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Purpose: Tuberculosis (TB) remains a significant global health concern, 
necessitating effective measures to control the epidemic. Understanding the 
evolution of Mycobacterium tuberculosis (M. tb) through molecular clock 
analysis is crucial for tracing outbreaks, managing transmission, and ultimately 
improving TB management in practice.

Results: A total of 27 studies were included for analysis. The pooled mutation 
rate was estimated at 0.63 single nucleotide polymorphisms (SNPs) per genome 
per year [95% confidence interval (CI): 0.51–0.75; 95% predictive interval (PI): 
0.04–1.22], significant heterogeneity (I2 = 92.7%, p < 0.001) was observed. 
Clinical strains had a mutation rate of 0.55 SNPs per year (95% CI: 0.45–0.65; 95% 
PI: 0.12–0.98), while model strains showed a higher rate of 1.14 SNPs per year 
(95% CI: 0.68–1.60; 95% PI: −0.22-2.50; Meta-regression analysis, p = 0.006). 
Mutation rates did not significantly differ between transmission events and 
reactivation or single episodes (p = 0.497).

Conclusion: The mutation rate of clinical M. tb strains is below 1 SNP per 
genome per year, indicating evolutionary stability in clinical settings. This finding 
is important for TB outbreak reconstructions and public health strategies. Future 
research should refine subgroup analyses based on infection characteristics for 
more precise molecular clock estimates.

Systematic review registration: PROSPERO, identifier CRD42024595161.
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Introduction

Tuberculosis (TB) remains a major global health concern, with 10.6 million new cases and 
1.3 million deaths reported by the WHO in 2022. Molecular clock analysis, which could 
examine the genetic evolution of Mycobacterium tuberculosis (M. tb), is critical for 
understanding TB outbreaks and the emergence of drug-resistant strains. This method 
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estimates the timing of evolutionary events by assuming mutations 
accumulate at a relatively constant rate. However, determining M. tb’s 
precise molecular clock rate remains a challenge, with estimates 
ranging from 0.13 to over 6 single nucleotide polymorphisms (SNPs) 
per genome per year, varying across epidemiological contexts 
(Colangeli et al., 2014; Copin et al., 2016). Factors such as lineage type, 
immune pressure, and antibiotic exposure may influence its variability. 
Embracing this variability through a meta-analysis of clinical data can 
improve both replicability and generalizability in biomedical research 
(Usui et  al., 2021). In this context, this systematic review aims to 
gather and synthesize existing evidence to generate a pooled estimate 
of the molecular clock rate for M. tb, providing more reliable insights 
into its evolutionary dynamics. Such consistent estimate will aid in 
constructing accurate epidemiological links and support more 
effective interventions during TB outbreaks.

Methods

This systematic review and meta-analysis followed a registered 
protocol in PROSPERO (CRD42024595161) and adhered to PRISMA 
guidelines to ensure thorough methodology (Page et al., 2021). The 
aim was to estimate mutation rates in M. tb and assess contributing 
factors to its variability.

A comprehensive literature search of PubMed, Scopus, Web of 
Science, and Embase was conducted as of August 16, 2024, using 
keywords related to, but not limited to: M. tb and mutation rates 
(Supplementary material, p. 1). Literature selection, data extraction, and 
quality assessment were independently conducted by two authors (CYL 
and GCP), with a third author (WJL) consulted for disagreements. 
Studies were eligible if they (1) directly reported mutation rates, and (2) 
included mutants or SNPs identified during a specified period. Exclusion 
criteria included reviews, conference meeting, editorials, or studies 
lacking sufficient quantitative data; non-English literature; duplicate 
studies; replicated datasets, and those relying solely on database-derived 
information or involving drug-resistance mutations. Additionally, Indel 
and other structural variants were excluded and not included for analysis.

The quality of included studies was assessed using the AXIS tool, 
considering elements such as sample size justification, methodology, 
and result reporting (Downes et al., 2016). No studies were excluded 
based on quality, as there are no established quantitative thresholds 
for such exclusions.

Pooled mutation rates were estimated using a random-effects 
model with 95% confidence intervals (CI) and predictive intervals (PI), 
employing the metan command in Stata/SE (v18.0). Heterogeneity was 
quantified using the I2 statistic and the Chi-square test, with I2 > 75% 
or p < 0.05 indicating significant heterogeneity. Subgroup analyses 
assessed variation in mutation rates by model versus clinical strains and 
transmission versus “reactivation or single infection episode,” and 
sources of heterogeneity were assessed using Meta-regression analysis. 
Publication bias was not evaluated, as established methods for assessing 
bias in single-arm meta-analyses may be unreliable (Hunter et al., 2014).

Results

Literature selection

Overall, 31,750 citations were identified through database searches. 
After removing duplicates (n = 10,721) and other unsuitable articles 
(n = 3,188), including inappropriate document types (n = 3,188) and 
non-English publications (n = 1,215), 16,626 records were screened by 
title and abstract for eligibility. Of these, 16,501 were excluded, leaving 
125 citations identified as relevant or potentially relevant for full-text 
screening. Following further exclusions (n = 97), 27 studies were 
included in the final analysis (Figure 1).

Basical characteristics

Table 1 provides a comprehensive summary of the characteristics of 
the studies included in this meta-analysis. Of these included studies, 
three were bench studies (Copin et al., 2016; Ford et al., 2011; Comas 
et al., 2011) and other were cohort. Most cohort studies (23 out of 24) 
were conducted retrospectively, with only one study being prospective 
(Roetzer et al., 2013). One study utilized culture media (Comas et al., 
2011), while two were conducted on animal models: one on Cynomolgus 
macaques (Ford et al., 2011) and the other on mice (Copin et al., 2016). 
In three studies, model isolates [Erdman (Ford et al., 2011), CDC1551 
(Comas et al., 2011), T85 (Comas et al., 2011), and H37Rv (Copin et al., 
2016)] were measured, whereas clinical isolates were evaluated in the 
remaining 24 studies. In eight studies, isolates were collected from within 
a single host (either reactivation or a single infection episode). The 
remaining 18 studies involved isolates collected from transmission events 
between patients. Additionally, six studies (with eight datasets) reported 
single or dual mutation rates without accompanying 95% CI; these rates 
were combined to calculate the pooled mean and 95% CI. Three studies 
(with seven datasets) reported means and 95% highest posterior density 
(HPD), and the 95% HPD was used in place of the 95% CI for the pooled 
estimate (Bainomugisa et al., 2021; Kuhnert et al., 2018; Merker et al., 
2018). The remaining 19 studies (with 35 datasets) provided both the 
mean mutation rates and their corresponding 95% CI.

Bias assessment

The bias assessment results, detailed in Supplementary Table 1 
(Supplementary materials, p.  2–6), revealed several limitations 
across the included studies. None of the studies provided 
justification for their sample sizes. Due to the nature of bench 
studies and retrospective designs, only a few studies discussed the 
exclusion process, and no studies implemented measures to address 
or categorize non-responders. However, two studies (7.4%) 
provided detailed exclusion results. Eight studies (29.6%) did not 
report mutation rates directly; these rates were instead calculated 
based on the number of SNPs and the specified study period. 
Additionally, 14 studies (51.9%) did not report 95% CI due to 
either reporting a single rate or lacking sufficient information. Ten 
studies (37.0%) failed to acknowledge limitations in their findings, 
and one study (3.7%) did not provide information on funding 

Abbreviations: TB, Tuberculosis; M. tb, Mycobacterium tuberculosis; SNP, single 

nucleotide polymorphism; 95% CI, 95% confidence interval; 95% PI, 95% predictive 

interval; 95% HPD, 95% highest posterior density.

https://doi.org/10.3389/fmicb.2025.1591792
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2025.1591792

Frontiers in Microbiology 03 frontiersin.org

sources. Furthermore, 13 studies (48.1%) did not obtain ethical 
approval, as the authors considered their research exempt from 
this requirement.

Mutation rate

The pooled mutation rate for M. tb was estimated at 0.63 SNPs/
genome/year (95% CI: 0.51–0.75; I2 = 92.7%, p < 0.001; 
Heterogeneity: I2 = 92.7%, p < 0.001; Figure 2), with a 95% PI of 0.04 
to 1.22.

Subgroup analyses showed mutation rates of 1.14 SNPs/genome/
year (95% CI: 0.68–1.60; 95% PI: −0.22-2.50; Supplementary Figure 1, 
p. 7) for model strains (I2 = 58.8%, p = 0.046) and 0.55 SNPs/genome/
year (95% CI: 0.45–0.65; 95% PI: 0.12–0.98) for clinical strains 
(I2 = 88.1%, p < 0.001). Transmission isolates had a rate of 0.50 SNPs/
genome/year (95% CI: 0.40–0.60; 95% PI: 0.14–0.86; Heterogeneity: 

I2 = 85.9%, p < 0.001; Supplementary Figure  2, p.  8), while 
“reactivation or single episode” isolates showed 0.64 SNPs/genome/
year (95% CI: 0.33–0.95; 95% PI: −0.43 to 1.72; Heterogeneity: 
I2 = 90.7%, p < 0.001). Meta-regression indicated heterogeneity was 
significantly associated with isolate type (model vs. clinical; p = 0.006), 
but not transmission/ “reactivation or single episode” (p = 0.497).

Discussion

TB remains a significant global health challenge, with M. tb 
continually evolving to resist existing treatments. Understanding 
the molecular clock of M. tb is crucial for tracking drug resistance, 
mapping transmission networks, and designing effective 
interventions. Our systematic review and meta-analysis estimate 
the mutation rate at 0.63 SNPs/genome/year, with significant 
variation between model and clinical strains. Regarding clinical 

FIGURE 1

Flow chart of the literature selection process.
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TABLE 1 Characteristics of included studies (n = 27) for estimating the mutation rate of Mycobacterium tuberculosis isolates.

Sequence Study characteritics M. tuberculosis Mutation rate 
(SNPs/

genome/year)First author, year Country Study period Study design Host Isolates Transmission Primary data or 
Calculation (original 
unit)

1.1 Ford et al. (2011) USA – Bench studies Cynomolgus 

macaques

M. tuberculosis 

(Erdman)

Single episode Calculation (SNPs/bp/day)a 1.28 (1.15, 1.40)

1.2 Ford et al. (2011) USA – Bench studies Cynomolgus 

macaques

M. tuberculosis 

(Erdman)

Latent status Calculation (SNPs/bp/day)a 0.73 (0.19, 2.68)

1.3 Ford et al. (2011) USA – Bench studies Cynomolgus 

macaques

M. tuberculosis 

(Erdman)

Reactivation Calculation (SNPs/bp/day)a 0.91 (0.41, 2.12)

1.4 Ford et al. (2011) USA – Bench studies Cynomolgus 

macaques

M. tuberculosis 

(Erdman)

In vitro culture Calculation (SNPs/bp/day)a 0.91 (0.43, 1.42)

2 Sandegren et al. (2011) Sweden 1996–2010 Retrospective corhort Human Clinical isolates Transmission Calculation (SNPs and years) 0.44 and 0

3 Saunders et al. (2011) UK – Retrospective corhort Human Clinical isolates Transmission Calculation (SNPs and years) 2

4 Comas et al. (2011) USA – Bench studies 7H9 media M. tuberculosis 

(CDC1551; T85)

In vitro culture Calculation (SNPs and years) 5.00 (2.10, 7.91)

5 Bryant et al. (2013) Netherlands 1992–2007 Retrospective corhort Human Clinical isolates Transmission Primary data 0.27 (0.13, 0.41)

6 Ford et al. (2013) Canada 2006 Retrospective corhort Human Clinical isolates Transmission Calculation (SNPs/bp/day)a 0.63 (0.54, 0.72)

7 Kato-Maeda et al. (2013) USA 1991–2003 Retrospective corhort Human Clinical isolates Transmission Calculation (SNPs and years) 1.78 (0.11, 3.45)

8 Roetzer et al. (2013) Germany 1997–2010 Prospective cohort Human Clinical isolates Transmission Calculation (SNPs/bp/year)a 0.44 (0.26, 0.66)

9.1 Walker et al. (2013) UK 1994–2011 Retrospective corhort Human Clinical isolates Reactivation or 

Single episode

Primary data 0.3 (0, 0.6)

9.2 Walker et al. (2013) UK 1994–2011 Retrospective corhort Human Clinical isolates Transmission Primary data 0.6 (0.3, 0.9)

10.1 Colangeli et al. (2014) New Zealand 1991–2011 Retrospective corhort Human Clinical isolates Transmission Calculation (SNPs/bp/generation)a 1.95 and 0.64

10.2 Colangeli et al. (2014) New Zealand 1991–2011 Retrospective corhort Human Clinical isolates Reactivation Calculation (SNPs/bp/generation)a 0.13 and 0.22

11 Eldholm et al. (2014) Norway 2014 Retrospective corhort Human Clinical isolates Transmission Primary data 1.1 (0.7, 1.6)

12 Cohen et al. (2015) South Africa 2008–2013 Retrospective corhort Human Clinical isolates Transmission Primary data 0.61

13.1 Guerra-Assuncao et al. 

(2015)

Malawi 1995–2010 Retrospective corhort Human Clinical isolates Transmission Primary data 0.26 (0.21, 0.31)

13.2 Guerra-Assuncao et al. 

(2015)

Malawi 1995–2010 Retrospective corhort Human Clinical isolates Reactivation Primary data 0.45 (0.15, 0.75)

14 Copin et al. (2016) USA – Bench studies Mouse M. tuberculosis 

(H37Rv)

Transmission Primary data 6.43 and 1.28

15 Korhonen et al. (2016) Finland 1995–2013 Retrospective corhort Human Clinical isolates Transmission Calculation (SNPs and years) 0.96 (0.24, 1.68)

16 Lillebaek et al. (2016) Denmark 1960s Retrospective corhort Human Clinical isolates Transmission Calculation (SNPs and years) 0.24 and 0.30

17 Folkvardsen et al. (2017) Denmark 1992–2014 Retrospective corhort Human Clinical isolates Transmission Primary data 0.24 (0.19, 0.29)

(Continued)
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TABLE 1 (Continued)

Sequence Study characteritics M. tuberculosis Mutation rate 
(SNPs/

genome/year)First author, year Country Study period Study design Host Isolates Transmission Primary data or 
Calculation (original 
unit)

18 Herranz et al. (2017) Spain and 

Latvia

2012–2015 Retrospective corhort Human Clinical isolates Reactivation or 

Single episode

Calculation (SNPs and years) 0.95 (0.56, 1.35)

19.1 Kuhnert et al. (2018) Switzerland, 

USA, and 

Thailand

1987–2012 Retrospective corhort Human Clinical isolates Transmission Primary data 0.72 (0.40, 1.24)b

19.2 Kuhnert et al. (2018) Switzerland, 

USA, and 

Thailand

1987–2012 Retrospective corhort Human Clinical isolates Transmission Primary data 0.80 (0.41, 1.50)b

19.3 Kuhnert et al. (2018) Switzerland, 

USA, and 

Thailand

1987–2012 Retrospective corhort Human Clinical isolates Transmission Primary data 0.83 (0.42, 1.60)b

19.4 Kuhnert et al. (2018) Switzerland, 

USA, and 

Thailand

1987–2012 Retrospective corhort Human Clinical isolates Transmission Primary data 0.55 (0.32, 0.86)b

19.5 Kuhnert et al. (2018) Switzerland, 

USA, and 

Thailand

1987–2012 Retrospective corhort Human Clinical isolates Transmission Primary data 0.36 (0.11, 0.57)b

20 Merker et al. (2018) Uzbekistan 2001–2006 Retrospective corhort Human Clinical isolates Transmission Primary data 0.41 (0.32, 0.51)b

21 Xu et al. (2018) China – Retrospective corhort Human Clinical isolates Reactivation or 

Single episode

Primary data 3.2

22.1 Colangeli et al. (2020) Brazil 2008–2013 Retrospective corhort Human Clinical isolates Reactivation Primary data 1.80 (0.80, 4.05)

22.2 Colangeli et al. (2020) Brazil 2008–2013 Retrospective corhort Human Clinical isolates Reactivation Primary data 0.82 (0.37, 1.84)

23 Godfroid et al. (2020) Central Asia 1995–2015 Retrospective corhort Human Clinical isolates Transmission Primary data 0.54 (0.44, 0.63)

24 Bainomugisa et al. (2021) Malaysia 2012–2017 Retrospective corhort Human Clinical isolates Transmission Primary data 0.56 (0.23, 0.79)b

25.1 Comín et al. (2022) Spain 2004–2019 Retrospective corhort Human Clinical isolates Reactivation 

(1–2 years)

Primary data 0.60 (0.26, 1.39)

25.2 Comín et al. (2022) Spain 2004–2019 Retrospective corhort Human Clinical isolates Reactivation (2–

14 years)

Primary data 0.59 (0.31, 1.12)

26.1 Sadovska et al. (2023) Latvia 2002–2019 Retrospective corhort Human Clinical isolates Single episode Calculation (SNPs and years) 0.39 (0.01, 0.77)

26.2 Sadovska et al. (2023) Latvia 2002–2019 Retrospective corhort Human Clinical isolates Reactivation Calculation (SNPs and years) 0.25 (0.16, 0.34)

27 Zhang et al. (2024) China 2009–2016 Retrospective corhort Human Clinical isolates Single episode Primary data 1.20 (1.02, 1.38)
aDuring the conversion from other units (e.g., SNPs/bp/day), calculations were based on the following parameters: (1) genome size of 4,411,532 bp (source: https://www.ncbi.nlm.nih.gov/nuccore/NC_000962.2); (2) generation time of 18 h; and (3) one year equal to 
365 days.
b95% HPD (Highest Posterior Density) is used instead of the 95% confidence interval.
SNPs, single nucleotide polymorphisms.
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M. tb strains, the mutation rate is typically below 1 SNP/genome/
year, supported by a 95% PI of 0.12–0.98. This estimate aligns well 
with existing molecular clock data and appears more precise than 
earlier findings, which ranged from 0.04 to 2.2 SNPs/genome/year 
(Menardo et al., 2019). Overall, this mutation rate is slower than 
previously thought, as rates below 10 SNPs were often used as a 
criterion for recent infection and reactivation (Sadovska et  al., 
2023). The observed rate underscores the evolutionary stability of 
M. tb in clinical environments, despite host immune pressures and 
treatment regimens (Nimmo et al., 2020; Reiling et al., 2018). In 
contrast, model strains showed a higher mutation rate of 1.14 
SNPs/genome/year. This discrepancy may be  due to fewer 
environmental constraints in model strains, leading to a higher 
accumulation of mutations (Perrier, 2020), as well as differences in 
generation times between model and clinical strains (Colangeli 
et  al., 2014). These findings highlight the need to consider 
experimental context when interpreting the evolutionary dynamics 
of M. tb.

Furthermore, although isolates derived from transmission events 
exhibited a lower mutation rate (0.50 SNPs per genome per year) 
compared to those from reactivation or single infection episodes (0.64 
SNPs per genome per year), this difference was not statistically 
significant. This suggests a potentially rapid mutation rate during 
reactivation (or single infection episode), likely due to gradual 
mutation accumulation over time. While transmission imposes 

selective pressures for host adaptation (Brites and Gagneux, 2012), the 
overall mutation rate remained slow. This may be explained by that (1) 
the establishment of infection typically requiring fewer than 10 M. tb 
isolates, thereby limiting genetic diversity during transmission 
(Treibert et  al., 2018); and (2) transmission not relying on rapid 
evolutionary changes, suggesting that significant mutations may not 
be immediately necessary.

These findings have important implications for public health and 
TB control strategies. Establishing that the mutation rate of clinical 
isolates is typically below 1 SNP per genome per year allows for greater 
accuracy in outbreak reconstructions and transmission network 
modeling. The molecular clock offers valuable insights into the genetic 
evolution of M. tb, particularly by helping to identify the timeline of 
outbreaks, track the spread of resistant strains, and understand 
transmission dynamics. Most importantly, this precise mutation rate 
estimate will aid in establishing criteria for distinguishing reactivation 
from recent infection, accounting for the interval between isolates.

Despite valuable insights, this study has several limitations, 
including significant heterogeneity, inconsistent study characteristics, 
reliance on indirect SNP calculations (partly), lack of confidence 
intervals (partly), and potential bias from pooling single-rate estimates 
for summary analysis. Another important limitation is the inclusion of 
datasets derived from diverse geographic and demographic settings. 
Geographic heterogeneity likely reflects differences in lineage 
distribution (Brenner and Sreevatsan, 2023), while demographic 

FIGURE 2

Pooled mutation rate estimate of Mycobacterium tuberculosis isolates.

https://doi.org/10.3389/fmicb.2025.1591792
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2025.1591792

Frontiers in Microbiology 07 frontiersin.org

variability may correspond to the emergence of locally adapted variants 
(Correa-Macedo et al., 2019). Furthermore, differences in sequencing 
technologies, bioinformatics pipelines, reference genomes, and variant-
calling thresholds across studies can influence the sensitivity and 
specificity of SNP detection, leading to variability in reported mutation 
rates. For instance, studies using higher-depth sequencing or more 
stringent variant-calling criteria may detect fewer mutations, resulting 
in lower mutation rate estimates, whereas more permissive pipelines 
could inflate the apparent rate (Koboldt, 2020; Feng et  al., 2023). 
Variations in reference genomes can also introduce systematic biases by 
affecting alignment accuracy and SNP calling (Valiente-Mullor et al., 
2021; Zverinova and Guryev, 2022). Collectively, these methodological 
discrepancies may contribute to the heterogeneity observed in our 
meta-analysis and limit the comparability of results across studies. To 
standardize mutation rates, a fixed genome size corresponding to the 
H37Rv reference strain (4,411,532 bp) was adopted. Minor discrepancies 
(<2%) may result from slight variations in genome size across different 
strains (Sanoussi et  al., 2021). Additionally, the limited number of 
studies involving model isolates constrains the statistical power and 
generalizability of comparisons with clinical isolates. Therefore, future 
studies incorporating larger datasets of model isolates are warranted to 
validate and extend these findings.

In conclusion, this study provides a comprehensive analysis of the 
molecular clock rates of M. tb, highlighting significant variations 
between model and clinical strains, as well as substantial heterogeneity 
that underscores the large variation in clock rates across different 
infection scenarios. Future research should prioritize the collection of 
more detailed characteristics of each M. tb infection event and its 
context to enhance the precision of molecular clock estimates.
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