaTEM−1C , mdf(A), tet(A), sul1, qnrB19, dfrA1

ECF51 C;TE;SXT;AMP aadA2, blaTEM−1B , mdf(A), tet(A), qnrS1, dfrA8, floR, lnu(F)

ECF52 TE;CTX;AMP;CRO;FEP blaCTX−M−55 , mdf(A), tet(A), sul2

France ECF41 mdf(A)

ECF42 SXT;AMP blaTEM−1B , mdf(A), sul2, dfrA1

ECF47 C;TE;AMP aadA1, aadA2, blaTEM−1B , mdf(A), tet(A), sul3, fosA4, cmlA1

ECF48 CIP;CTX;AMP;CRO;FEP aadA1, aph(3′)-Iia, blaCTX−M−8 , mdf(A), sul2

Oman ECF36 TE aph(3′)-Ia, mdf(A), tet(A), qnrS1

ECF37 CIP;TE;AMP blaTEM−1B , mdf(A), tet(A)

ECF38 CIP;C;TE;CTX;SXT;AMP;CRO;FOX aadA1, aph(3′)-Ia, blaCMY−2 , blaTEM−1B , mdf(A), mph(A), tet(A), tet(M),
sul2, sul3, qnrS1, dfrA12, fosA4, cmlA1, lnu(F)

ECF39 C;TE;AMP aadA1, aadA2, blaTEM−1B , mdf(A), tet(A), sul3, fosA4, cmlA1

ECF40 CIP;TE;CTX;SXT;AMP;CRO;FEP aadA1, aadA2, aph(3′)-Ia, blaTEM−1B , mdf(A), tet(A), sul3, qnrS1, fosA4,
cmlA1

ECF43 mdf(A)

ECF49 C;TE;AMP aadA1, aadA2, blaTEM−1B , mdf(A), tet(A), sul2, sul3, qnrS1, fosA4, cmlA1

ECF53 CIP;C;TE;SXT;AMP aadA1, aadA2, blaTEM−1B , mdf(A), tet(A), sul1, sul3, dfrA1, fosA4, cmlA1

Ukraine ECF26 CIP mdf(A), sul2

ECF30 CIP;AMP blaTEM−1B , mdf(A), fosA7

ECF34 CIP mdf(A), sul2

ECF54 CIP;TE;AMP blaTEM−106 , mdf(A), tet(B), sul2

ECF55 CIP;CN;TE;SXT;AMP mdf(A)

AMP, Ampicillin; AZM, Azithromycin; C, Chloramphenicol; FOX, Cefoxitin; CTX, Cefotaxime; CRO, Ceftriaxone; FEP, Cefepime; CIP, Ciprofloxacin; CN, Gentamicin; TET, Tetracycline;
SXT, Trimethoprim-sulfamethoxazole.

38.6% of the 197 predicted plasmids using MOB-suite
analysis. Conjugative plasmids were detected in 21 isolates
(63.6%), and the conjugative MOB-cluster AA474 stood
as the most widely distributed among all clusters and
harbored a sum of 47 putative antimicrobial resistance genes
(Figure 3B).

Further classification of plasmids by replicon type and
mobilization potential, as shown in Figure 4, confirmed the
conjugative nature of plasmids harboring ESBL genes. The IncI-
gamma/K1 family was the most frequently detected in 18 isolates
(54.5%) (Figure 4A). MOB classification of plasmids mobility is
based on the concordance between their contents of the relaxase
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FIGURE 3

Predicted mobility of plasmids carried among 33 whole-genome sequenced Escherichia coli isolates recovered from imported frozen broiler
sampled from the United Arab Emirates market. (A) Mobility is indicated by color: yellow, non-mobilizable; light blue, mobilizable; and green,
conjugative. (B) Distribution of the number of AMR genes on complete plasmids MOB-suite clusters.

proteins. MOBP followed by MOBF were the most frequent
relaxase types, with 37 and 24 plasmids containing these types,
respectively (Figure 4B).

Figure 5 presents the co-occurrence patterns among β-lactams-
encoding genes, plasmid mobility types, and MOB clusters. The
analysis identified that blaCTX−M−55 and blaCTX−M−8 primarily
co-occurred with conjugative plasmids, increasing their potential
for horizontal transfer. The blaTEM−1B gene was detected on
mobilizable plasmids in 4 isolates (12.1%), further contributing to
the spread of resistance (Figure 5). The clustering pattern highlights
specific MOB groups (e.g., AA474 and AA372) that carry multiple

ESBL resistance genes, particularly within conjugative plasmids
[MOB-cluster AA474 (IncI-gamma/K1, MOBP)].

4 Discussion

Scientific research indicates that imported foods can be
potential carriers for the spread of AMR bacteria and associated
genes (Warren et al., 2008; Harb et al., 2018). This study
underscores the significant presence of antimicrobial-resistant
E. coli in imported frozen broiler chicken retailed in the UAE,
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FIGURE 4

Classification of conjugative and mobilizable plasmids among 33 whole-genome sequenced Escherichia coli isolates recovered from imported
frozen broiler sampled from the United Arab Emirates market. (A) The number of plasmids by replicon type is colored by their predicted mobility.
(B) Number of plasmids by their encoded relaxases’ mobilization (MOB) type.

aligning with global concerns regarding foodborne AMR (Jung
et al., 2022).

The phenotypic resistance patterns observed in this work
reveal significant non-susceptibility to β-lactams, tetracyclines, and
sulfonamides among E. coli isolates from imported poultry. This
is an expected reflection of the traditional use of some of these
antimicrobial classes in primary poultry production (Willis et al.,
2023). However, tangible resistance rates to extended-spectrum
cephalosporins were observed among E. coli characterized in the

present work, especially among isolates from Brazilian chicken.
This result is in concordance with previous reports on the elevated
cephalosporin resistance in poultry-associated E. coli strains,
attributed to the burdened use of 3rd generation cephalosporins
at the farm level (Lentz et al., 2020; Hossain et al., 2022; Jung
et al., 2022). Casella et al. (2018) in Brazil pointed to a high rate
of extended-spectrum cephalosporins detection in E. coli from
the meat and gut of chickens, with resistance genes found to be
harbored on excessively diverse genetic elements (Casella et al.,
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FIGURE 5

Combined heatmap showing the co-occurrence of β-lactam resistance genes, mobility genes, and MOB clusters identified in 33 whole-genome
sequenced Escherichia coli isolates from imported frozen broilers sampled from retail markets in the United Arab Emirates.

2018). The risk assessment of antimicrobial resistance elements
identified in imported foods warrants additional research.

Identifying blaCTX−M−55 and blaCTX−M−8 as the predominant
genes conferring ESBL resistance in this study is noteworthy. The
blaCTX−M−8 gene belongs to the CTX-M-1 family of β-lactamases
and has been reported widely in South America, especially Brazil,
in both clinical and food animal isolates (da Silva et al., 2022).
The blaCTX−M−55 gene, a derivative of blaCTX−M−15, is among
the most abundant ESBL genes internationally, particularly in Asia
and the Middle East (Hadi et al., 2023). Studies indicate that
blaCTX−M−55 has a higher catalytic efficiency than blaCTX−M−15,
which confers stronger resistance to cefotaxime and ceftazidime
(Yang et al., 2023), explaining the elevated rate of resistance to
such antimicrobials among the isolates carrying such genes in the
current study. As observed in this work, the concurrent detection of
ESBL genes and fluoroquinolone resistance genes in E. coli isolates
is particularly concerning because fluoroquinolones are widely used
for treating serious Gram-negative infections (Wiener et al., 2016).
Since 85% of the UAE’s chicken meat is imported, detecting MDR

E. coli with multiple resistance genes highlights the diverse sources
of antimicrobial resistance entering the UAE food supply.

The phylogenetic analysis in this study highlighted substantial
genetic diversity within the sequenced E. coli isolates, with 22
distinct STs identified. The presence of ST1564 in isolates from
Brazil and Oman suggests a possible common source or widespread
dissemination of this lineage through international trade. The
detection of E. coli ST58 in the present isolates is concerning,
given that it is becoming an internationally reported uropathogen
that could progress to sepsis (McKinnon et al., 2018). Along
with colonizing humans, ST58 has been identified in poultry
farm-associated environments (Benlabidi et al., 2023). Moreover,
detecting ST10, even in one isolate (from Ukraine), is particularly
significant as it is a recognized high-risk lineage associated with
pathogenic (extraintestinal) E. coli infections in humans (Manges,
2016). Although ST10 and ST58 were found in a limited number
of E. coli strains in this work, their detection in imported poultry
reinforces the need for continued genomic surveillance to track
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the emergence and spread of these lineages of public health
significance.

Our results show the vast plasmid diversity concerning their
predicted clusters, replicon types, and genetic content. The high
rate of predicted conjugative plasmids is concerning. Identifying
conjugative plasmids carrying ESBL genes emphasizes the role
of horizontal gene transmission in spreading AMR determinants
(Neffe et al., 2022). The MOB-suite analysis revealed that
conjugative plasmids were the most prevalent, with MOB cluster
AA474 and the IncI-gamma/K1 plasmid family being the dominant
replicon type. The conjugative nature of the MOB cluster AA474
(IncI-gamma/K1, MOBP) has been confirmed experimentally
within multiple bacterial taxa (Castellanos et al., 2019). The high
frequency of MOBP relaxases in the present study isolates suggests
a potential risk of resistance gene transfer beyond E. coli to other
bacterial species (Loyola Irizarry and Brito, 2023). IncI-gamma/K1
plasmids have been isolated from various epidemiologically non-
related E. coli clones over different periods and considered as
“epidemic” plasmid (Castellanos et al., 2019). Puangseree et al.
(2022) found that the production of the ESBL phenotype is strongly
linked (statistically associated) with IncI-gamma plasmid in E. coli
from humans, pork, and pigs (Puangseree et al., 2022). This
suggests ESBL genes may be localized on these plasmid replicon
types, aligning with previous research in E. coli.

This study is one of the first in the Middle East to provide
genomic insights into plasmid diversity, mobility, and relaxase
distribution in foodborne E. coli strains. However, a notable
limitation of this work is its reliance on Illumina short-read
sequencing, which, while highly accurate for SNP analysis and
resistance gene identification, does not allow for full plasmid
reconstruction or complete resolution of complex mobile genetic
elements (MGEs) (Paganini et al., 2021). Despite this limitation,
this study provides valuable baseline data on AMR-associated
plasmid families and relaxase types, enabling the identification
of selected isolates of interest for further investigation. Future
studies should utilize a hybrid sequencing approach by integrating
long-read sequencing technologies to achieve complete plasmid
assemblies, detect structural rearrangements, and elucidate the
genetic architecture of multi-drug resistance plasmids (Sanderson
et al., 2023). Such a hybrid approach (both short and long-read
sequencing would enhance our ability to track the mobilization and
persistence of ARGs in the food chain, ultimately strengthening
surveillance and risk assessment strategies for antimicrobial
resistance in imported poultry products.

Another limitation of this study is the relatively small
proportion of E. coli isolates subjected to WGS. Only 33 isolates
were sequenced, representing approximately 11.6% of all positive
samples. However, this proportion is comparable to, or even
exceeds, that used in other genomic surveillance studies ((Joensen
et al., 2014; Habib et al., 2023b). In microbial genomics, sequencing
subsets of 10–15% of isolates is generally considered sufficient for
“initial” assessments of population structure, detection of dominant
lineages, and antimicrobial resistance profiling (Joensen et al.,
2014; EFSA Panel on Biological Hazards (Biohaz), 2021). From a
statistical standpoint, the representativeness and diversity of the
selected isolates are more critical than the absolute number. The
33 sequenced isolates were carefully selected to cover the variability
observed across sources, locations, and phenotypic traits, ensuring
meaningful insights into resistance gene distribution, sequence

types, and phylogenetic relationships. Therefore, despite the limited
WGS sample size, the study provides robust and informative
genomic data on E. coli circulating in retail foods in the UAE.

5 Conclusion

Given the present study findings, there is a need for stringent
regulations on the utilization of clinically important antimicrobials
in poultry, particularly in some of the key exporting countries
of poultry products. Implementing antimicrobial stewardship
programs that promote responsible antibiotic use in primary
animal production is essential to curb the spread of AMR.
Strengthening surveillance programs that monitor antimicrobial
resistance in imported food products can help detect resistant
strains before they become widespread in the local market. By
integrating genomic tools into routine surveillance programs,
researchers and policymakers can better understand antimicrobial
resistance dynamics and develop evidence-based strategies to
manage the risks associated with resistant E. coli in food products.
Additionally, increasing public awareness about the risks associated
with antimicrobial resistance in foodborne bacteria is crucial
for encouraging safer food handling practices and reducing the
risk of transmission. This study specifically focused on the
characterization of AMR determinants and plasmidome diversity
among E. coli isolates, providing novel insights into imported
poultry-associated strains in the UAE, while detailed virulence
profiling remains an important subject for future research.
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