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coli and antimicrobial resistance
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Wastewater reuse for agricultural irrigation is increasingly essential, but it carries
potential public health risks due to the dissemination of antimicrobial resistance
(AMR). This study evaluates the e�ectiveness of four tertiary wastewater
treatment technologies—peracetic acid (PAA), PAA combined with low-intensity
ultraviolet-C (PAA/UV Low), high-intensity UV-C (UV High), and ultrafiltration
(UF)—in reducing extended-spectrum β-lactamase-producing Escherichia coli

(ESBL-E. coli) and antimicrobial resistance genes (ARGs) in reclaimed water
used for irrigation. The relative abundance of the genes, normalized to the
16S RNA gene present in the water samples, was then estimated to assess
whether there is an amplification of these genes during the reuse process
in the wastewater treatment plant (WWTP). The results indicate that while all
treatments significantly reduced ESBL-E. coli (≥3 logs cfu/100mL) and ARGs
(≥ 1.5 logs gc/100mL), complete elimination was not achieved in any WWTP.
Among the treatments, UF demonstrated the highest removal e�ciency (≈4 log
gc ARG/100mL), against ARGs, followed by UV High (≈3 log gc ARG/100mL),
whereas PAA and PAA/UV Low were less e�ective (≈2 log gc ARG/100mL).
The study also found that while absolute ARG levels were reduced, their
relative abundance remained stable or showed minimal decline, suggesting
a persistent environmental reservoir of resistance genes. Among the ARGs
analyzed, the most frequently detected were associated with tetracyclines
(tetW, tetA), quinolones (qnrB, qnrS), and sulfonamides (sul1, sul2), highlighting
potential public health concerns. Moreover, multidrug-resistant (MDR) ESBL-E.
coli isolates were present across all WWTPs, exhibiting resistance to β-lactams,
quinolones, tetracyclines, and sulfonamides. Nevertheless, notably low levels of
resistance to last-resort antibiotics (tigecycline, colistin, and meropenem) were
observed. These findings underscore the critical role of tertiary treatments in
mitigating antimicrobial resistance (AMR) risks in water reuse systems. However,
the persistence of ARGs in e	uents suggests that current WWTP processes
require further optimization.
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Highlights

• Multidrug-resistant ESBL-E. coli persisted inWWTP effluents.
• ARGs were reduced but not completely eliminated in
treated wastewater.

• Ultrafiltration (UF) was the most effective in reducing ESBL-E.
coli and ARGs.

• High-dose UVwas more effective than PAA and PAA/UV Low
for ARG removal.

• Detection of ARBs and ARGs emphasizes the need for
improved water reuse strategies.

1 Introduction

Antimicrobial resistance (AMR) is a significant global public
health concern, as bacteria carrying antimicrobial resistance genes
(ARGs) and deployment of antibiotic residues are the main
contributing agent causing thousands of deaths each month
(GBD 2021 Antimicrobial Resistance Collaborators, 2024). The
WHO considers this threat a priority and has endorsed a
global action plan on AMR, which includes the development
of a global public health research agenda to address major
knowledge gaps [(World Health Organization (WHO), 2018)].
One contributing factor to this crisis is the excessive and
inappropriate use of antibiotics in medical, livestock, and
agricultural contexts (McConnell et al., 2018). This has led
to the continuous deployment of antibiotic residues into the
environment, facilitating the emergence of antimicrobial resistant
bacteria (ARB) and ARGs. Europe, and particularly, the European
Commission places significant importance on addressing AMR
due to its critical impact on public health, healthcare systems,
and economies.

The support that the European Commission gives to the
One Health approach recognizes that human health, animal
health, and the environment are all interconnected. AMR is a
prime example of this interdependence, as resistant microbes and
resistance genes can be transmitted between humans, animals,
crops, and the environment. This recognition is embedded in
several key policy and legislative instruments, including Regulation
(EU) 2019/6 on veterinary medicinal products, which introduces
stricter measures to reduce the use of antimicrobials in animals,
and Regulation (EU) 2019/4 on medicated feed. Moreover, the
European Commission’s 2019 Communication on the Strategic
Approach to Pharmaceuticals in the Environment highlights the
environmental dimension of AMR, promoting actions to address
the release of pharmaceuticals, including antibiotics, throughout
their life cycle. These efforts are further supported by the European
One Health Action Plan against AMR (2017) and integrated
into the broader Farm to Fork Strategy and the Zero Pollution
Action Plan, which aim to reduce pollution from antimicrobial
substances in water, soil, and food systems (European Commission,
2017). Wastewater treatment plants (WWTPs) receive wastewater
from various sources, including municipalities, hospitals, and
industries, and have been underscored as potential hotspots
for the transmission of ARGs and, consequently, ARB (Hazra

et al., 2024; Li et al., 2022). The main hypothesis is that
wastewater contains antibiotics, high bacterial loads, and nutrient-
rich substances, creating ideal conditions for the selection and
spread of ARGs and ARBs, which confer resistance and survival
advantages to microbial communities (Buriánková et al., 2021;
Haberecht et al., 2019; Oliveira et al., 2018). While WWTPs
design allows a successful removal of dissolved nutrients and
solids, including bacteria, there is currently no specific technology
in place for the targeted reduction of ARGs (Gao et al., 2022;
Rizzo et al., 2013). Several studies have focused on evaluating
the presence of ARB and ARGs in the influent and effluent of
various WWTPs (Macrì et al., 2024; Sanz et al., 2024). Overall,
most of these studies have reported a decrease in absolute
concentrations after treatment. Generally, wastewater treatment
reduces the overall abundance of ARBs and ARGs by ∼2–3
logs, thereby lowering the risk of ARG dissemination into the
environment (Ben et al., 2017; Hultman et al., 2018; Rodriguez-
Mozaz et al., 2014). However, some studies have suggested that
WWTPs may contribute to the proliferation of ARGs in the
environment (Kumar et al., 2020; Stachurova et al., 2021; Wang
et al., 2020).

The current European regulatory framework includes
regulations on the use of antimicrobials in human and veterinary
medicine, as well as measures to prevent the spread of resistant
bacteria in healthcare settings and the environment, including
water reuse systems [European Commission, 2020a; World Health
Organization (WHO), 2018]. However, there is growing awareness
of its connection to climate change and how climate change can
influence AMR in agriculture (van Bavel et al., 2024). The EFSA
Scientific Opinion [(EFSA (European Food Safety Authority, Panel
on Biological Hazards), 2021)] further underscores the major
role of the environment in the emergence and spread of AMR
through food chains, identifying key transmission routes such
as fecal-origin fertilizers, irrigation water, and animal feed. The
Opinion also highlights the presence of critical ARB and ARGs
[e.g., blaCTX−M, mcr, van(A), qnr] across plant-based and animal
production systems, emphasizing the importance of mitigation
strategies across sectors.

In Mediterranean countries, which are severely affected by
water scarcity, Europe is promoting the use of reclaimed water
for irrigation as part of a sustainable water management strategy
(Echaide et al., 2021; European Commission, 2020b). Nonetheless,
ensuring the microbiological quality of reclaimed water is crucial
by monitoring not only pathogenic bacteria but also ARB
and ARGs, as they could potentially be transferred to crops
through irrigation (Macrì et al., 2024; Rodriguez-Mozaz et al.,
2014; Sanz et al., 2024). However, the effectiveness of different
water treatment technologies in reducing or eliminating ARBs
and ARGs in WWTPs remains uncertain due to insufficient
data (Ben et al., 2017; Osińska et al., 2020; Wang et al.,
2020).

This study aims to investigate and compare various water
treatments implemented in four distinct WWTPs for the
reclamation of urban wastewater used in agriculture. The methods
include peracetic acid (PAA), PAA combined with low-intensity
ultraviolet-C (UV-C; PAA/UV Low), high-intensity UV-C (UV
High), and ultrafiltration (UF). The research will evaluate the
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TABLE 1 Water treatments used in the WWTPs included in this study.

WWTPs Dates Doses Treatments

1 June 2021–
November 2022

5 mg/L PAA

2 June 2021–
November 2022

0.7–1 mg/L
20–40 mJ/cm2

PAA/UV low intensity
(5–10 mW/cm2 ;
PAA/UV Low)

3 June 2021–
September 2022

100–1,020
mJ/cm2

UV high intensity
(20–72 mW/cm2 ; UV
High)

4 December 2021–
November 2022

Ultrafiltration (UF)

efficacy of these water treatments in reducing ARB carrying
ARGs, with a particular focus on ESBL-producing Escherichia coli

and 10 different ARGs. The assessment will be conducted using
quantitative real-time PCR (qPCR).

2 Material and methods

2.1 Urban wastewater treatment plants

Four WWTPs located in the Region of Murcia, Spain,
were selected for this study, each employing different tertiary
treatment technologies. The primary and secondary treatment
processes were previously described by Oliveira et al. (2023).
Briefly, primary treatment typically includes aeration, solids
and suspended solids separation, grit removal/degreasing, and a
primary clarifier of varying size. Secondary treatment involves an
aerobic or anaerobic biological process in a secondary clarifier, with
coagulation/flocculation and supplementary lamella clarification.
For tertiary treatment, the four WWTPs utilize different water
treatment technologies: peracetic acid (PAA), PAA combined
with low-intensity ultraviolet-C (UV-C; PAA/UV Low), high-
intensity UV-C (UV High), and ultrafiltration (UF). The doses of
PAA and UV are summarized in Table 1. Each WWTP receives
both domestic and agricultural wastewater. Additionally, the
WWTP using PAA also treats a significant amount of pre-treated
hospital wastewater.

2.2 Sampling

From June 2021 to December 2022, monthly influent and
effluent samples were collected from each WWTP. However, UF
samples were only collected from December 2021 to December
2022. A total of 132 samples were included in this study: 18
influent and 18 effluent samples were collected from eachWWTPs,
except for the UF system, from which 12 influent and 12 effluent
samples were taken. One liter of each sample was collected in sterile
polypropylene plastic bottles (Labbox Labware S.L., Barcelona,
Spain), stored under refrigerated conditions, transported to the
laboratory within 2 h, and kept at 4◦C until analysis.

2.3 Presence of ESBL-producing E. coli in
wastewater samples

The levels of extended-spectrum β-lactamase (ESBL)-
producing E. coli (cfu/100mL) in each influent water sample were
determined by plating. Serial 10-fold dilutions were prepared in
buffered peptone water (BPW, 2 g/L; Oxoid) and then spread-
plated onto CHROMagar ESBL (CHROMagar, Paris, France). For
effluent water samples, aliquots of 1, 10, and 100mL were filtered
through sterile cellulose nitrate filters (0.45µm, Sartorius, Madrid,
Spain) using a vacuum filtration system (Sartorius). Dark pink to
reddish colonies were counted after 24 h of incubation at 37◦C. All
analyses were performed in duplicate, and results were expressed
as log cfu/100 mL.

2.4 Antibiotic susceptibility testing

A total of 366 E. coli isolates producing ESBL were selected
for antibiotic susceptibility testing (AST). The isolates were
obtained from both influent and effluent samples across the
four wastewater treatment processes (PAA, PAA/UV Low, UV
High, and UF). The number of isolates tested per sample
was proportionally selected based on the initial recovery rates
of presumptive ESBL-producing E. coli, ensuring representative
coverage of all water matrices. Susceptibility to a panel of
antibiotics was assessed using Sensititre EUVSEC3 plates (Thermo
Scientific, TREK Diagnostic Systems Ltd., East Grinstead, UK)
and the broth microdilution method, following the manufacturer’s
instructions, as previously described by Oliveira et al. (2023).
Briefly, isolates were cultured in BHI broth at 37◦C for 24 h. The
resulting bacterial suspension was adjusted to a 0.5 McFarland
turbidity standard and transferred to Mueller-Hinton broth.
Subsequently, 50 µL of the suspension were dispensed into
each well of the AST plate using the Sensititre AIM Automated
Inoculation Delivery System (Thermo Scientific, TREK Diagnostic
Systems Ltd., East Grinstead, UK). After 24 h of incubation at
37◦C, growth was visually assessed to determine the minimum
inhibitory concentration (MIC) for each antibiotic. Interpretation
of susceptibility or resistance was based on the epidemiological
cut-off values (ECOFF) provided by the European Committee on
Antimicrobial Susceptibility Testing (EUCAST). The antibiotics
tested included sulfamethoxazole, trimethoprim, ciprofloxacin,
tetracycline, meropenem, azithromycin, nalidixic acid, cefotaxime,
chloramphenicol, tigecycline, ceftazidime, colistin, ampicillin,
and gentamicin.

2.5 Wastewater DNA extraction

Ten milliliters of influent samples were concentrated by
centrifugation at 3,000×g for 10min. The supernatant was
removed, and the pellet was resuspended in 1mL of phosphate-
buffered saline (PBS, Sigma-Aldrich, LS, USA). The resuspended
pellet was then centrifuged at 9,000×g for 10min at 4◦C, and
the supernatant was discarded. For effluent samples, 100mL
of water was vacuum-filtered through sterile cellulose nitrate
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filters (0.45µm). The filters were placed in 50mL Falcon tubes
containing 20mL of PBS supplemented with Tween 80 (1 mL/L;
Sigma-Aldrich). The tubes were vortexed for 7min, after which
the filters were removed. The sample was then centrifuged at
3,000×g for 10min, the supernatant was discarded, and the pellet
was resuspended in 1mL of PBS. The resuspended pellet was
further concentrated by centrifugation at 9,000×g for 10min at
4◦C. Both influent and effluent pellets were stored at −20◦C
until genomic DNA extraction. Genomic DNA extraction from
wastewater concentrates was performed using the Maxwell

R©
RSC

Instrument (Promega) and the Maxwell RSC Pure Food GMO
and Authentication Kit (Promega), following the Maxwell RSC
Viral Total Nucleic Acid running program. DNA concentration and
purity were determined using an Implen NanoPhotometer N60/50
(Implen, Munich, Germany). The DNA samples were then stored
at−20◦C.

2.6 Antimicrobial resistance genes qPCR
assays

Quantitative PCR (qPCR) was used to quantify ARGs
encoding resistance to beta-lactams (blaCTX−M and blaTEM),
chloramphenicol (cmlA and catI), quinolones (qnrB and qnrS),
sulfonamides (sul1 and sul2), and tetracyclines (tetA and tetW).
Additionally, the 16S rRNA gene was analyzed to quantify
total bacterial populations and normalize ARG abundance in
the collected samples. All qPCR assays were performed using
a QuantStudio 5 system (Applied Biosystems, USA) in 96-well
plates with KAPA SYBR FAST and KAPA PROBE FAST Universal
qPCR Master Mix kits (KapaBiosystems, Massachusetts, USA).
The selection of primers and probes used to quantify ARGs as
well as cycling parameters, are detailed in Table 2. Each qPCR
analysis was conducted in triplicate wells containing both undiluted
and diluted DNA samples. Wastewater samples were diluted 50-
fold, while reclaimed water samples were diluted by a factor of 5.
Each qPCR assay included three negative control wells (nuclease-
free water). When SYBR Green was used for detection, a melting
curve analysis was performed after each assay to confirm that
the fluorescence signal originated from a specific PCR product.
The standard curve for each ARG was established following the
method described by Truchado et al. (2016). The limit of detection
(LOD) and limit of quantification (LOQ) were determined for each
target gene through a series of dilutions, with 4–10 replicates per
dilution. ARG quantification results were expressed as absolute
and relative abundance. Absolute abundance was reported as the
number of copies per 100mL of sample, while relative abundance
was calculated by normalizing the absolute copy number of each
gene to 16S rRNA gene copy numbers (i.e., ARG copies/16S rRNA
copies). All values were log-transformed.

2.7 Statistical analysis

Treatment efficacy was calculated as follows: Log10 influent
(cfu or gene copies/100mL) – Log10 effluent (cfu or gene
copies/100mL). Graphical representations were created using R

software (R Core Team, 2021) and SigmaPlot 14 (Systat Software,
Inc., Addilink Software Scientific, S.L., Barcelona, Spain).

The Shapiro-Wilk test was performed to assess the normality
of the data (P > 0.05). For normally distributed data, an ANOVA
test was conducted, and when significant differences were detected,
Tukey’s HSD (Honestly Significant Difference) test was applied.
The Student’s t-test was used to compare the relative abundance of
ARGs between influent and effluent samples.

3 Results and discussion

3.1 E�ectiveness of reclamation treatments
in removing ESBL-producing E. coli from
WWTPs

ESBL-producing E. coli was detected in all influent samples
from the four WWTPs (Figure 1). The median counts in influent
samples were 6.1 ± 0.0, 5.7 ± 0.1, 5.2 ± 0.0, and 5.4 ± 0.0
log cfu/100mL for WWTPs PAA, PAA/UV Low, UV High, and
UF, respectively (Figure 1). These concentrations are in line with
those reported in previous studies on untreated urban wastewater
(Haberecht et al., 2019; Schmiege et al., 2021; Xie et al., 2023),
indicating that our findings are consistent with values observed in
similar settings.

On the other hand, differences were observed among
wastewater samples, which may be influenced by various factors
such as antibiotic usage patterns, population density, industrial and
agricultural activities, proximity to hospitals, waste management
practices, and mobility patterns. While we do not have direct
evidence to determine the specific contribution of each factor, these
represent plausible hypotheses that warrant further investigation.
Notably, the highest levels of ESBL-producing E. coli were detected
in the PAAWWTP, which is located near a hospital. This raises the
possibility that hospital effluents may contribute to an increased
presence of ESBL-producing E. coli in municipal WWTPs, as
previously suggested by Lépesová et al. (2020).

After treatment, the ESBL-producing E. coli levels in effluent
samples showed a notable reduction (Figure 1), with significant
differences observed among treatments. In most WWTPs (PAA,
PAA/UV Low, and UF), average counts were below 1.0 log
cfu/100mL, with several samples falling below the detection limit
(0 log cfu/100mL or 1 cfu/100mL), particularly in the case of
UF treatment. UF’s effectiveness can be attributed to its ability to
retain bacteria, given that their size exceeds the pore size of UF
membranes (Michael et al., 2022). However, UV High treatment
showed median counts exceeding 1.4 log cfu/100mL (Figure 1),
which is concerning as it sometimes surpasses the limits set by
Regulation (EU) 2020/741 for water quality intended for edible
agricultural crops (10 cfu/100mL for E. coli). It is important to
note that this regulation focuses on microbial indicators such as E.
coli but does not include controls for ARB or ARGs. The observed
high counts in UV High-treated effluent may be due to incomplete
treatment during the early phase of sampling (June 2021–March
2022), before the full implementation of UV and PAA treatments.
Raven et al. (2019) also reported ESBL-producing E. coli levels
ranging from 2 to 21 cfu/mL in reclaimed water after UV treatment.
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TABLE 2 Selected primers and probes used to quantify ARGs and the cycling parameters us in the PCR.

Antibiotic
group

Gene Primer and probes (5′ → 3′) Cycling parameters References

β-lactams blaCTX−M−G1 FW ACCAACGATATCGCGGTGAT 95◦C for 10min;
45 cycles of (95◦C for 30 s, 60◦C for 1min)

Colomer-
Lluch et al.,
2011

RV ACATCGCGACGGCTTTCT

Probe FAM-TCGTGCGCCGCTG-MGBNFQ

blaTEM FW CATTTCCGTGTCGCCCTTATTC 50◦C for 2min;
95◦C for 3min;
40 cycles of (95◦C for 5 s, 60◦C for 30 s, 72◦C for 1min)

Dallenne et al.,
2010

RV CGTTCATCCATAGTTGCCTGAC

sulfamethoxazole sul1 FW CCGTTGGCCTTCCTGTAAAG 95◦C for 10min;
45 cycles of (95◦C for 30 s, 58◦Cr 1min)

Ginn et al.,
2021

RV TTGCCGATCGCGTGAAT

Probe FAM-CAGCGAGCCTTGCGGCGG-BHQ1

sul2 FW GCGCTCAAGGCAGATGGCATT 50◦C for 2min;
95◦C for 3min;
40 cycles of (95◦C for 5 s, 69◦C for 30 s, 72◦C for 1min)

Aarestrup
et al., 2003

RV GCGTTTGATACCGGCACCCGT

chloramphenicol catI FW GGTGATATGGGATAGTGTT 50◦C for 2min;
95◦C for 3min;
40 cycles of (95◦C for 5 s, 55◦C for 30 s, 72◦C for 1min)

Ng et al., 2014

RV CCATCACATACTGCATGATG

cmlA FW GCCAGCAGTGCCGTTTAT 50◦C for 2min;
95◦C for 3min;
40 cycles of (95◦C for 5 s, 60◦C for 30 s, 72◦C for 1min)

Liu et al., 2020

RV GGCCACCTCCCAGTAGAA

quinolones qnrB FW GATCGTGAAAGCCAGAAAGG 50◦C for 2min;
95◦C for 3min;
40 cycles of (95◦C for 5 s, 50◦C for 30 s, 72◦C for 1min)

Cummings
et al., 2011

RV ATGAGCAACGATGCCTGGTA

qnrS FW GTATAGAGTTCCGTGCGTGTGA 50◦C for 2min;
95◦C for 3min;
40 cycles of (95◦C for 5 s, 55◦C for 30 s, 72◦C for 1min)

Tan et al., 2018

RV GGTTCGTTCCTATCCAGCGATT

tetracyclines tetA FW CCGCGCTTTGGGTCATT 95◦C for 10min;
45 cycles of (95◦C for 30 s, 56◦C for 1min)

Ginn et al.,
2021

RV TGGTCGCGTCCCAGTGA

Probe FAM-TCGGCGAGGATCG-BHQ

tetW FW AAAACTTATTATATTATAGTG 50◦C for 2min;
95◦C for 3min;
40 cycles of (95◦C for 5 s, 60◦C for 30 s, 72◦C for 1min)

Aminov et al.,
2001

RV TGGAGTATCAATAATATTCAC

16S RNA 16S F1048 GTGSTGCAYGGYTGTCGTCA 50◦C for 2min;
95◦C for 3min;
35 cycles of (95◦C for 5 s, 60◦C for 30 s, 72◦C for 1min)

Maeda et al.,
2003

R1194 ACGTCRTCCMCACCTTCCTC

The detection of samples below the limit of detection at
several sampling points demonstrates the potential effectiveness
of certain water treatments in significantly reducing ESBL-E.
coli loads. This finding is consistent with previous studies that
reported substantial reductions in E. coli concentrations by
up to 6 log units, through biological and tertiary treatments,
including chlorination and UV-based systems (Xie et al., 2023).
However, the persistence of ESBL-E. coli in final effluents, even
at low levels, remains a concern. Similarly, Bréchet et al. (2014)
found that urban wastewater contained high concentrations
of ESBL-E. coli, with WWTP treatment reducing the load
by ∼95%. The authors also highlighted the genotypic overlap
between clinical and environmental isolates, suggesting potential
dissemination from hospitals into the environment. In the Spanish

context, Oliveira et al. (2023) observed that although tertiary
treatments such as UV and PAA-UV combinations resulted in
significant reductions, ESBL-E. coli was still detected in several
effluent samples, particularly where treatment was incomplete or
inconsistent. Notably, the resistance profiles of isolates remained
largely unchanged before and after treatment, indicating that
currentWWTP processesmay reduce bacterial counts without fully
eliminating resistance determinants. However, high levels of ESBL-
producing E. coli have also been reported in both influent (4.5± 2.9
cfu/mL) and effluent (61–49 cfu/mL) samples treated with chlorine
in a WWTP in Japan (Azuma et al., 2022). Similarly, Nzima et al.
(2020) reported influent counts ranging from 4.1 to 4.2 log cfu/mL
and effluent counts between 2.5 and 3.3 log cfu/mL. These findings
collectively underscore the importance of ongoing surveillance and
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FIGURE 1

Level of ESBL-producing E. coli detected in the four WWTPs using di�erent treatments. Box plots shows the median with the 25th and 75th
percentile values of reduction. Box plots labeled with di�erent letters indicate significant di�erences among treatments at P < 0.05.

the optimization of advanced treatment technologies to prevent the
environmental dissemination of ARB and ARGs.

3.2 Antibiotic resistance profile of
ESBL-producing E. coli isolates

A total of 366 ESBL-producing E. coli isolates from influent
and effluent samples of the four WWTPs were analyzed. The
antibiotic resistance profiles for 210, 126, 20, and 10 isolates from
PAA, PAA/UV Low, UV High, and UF WWTPs, respectively, are
shown in Figures 2–5. All isolates exhibited resistance to multiple
antibiotics, classifying them as MDR since they were resistant to at
least three different antimicrobial classes.

The predominant resistance phenotypes included: β-
lactams (cefotaxime, ceftazidime, ampicillin); Quinolones
(ciprofloxacin, nalidixic acid); Tetracyclines (tetracycline);
Sulfonamides (sulfamethoxazole); Dihydrofolate reductase
inhibitors (trimethoprim). However, meropenem, tigecycline,
colistin, and amikacin retained antibacterial activity against most
isolates. A greater number of isolates (15 isolates) exhibited
resistance to tigecycline compared to meropenem (12 isolates),
colistin (5 isolates), and amikacin (2 isolates). The tigecycline-
resistant isolates were found in the influent of the UV High
and PAA/UV Low WWTPs, as well as in the effluent of the
UV High WWTP. Most of the meropenem-resistant isolates
were detected in the influent samples from the PAA/UV Low
WWTP. Colistin-resistant isolates were identified in an effluent
sample from the UV High WWTP and in influent samples
from the UV High and PAA/UV Low WWTPs. The two isolates
resistant to amikacin were originated from the influent samples
from the UV High and PAA/UV Low WWTPs. Notably, two

isolates from the influent of UV High and PAA/UV Low showed
combined resistance to tigecycline and meropenem, while one
isolate from an effluent sample from the UV High WWTP
showed combined resistance to tigecycline and colistin. The
presence of these resistant phenotypes in extended-spectrum β-
lactamase (ESBL)-producing isolates, although not predominant, is
noteworthy. Glycylcyclines (tigecycline), polymyxins (colistin), and
carbapenems (meropenem) are considered last-resort antibiotics,
primarily recommended for treating infections caused by ESBL-
producing Gram-negative bacteria. Resistance to these antibiotics
was not detected in isolates from PAA and UF WWTPs. However,
it is important to note that the number of isolates analyzed
from these WWTPs was considerably lower, which may have
influenced the results. Similarly, Amador et al. (2015) reported
a high prevalence of antibiotic resistance in Enterobacteriaceae

from WWTPs, including resistance to β-lactam antibiotics,
tetracycline, ciprofloxacin, and trimethoprim/sulfamethoxazole.
Other studies have also characterized AMR profiles of E.

coli isolates from WWTPs, frequently detecting resistance to
sulfonamides, tetracyclines, and aminopenicillins, while resistance
to quinolones was reported at lower rates (Ferreira da Silva et al.,
2006; Łuczkiewicz et al., 2010).

Our findings suggest that ESBL-producing E. coli isolates
recovered from influent and effluent samples commonly exhibit
multidrug resistance phenotypes, including resistance to β-lactams,
quinolones, tetracyclines, and sulfonamides. While descriptive data
did not show major shifts in resistance profiles between sample
types or sampling dates, the limited number of isolates from some
WWTPs prevent definitive conclusions. The detection of isolates
resistant to last-resort antibiotics, particularly in effluent samples
from certain WWTPs, warrants further investigation to clarify
whether wastewater treatment processes may contribute to the
selection or persistence of specific resistance phenotypes
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FIGURE 2

Heatmap displaying the antibiotic resistance profile of ESBL-producing E. coli isolates retrieved from PAA WWTP. The isolates (n = 20) were classified
as antibiotic resistant (in red) or susceptible (in blue) based on ECOFF values from EUCAST, which served as the threshold.

Nonetheless, the presence of MDR in effluent samples remains
a public health concern, as reclaimed water is frequently reused
for irrigation in agricultural fields. This highlights the need for
continuous monitoring of AMR in WWTPs to mitigate potential
risks associated with environmental and human exposure.

3.3 Monitoring of absolute ARG abundance
in reclamation treatments at WWTPs

In this study, the 16S rRNA gene and 10 ARGs were
detected in all influent and effluent water samples from the
four WWTPs (Table 3), except for the sul1 gene in the effluent
of the UV High WWTP and both sul1 and catl genes

in the effluent of the UF WWTP. These genes have been
frequently reported in wastewater across various geographical

regions, including Europe, America, Asia, and Africa (Oliveira
et al., 2023; Pazda et al., 2019; Wang et al., 2020). In
all WWTP influents, the most prevalent ARG was tetW

(11.1–11.7 gc/100mL), followed by tetA (10.2–10.9 gc/100mL),

cmlA (10.8–11.3 gc/100mL), and qnrS (8.9–9.3 gc/100mL;
Figure 6).

The absolute abundance of ARGs in influent samples ranged

as follows: (i) PAA: 5.9–11.1 gc/100mL; (ii) PAA/UV Low: 6.5–
11.7 gc/100mL; (iii) UV High: 6.5–11.2 gc/100mL; and (iv) UF:
6.4–11.1 gc/100mL (Figure 6). On the other hand, effluent samples
exhibited significantly lower ARG levels (P ≤ 0.05): (i) PAA: 4.0–
8.3 gc/100mL; (ii) PAA/UV Low: 3.8–9.4 gc/100mL; (iii) UVHigh:
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FIGURE 3

Heatmap displaying the antibiotic resistance profile of ESBL-producing E. coli isolates retrieved from PAA/UV Low WWTP. The isolates (n = 126) were
classified as antibiotic resistant (in red) or susceptible (in blue) based on ECOFF values from EUCAST, which served as the threshold.

3.6–7.7 gc/100mL; (iv) WWTP UF: 3.0–6.1 gc/100mL (Figure 6).
Consistent with influent samples, tetW, tetA, cmlA, and qnrS

remained the most abundant genes in effluents (Figure 6). The
high prevalence of tetracycline and quinolone resistance genes in
wastewater and effluent is likely due to the widespread use of these
broad-spectrum antibiotics. These findings align with previous
studies demonstrating that tetracycline, quinolone, sulfonamide,
and macrolide resistance genes are frequently detected in WWTP
effluents (Pazda et al., 2019; Wang et al., 2020). While wastewater
treatment reduced ARG abundance, significant levels were still
detected in effluents, consistent with other reports (Luo et al.,
2024; Munir et al., 2011; Pallares-Vega et al., 2019; Raza et al.,
2022).

Significant differences were observed in ARG levels among the
WWTPs (Figure 7). UF treatment achieved the most substantial

reduction in ARGs, consistent with studies suggesting that
membrane filtration is an effective approach for removing
emerging contaminants (Guo et al., 2021; Zhang et al., 2023). This
high effectiveness is likely due to the physical retention of bacterial
cells and extracellular DNA fragments by the membrane pores,
which are small enough to block ARG carriers. However, studies on
ARG removal in reclaimed water systems using UF remain limited.

Conversely, PAA/UV Low WWTP exhibited the highest
absolute ARG levels in effluent, despite the fact that PAA/UV
is often proposed as a promising disinfection strategy. However,
a previous laboratory-scale study reported that PAA/UV Low
treatment resulted in lower ARG levels than PAA or UVHigh alone
(Ping et al., 2022). Several factors could explain these discrepancies.
First, operational conditions such as variations in PAA dose,
UV intensity, and contact time could have impacted the overall
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FIGURE 4

Heatmap displaying the antibiotic resistance profile of ESBL-producing E. coli isolates retrieved from UV High WWTP. The isolates (n = 210) were
classified as antibiotic resistant (in red) or susceptible (in blue) based on ECOFF values from EUCAST, which served as the threshold.

efficiency. For instance, if UV exposure or PAA concentration

is insufficient or poorly synchronized, incomplete inactivation of
microorganisms or ARG degradation may occur. In this particular

case, the UV High doses used in that study (216 mJ/cm²) were

lower than those applied in this study. All tertiary treatments
reduced 16S rRNA gene levels, indicating a decrease in total

bacterial load (Figure 8). UF showed themost significant reduction,

suggesting its superior effectiveness in removing bacteria from
wastewater. These results align with previous research evaluating
16S rRNA levels in WWTP influent and effluent (Pallares-
Vega et al., 2019; Wang et al., 2021). The observed differences
across WWTPs may therefore be influenced by a combination
of treatment-specific parameters and site-specific factors, such as
influent microbial load, composition of the wastewater, or presence

of resistance-selection agents (e.g., residual antibiotics or heavy
metals). These aspects highlight the complexity of ARG removal
and suggest that further optimization and standardization of
treatment parameters are essential to improve performance across
different settings.

3.4 Monitoring of the relative abundance of
ARGS in the water treatments applied at the
WWTPs

To evaluate the impact of the four water treatments on ARG
occurrence in WWTPs, the relative abundance of 10 ARGs was
quantified as copies of ARGs per 16S rRNA gene copies using
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FIGURE 5

Heatmap displaying the antibiotic resistance profile of ESBL-producing E. coli isolates retrieved from UF WWTP. The isolates (n = 10) were classified
as antibiotic resistant (in red) or susceptible (in blue) based on ECOFF values from EUCAST, which served as the threshold.

quantitative polymerase chain reaction (qPCR). The results showed
that all four WWTPs either maintained or reduced the relative
abundance of the analyzed ARGs, except for blaCTX−M−G1 and
blaTEM in the UF-treated effluent and qnrB and qnrS in the
PAA-treated effluent (Figure 9). These findings align with previous

studies, where some ARGs exhibited slight reductions or remained

unchanged after wastewater treatment (Bengtson-Palme et al.,
2016; Di Cesare et al., 2016; Laht et al., 2014). Similarly, McConnell
et al. (2018) found no increase in ARG abundance following

tertiary UV treatment at two WWTPs in Canada. Pallares-Vega
et al. (2019) also reported no increase in sul1, sul2, tetM, qnrS, or
blaCTX−M relative abundance in 62 Belgian WWTPs. Conversely,
other studies have reported increases in ARG levels following
wastewater treatment, including Lee et al. (2017), Makowska et al.

(2016), Marti et al. (2013), and Rodriguez-Mozaz et al. (2014).
These conflicting results may stem from variations in microbial
community composition post-treatment, the presence of AMR-
selective agents in effluents, and differences in sampling design
(Pallares-Vega et al., 2019).

3.5 E�cacy of tertiary treatments in WWTPs

Significant differences were observed between UV High and
the other treatments (PAA, PAA/UV Low, and UF). The obtained
results are consistent with studies evaluating the efficacy of UF,
PAA/UV, and UV in removing ARBs (Balachandran et al., 2021;
Chhetri et al., 2022; McKinney and Pruden, 2012; Michael et al.,
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2022; Oliveira et al., 2023; Raven et al., 2019). For instance, when
UF is applied to activated sludge effluent achieved a 3–4 log
reduction of enteric opportunistic pathogens and significant ARB
removal (Michael et al., 2022). The application of a PAA dose of
4 mg/L for 7min led to a 4-log reduction in multidrug-resistant
E. coli (Balachandran et al., 2021). In fact, PAA treatment was
effective in reducing ciprofloxacin-resistant bacteria in municipal
and hospital wastewater (Chhetri et al., 2022). In the case of UV-
C, this treatment alone or in combination with PAA or chlorine
efficiently removed ESBL-producing E. coli from influent water
(Oliveira et al., 2023). UV doses of 10–20 mJ/cm² led to 4–5 log
reductions in ARBs (McKinney and Pruden, 2012). In this study,
UV High showed a lower reduction than the other treatments
(Figure 10), suggesting lower efficacy in removing ESBL-producing
E. coli. However, the median log reduction for UV High was
∼3.5 logs, similar to the 3.2 log reduction observed in UV-treated
effluents from a WWTP in southern England (Raven et al., 2019).
Regarding ARG removal, the differentWWTPs achieved an average
reduction of 2.2–3.9 log/100mL (Figure 11). These reductions
are consistent with those observed in previous studies evaluating
UV, PAA, UF, and PAA/UV combinations as tertiary treatments
(Manoharan et al., 2022; Wang et al., 2020).

In the case of ARG, significant differences were observed
among WWTPs. UF was the most effective treatment for reducing
ARG concentrations. UV High followed UF in effectiveness, with
better performance than PAA/UV Low and PAA alone. On the
other hand, PAA/UV Low and PAA exhibited the lowest ARG
removal efficiencies (Figure 12). These findings align with Liang
et al. (2021), who reported that integrated membrane filtration
reduced ARGs by nearly 3 logs (99.79%), from 3.02 × 108 to 6.45
× 105 cg/mL.

Several studies have demonstrated the ability of UV light
to reduce ARGs in wastewater (Jia et al., 2021; Zhuang et al.,
2014). However, other studies have reported minimal or no ARG
reductions followingUV treatment (Auerbach et al., 2007; Lee et al.,
2017; Munir et al., 2011; Yang et al., 2019). These discrepancies
are likely due to variations in UV dose. For instance, McConnell
et al. (2018) found that WWTPs using 250 mJ/cm² UV doses
achieved greater ARG removal than those using lower doses (50
mJ/cm²). Studies suggest that combining PAA with low UV doses
enhances ARG removal, but in this study, UV High alone was
more effective than PAA/UV Low or PAA alone. This is likely
due to higher UV doses applied in that WWTP. Ping et al.
(2022) recently demonstrated that a high UV dose (108 mJ/cm²)
and PAA (4 mg/L) effectively reduced ARGs, whereas lower UV
doses (18 mJ/cm²) with the same PAA concentration were less
effective. These findings highlight the role of tertiary treatments
in mitigating ARG prevalence, emphasizing the importance of
effective water treatments before discharge to reduce antibiotic
resistance risks.

4 Conclusions

This study assesses the efficacy of different tertiary wastewater
treatment technologies in reducing ESBL-producing E. coli and
ARGs in reclaimed water intended for irrigating horticultural
crops. The findings highlight the role of these treatments in
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FIGURE 6

Heatmap representing the absolute levels of ARGs measured by qPCR in wastewater samples upon arrival at the WWTP studied and in its e	uents
after applying the tertiary treatment corresponding to each plant over an 18-month sampling period. Values are presented as Log (gene
copies/100mL).

FIGURE 7

Absolute concentration of the 10 ARGs in the influent and e	uent samples collected from each WWTPs. Box plots show median with the 25th and
75th percentile values of reduction. Box plots labeled with di�erent lower-case letters indicate significant di�erences among influents at P < 0.05.
Box plots labeled with di�erent upper-case letters indicate significant di�erences among treatments at P < 0.05.
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FIGURE 8

Absolute concentration of the 16S rRNA gene in the influent and e	uent samples collected from each WWTPs. Box plots show the median with the
25th and 75th percentile values of reduction. Box plots labeled with di�erent letters indicate significant di�erences among treatments at P < 0.05.

FIGURE 9

Relative abundance of ARGs in the influent (I) and e	uent (E) samples collected from each WWTP. Box plots show the median with the 25th and 75th
percentile values of reduction. Box plots labeled with di�erent letters indicate significant di�erences between influent and e	uent at P < 0.05.

limiting AMR dissemination and their implications for water
reuse safety. Tertiary treatments significantly reduced ESBL-
producing E. coli and ARGs, though complete elimination
was not achieved. Ultrafiltration (UF) was the most effective,
outperforming peracetic acid (PAA), PAA/UV Low, and UV
High treatments. While absolute ARG abundance decreased

across all WWTPs, relative abundance remained stable or
only slightly reduced, with tetracycline (tetW, tetA), quinolone
(qnrS, qnrB), and sulfonamide (sul1, sul2) resistance genes
being the most persistent. UV efficacy was dose-dependent,
with UV High performing better than PAA/UV Low and PAA
alone, emphasizing the need to optimize UV intensity for ARG
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FIGURE 10

Box-plot representing the reduction of ESBL-producing E. coli after tertiary water treatments applied in each WWTP studied. The 0 log reduction
(ESBL_I/ESBL_E) indicates no reduction of ARGs in the water. Box plots show the median with the 25th and 75th percentile values of reduction. Box
plots labeled with di�erent letters indicate significant di�erences among treatments at P < 0.05.

FIGURE 11

Box-plot representing the reduction of 10 ARGs evaluated after tertiary water treatments applied in each WWTP studied. The 0 log indicates no
reduction of ARGs in the water. Box plots show median with the 25th and 75th percentile values of reduction. Box plots labeled with di�erent letters
indicate significant di�erences among treatments at P < 0.05.

inactivation. Antibiotic resistance profiles revealed MDR E. coli

in all WWTPs, primarily resistant to β-lactams, quinolones,
tetracyclines, and sulfonamides. Additionally, resistance to
last-resort antibiotics (tigecycline, colistin, meropenem) was
detected at low frequencies, raising concerns about the potential

dissemination of highly resistant bacterial strains through
wastewater effluents. These findings underscore the need
for improved wastewater treatment strategies and stricter
monitoring to mitigate AMR risks in reclaimed water intended for
agricultural use.
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FIGURE 12

Reduction of each ARGS after tertiary water treatments applied in each WWTP studied. The 0 log indicates no reduction of ARGs in the water. Box
plots show median with the 25th and 75th percentile values of reduction. Box plots labeled with di�erent letters indicate significant di�erences
among treatments at P < 0.05.
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