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Flow cytometry study of
Escherichia coli treated with
plasma-activated water:
confirming the absence of the
viable but non-culturable state in
bacteria

Rita Agus*, Fabio Avino, Aleksandra Lavrikova, Brayden Myers

and Ivo Furno

Department of Physics, Swiss Plasma Center (SPC), École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland

Plasma-activated water (PAW) is an emerging antimicrobial agent with promising
applications in bacterial inactivation. The PAW samples are generated by non-
contact exposure of deionized water to a surface dielectric barrier discharge
plasma and are characterized by a reactive nitrogen species-rich chemistry.
In this work, fluorescence flow cytometry is applied to assess the viability of
Escherichia coli treated with PAW. The results indicate that PAW exhibits a strong
bactericidal e�ect, significantly increasing propidium iodide positive populations
and leading to cell shrinkage. Comparative colony-forming unit counting
confirmed these findings, showing agreement between both techniques and
ruling out the possibility of a viable but non-culturable (VBNC) bacteria state.
These results underscore the potential of the PAW samples produced with the
present setup for safe decontamination applications, while also o�ering insights
into the mechanisms of bacterial inactivation.

KEYWORDS

Plasma-activated water (PAW), low-temperature plasmas (LTPs), flow cytometry,
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1 Introduction

Plasma-activated water (PAW) is a novel and promising technology in the
decontamination sector, offering an alternative to traditional chemical and heat-based
disinfectants (Wang and Salvi, 2021). PAW is produced by exposing water to low-
temperature plasmas (LTPs), leading to the accumulation of reactive oxygen and nitrogen
species (RONS) within the water (e.g., O3, H2O2, NO

−
x ). Exposure to LTPs also alters

pH, electrical conductivity (EC), and oxidation reduction potential (ORP), inducing water
acidification and an increase in EC and ORP (Tian et al., 2015; Zhou et al., 2018; Hadinoto
et al., 2021). The synergistic effect of RONS and low pH is believed to be responsible for the
antimicrobial effects of PAW, inactivating a broad spectrum of microorganisms, including
bacteria, viruses, and fungi (Zhou et al., 2018, 2020).
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Typically, the efficacy of antimicrobial agents is evaluated
by measuring bacterial viability based on their proliferation.
Various methods for bacterial counting have been developed,
categorized into bulk methods or single-cell measurements. Bulk
methods, which are relatively simple and fast, detect microbial
growth by measuring changes in turbidity, gas pressure, or
conductivity of the liquid medium (Nebe-Von-Caron et al.,
2000). Alternatively, they rely on counting bacterial colonies on
agar plates, assuming that each colony originates from a single
microorganism (CFU counting) (Shapiro, 2000; Koch, 2007). Bulk
methods are constrained by the necessity to cultivate bacteria in
a controlled environment and do not take into account bacterial
heterogeneity. Furthermore, the comparison between single-cell
analysis and bulk methods can present discrepancies, as in cases
of bacterial injury, presence of persister or dormant cells, or severe
starvation, bacterial growth may become temporarily undetectable
(Nebe-Von-Caron et al., 2000). The presence of viable but non-
culturable (VBNC) cells within the culture might also be the cause
of these discrepancies (Fakruddin et al., 2013; Ambriz-Aviña et al.,
2014). The VBNC state is a physiological state in which bacteria
are metabolically active but cannot duplicate on conventional
culture media. Under favorable conditions, VBNC cells may
resuscitate and regain their ability to duplicate. The VBNC state
is an adaptive survival mechanism employed by many bacterial
species, including numerous human pathogens, in response to
environmental stressors. Although VBNC bacteria evade detection
by conventional culturing methods, they remain viable and can
retain virulence potential (Fakruddin et al., 2013; Liu et al., 2023).
Environmental stressors such as UV radiation, exposure to toxic
compounds, and nutrient deprivation have been shown to induce
the VBNC state in bacteria (Trevors, 2011). Therefore, validating
a decontamination method requires assessing the presence of
the VBNC state. This verification can be achieved by single-cell
methods such as flow cytometry (Fleischmann et al., 2021), which,
combined with fluorescent staining, is increasingly recognized as a
powerful tool for studying bacterial viability (Shapiro, 1985, 2000;
Ambriz-Aviña et al., 2014).

A flow cytometer is a device that analyzes single cells by
exposing them to a laser beam. The cell under investigation by the
diagnostics scatters light in all directions. Forward scattering (FSC),
defined as the light scattered at acute angles, is proportional to the
particle size, while side scattering (SSC), produced at wide angles,
contains information about the internal complexity of the particle
(e.g., granularity). In addition to events enumeration, FSC and
SSC, fluorescent dye staining allows bacteria species and biological
activities to be distinguished, selectively targeting biochemical or
structural properties of the cell (e.g., enzyme activities, nucleic acid
sequences) (Veal et al., 2000). To select distinct subpopulations of
cells within a heterogeneous sample, gating is performed based on
the intensity of FSC, SSC, and fluorescence (Shapiro, 1985, 2000;
Veal et al., 2000; Ambriz-Aviña et al., 2014).

Assessing bacterial viability with fluorescent flow cytometry is
possible through the verification of metabolic activity, maintenance
of membrane potential, or membrane impermeability to specific
dyes (Shapiro, 2000). Membrane integrity and membrane potential
can be measured through dye retention or exclusion methods,
often based on multicolour labeling. One of the most common

method for assessing membrane integrity is the exclusion of the
red-fluorescent nucleic acid stain propidium iodide (PI), combined
with the highly membrane-permeable DNA stain, SYTO9. Cells
with an intact cytoplasmic membrane are impermeable to charged
dyes such as PI. If membrane integrity is lost, PI binds to DNA,
increasing the PI fluorescence 20- to 30-fold (Stiefel et al., 2015).
Staining with PI is therefore a viability assessment test based on
dye exclusion. On the contrary, the green-fluorescent nucleic acid
stain SYTO9 permeates both live and dead bacterial cells. The
SYTO9 fluorescent signal intensifies significantly upon binding to
nucleic acid while displaying low intrinsic fluorescence signal when
unbound. In the presence of both dyes, PI demonstrates a greater
affinity for nucleic acids than SYTO9, leading to the displacement
of SYTO9 by PI (Nebe-Von-Caron et al., 2000; Stiefel et al., 2015).

The live/dead BacLight staining kit (Invitrogen, 2004) utilizes
SYTO9 and PI for viability determination and VBNC cell detection.
This method has been widely used and extensively validated
through microscopy and flow cytometry analyses (Lisle et al., 1998;
Auty et al., 2001; Leuko et al., 2004; Berney et al., 2007; Taimur
Khan et al., 2010; Ambriz-Aviña et al., 2014). It has been applied
for microbial enumeration and detection (Leuko et al., 2004), as
well as for antiseptic efficacy testing (Langsrud and Sundheim,
1996; Stocks, 2004). Additionally, its applications extend to water
quality assessment (Endo et al., 1997; Boulos et al., 1999) and
hygiene monitoring in processed meat (Duffy and Sheridan, 1998).
These studies have shown a strong correlation betweenmicroscopic
counts and direct viable counts, with discrepancies of∼ 0.1 log/mL
(Boulos et al., 1999). This difference corresponds to about a 20%
variation in percentage of inactivation.

It is important to acknowledge that PAW, as other
decontamination methods, may not always induce complete
bacterial cell death but could instead cause sublethal damage
and resulting in VBNC state. Several studies have reported
bacterial VBNC state following plasma treatment (Cooper et al.,
2010; Kvam et al., 2012; Xu et al., 2018; Zhao et al., 2020). For
instance, Dolezalova and Lukes (2015) observed a nearly 7-log
reduction in E. coli populations following 15 min of plasma
exposure when assessed by CFU counting. However, the same
study reported a much smaller reduction (< 1 log, corresponding
to 45% of inactivation) when viability was determined using
the live/dead staining technique, suggesting that a significant
proportion of bacteria had transitioned into the VBNC state
(Dolezalova and Lukes, 2015). These findings underscore the need
for complementary analytical techniques beyond traditional CFU
counting to accurately assess bacterial viability following PAW
treatment. Several microscope acquisitions of bacteria treated
with PAW and stained with the live/dead BacLight kit, such as
Staphylococcus aureus (Ma et al., 2015; Tian et al., 2015), Listeria
monocytogenes (Handorf et al., 2021), and Escherichia coli biofilms
(Xia et al., 2023), are present in the literature, but they were not
associated with quantitative flow cytometry (Gan et al., 2022).

This study aims to address a critical gap in bacterial viability
assessment by utilizing fluorescent flow cytometry to investigate
the potential induction of the VBNC state in E. coli following
treatment with PAW. Understanding whether PAW drives E. coli
into a VBNC state is crucial for accurately evaluating bacterial
inactivation beyond conventional culture-based methods and has
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FIGURE 1

(a) Expanded view of the PAW reactor setup. The SDBD consists of a copper back-plate electrode (i), a dielectric disk (ii), and a stainless steel
perforated disk electrode (iii). The SDBD is in contact with the glass spacer (iv), located on top of the glass vessel (v). A red 3D-printed structure
supports the setup (Agus et al., 2024b). (b) Sketch of the assembled PAW reactor, illustrating the SDBD with the plasma on and the water
configuration in the glass vessel. Blue arrows indicate the water flow direction.

significant implications for antimicrobial applications. Moreover,
this study specifically tests VBNC induction of reactive nitrogen
species (RNS)-rich PAW in contrast with existing research that
predominantly focuses on PAW chemistries dominated by reactive
oxygen species (ROS) (Ma et al., 2015; Gan et al., 2022; Xia et al.,
2023).

2 Materials and methods

2.1 PAW reactor

The reactor used for the preparation of the PAW samples,
illustrated in Figure 1, has been thoroughly described in previous
publications (Agus et al., 2024a,b). The portable setup features a
surface dielectric barrier discharge (SDBD) system, which consists
of a copper back-plate electrode, a dielectric disk, and a stainless
steel perforated disk electrode, as depicted in Figure 1a. The SDBD
is positioned in contact with a glass spacer placed on top of a
glass vessel. As shown in Figure 1b, the water and plasma do not
come into direct contact, with a gap of ∼ 4 mm between them,
guaranteeing no changes in water temperature during the plasma
exposure. The ultra-pure water can be recirculated within the glass
vessel through a persistaltic pump with a constant flow rate of
200mL/min. The blue arrows in Figure 1b indicate the direction
of water flow when the recirculation system is activated. During
the PAW reactor operation, 150mL of ultra-pure water contained
in the glass vessel, was exposed to the SDBD. The SDBD high
voltage waveform featured a 8.8 kV peak-to-peak wave at 21 kHz,

modulated at 100Hz, resulting in a plasma discharge power of
∼ 39W, measured by Lissajous figures (Peeters and Butterworth,
2018; Agus et al., 2024a). This relatively high plasma discharge
power ensured a nitrogen oxides-dominated chemistry, favoring
the formation of nitrogen oxides over reactive oxygen species (Agus
et al., 2024a).

The samples are labeled as dynamic PAW or static PAW,
depending on whether the water recirculation is on or off,
respectively. The chemical composition of PAW is influenced by
both the presence of water recirculation and the duration of plasma
exposure. To specify the plasma treatment duration, samples are
labeled as PAW-XX, where XX denotes the exposure time in
minutes.

Two PAW samples were used for this investigation: static and
dynamic PAW-20. These samples were chemically characterized
in previous works (Agus et al., 2024a,b). The chemical properties
of the PAW samples applied in this work are summarized in
Table 1. The RONS concentrations reported have been measured
by vis-spectrophotometry. The chemical analysis was conducted
on PAW samples immediately following plasma exposure. The
initial sample consisted of ultra-pure water, obtained from a
Puranity TU 3UV/UF water dispenser, with a pH of ∼ 6, an
oxidation-reduction potential (ORP) of 320mV, and an electrical
conductivity (EC) of 0.055 µS cm−1 (Agus et al., 2024a). These
chemical properties are representative of PAW throughout the
entire bacterial treatment duration, as PAW samples were used for
bacteria treatment immediately after plasma exposure and RONS
variations during the first 10 min of storage remain within 10%
deviations (Agus et al., 2024b). The setup exhibited remarkable
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TABLE 1 Average chemical properties of the PAW samples applied for the

flow cytometry study.

Sample NO−
2

[mg/L]
NO−

3
[mg/L]

H2O2
[mg/L]

EC
[µS/cm]

ORP
[mV]

pH

Static
PAW-20

16.9 36.6 0.24 335 554 3.18

Dynamic
PAW-20

41.1 29.5 0.46 291 553 3.21

Deviations from the reported values are within 10% (Agus et al., 2024a).

bacteria inactivation capabilities, making it a promising candidate
for real-world applications such as surface and instrument
decontamination.

2.2 Microbiological protocol

To verify the accuracy of the live/dead BacLight staining
under the applied protocol, positive and negative controls have
been performed (Invitrogen, 2004). Not treated cells represent
the negative control since they should exhibit minimal or no
effect on cell viability and strong SYTO9 fluorescence, establishing
a baseline for comparison. Positive controls are instead used
to validate an expected response, such as a strong signal from
the dead-staining component of the kit (PI). Cells treated for
1 hour with isopropanol have been used as positive controls.
Studies have reported that isopropanol kills bacteria by enhancing
the permeability of bacterial cell membranes and disrupting
protein function by denaturing them (Stiefel et al., 2015). After
isopropanol treatment, cells, although dead and with a deteriorated
membrane, retain their structural integrity (Roth et al., 1997;
Stiefel et al., 2015). Isopropanol-treated cells should predominantly
exhibit PI fluorescence, indicative of cell death. The experiments
were performed with exponentially growing E. coli cells with
an optical density between 0.2 and 0.5; the cell population was
adjusted to 1× 106 CFUmL−1 as recommended by the live/dead
BacLight staining protocol. To perform the PAW and isopropanol
treatments, aliquots of 1mL of E. coli cells were centrifuged at
4,000 rpm for 3 min. For PAW treatment, 960 µL of supernatant
was removed, and the pellet was re-suspended in 960 µL of PAW
immediately after plasma exposure. The negative control tubes
underwent the same centrifugation cycles and were resuspended in
fresh LB to assess any potential effect of the protocol. Tubes were
incubated at 37 ◦C and 180 rpm during 10 min of PAW treatment.
For the 1-hour-lasting isopropanol treatment, the cell pellet was
re-suspended in 300 µL of pH 7 phosphate-buffered saline (PBS),
and 100 µL of 70% of isopropanol were added (Invitrogen, 2004).
After the treatment time, the tubes were centrifuged, and the PAW
and isopropanol were removed. The pellet was then re-suspended
in 1mL of PBS (pH≈7.4) and the cell suspension was immediately
stained. To perform the CFU counting, the cell culture was serially
diluted in 10-fold and 100 µL were inoculated in Luria-Bertani agar
and incubated at 37 ◦C overnight. The tubes used for bacterial
centrifuging and PAW exposure were 1.5mL microtubes (Thermo
Fisher Scientific Inc.; cat. no 3641NK).

The staining mix (SYTO9 + PI) was prepared in a 1:1 ratio
(Boulos et al., 1999; Invitrogen, 2004). The cell suspension was
filtered into flow cytometry tubes, and 3 µL of the staining mix
was added to each tube designated for staining. After mixing, the
tubes were incubated for 15 min at room temperature, protected
from light. Before flow cytometry measurements, 100 µL of each
suspension was diluted in 700 µL of PBS.

All experiments have been performed in three biological
replicates.

2.3 Flow cytometry settings

Flow cytometry measurements were performed on a LSR
Fortessa, 5-laser and 18-detector analyzer flow cytometer, with
488 nm excitation from a blue solid-state laser operating at
100mW. Red fluorescence (PI) was measured above 610 ± 10 nm,
and green fluorescence (SYTO9) was measured at 530 ± 15 nm.
For each measurement, at least 20,000 events were analyzed by flow
cytometry, with a flow rate set at ∼12 µL/min. The bacterial events
were discriminated from debris using FSC-area and side scatter
SSC-area. Single cells have been selected for analysis by FSC-height
and FSC-area. The gates, applied for population discrimination,
were set manually based on the negative and positive controls
(Manoil and Bouillaguet, 2018). The percentages of PI and SYTO9-
positive cells are then defined over the total stained population,
calculated as the sum of cells positive to PI and SYTO9. Data were
exported and analyzed with FlowJo software (FlowJo for Windows,
Tree Star Inc., Ashland, Oregon, U.S.A.).

3 Results and discussion

Figure 2 presents four representative flow cytometry graphs
displaying PI and SYTO9 fluorescence signal intensities for the
negative control (a), positive control (b), and for cells treated with
static (c) and dynamic (d) PAW-20. Rectangular gating was applied
to distinguish PI-positive (non-viable) cells from SYTO9-positive
(viable) cells, with numerical values indicating the percentage of
single cells in each category.

In the negative control, the majority of cells were viable and
therefore located at the bottom of the graph, exhibiting SYTO9
fluorescence. Conversely, in the positive control (Figure 2b), the
cells treated with isopropanol were PI-positive, confirming their
loss of viability and clustering on the top part of the graph. The
flow cytometry profiles for static and dynamic PAW-20 (Figures 2c,
d) revealed a stronger bactericidal effect for dynamic PAW-20, in
agreement with previous findings (Agus et al., 2024a). After static
PAW-20 treatment, approximately half of the population remained
SYTO9-positive, while following dynamic PAW-20 treatment,
the majority of cells were categorized as non-viable. Notably,
in Figures 2b, c, PI-positive cells appear to segregate into two
populations, both with strong PI fluorescence intensities (> 103

arb. units). This suggests membrane permeability to PI, confirming
non-viability, while still expressing residual SYTO9 fluorescence,
indicating that SYTO9 has not been completely quenched by PI.
As reported also by Berney et al. (2007), this configuration could
be associated with the presence of cells in an unfinished state
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FIGURE 2

Representative density plots acquired by flow cytometry of E. coli negative control (a), positive control treated with isopropanol (b), static PAW-20
(c), and dynamic PAW-20 (d) treated E. coli stained with a mixture of PI (y-axes) and SYTO9 (x-axes). Plots represent the fluorescence intensity in
arbitrary units.

of division, containing a higher amount of nucleic acid, where
part of the SYTO9 fluorescence could still be expressed. Another
factor to consider is bacterial heterogeneity since bacteria can
exhibit natural variations in physiological characteristics, including
size, shape, and DNA content (Berney et al., 2007; Zacharias
et al., 2015). Similarly, in Figure 2c, a portion of cells appears to
be progressively transitioning from the SYTO9 to the PI gating.
The majority of these cells already exhibit relatively high PI
fluorescence intensities (of the order of 103 arb. units), indicative
of compromised membranes and dying bacteria.

The flow cytometry results, averaged over three biological
replicates, are reported in Figure 3. The negative control, consisting
of untreated bacteria, revealed that on average, 99.9% of single
cells were stained with SYTO9. Conversely, in the positive
control, where cells were treated with isopropanol, 98.9% of
single cells tested positive for PI. Both positive and negative
controls delivered the expected results, demonstrating a good
performance of the staining. The error bars, not visible in the
graph, accounted for a variability of < 1%. Static and dynamic
PAW-20 treatments were performed for 10 min. Approximately

half of the stained population (56.3%) tested positive for PI
after static PAW-20, while dynamic PAW-20 accounted for
99.9% of single cells positive for PI. As shown in Table 1,
dynamic PAW-20 exhibited higher NO−

2 andH2O2 concentrations,
lower NO−

3 levels, and a similar pH compared to its static
counterpart, resulting in enhanced antimicrobial properties and
PI permeation.

Figure 4 compares the inactivation percentage of E. coli cells
treated with static (a) and dynamic (b) PAW-20, assessed by flow
cytometry and CFU counting.

The two methods show good agreement, as indicated by the
close average values and overlapping error bars. An inactivation
of 56.3% was measured by flow cytometry and of 60.7% by CFU
counting for static PAW-20. In the case of dynamic PAW the same
percentage of inactivation of 99.9% was measured by both flow
cytometry and CFU counting. Given the potential for biological
variability, the technical challenges inherent in such experiments,
and the possibility of instrument error, the discrepancy of
about 4% between the two techniques in the case of PAW-20
static is deemed acceptable, especially if considering that the
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standard deviations associated with CFU counting can be an order
of magnitude.

Critically, these findings suggest that bacterial inactivation is
not associated with a VBNC state. For both static and dynamic
PAW-20, the proportion of inactivated bacteria testing positive for
PI closely matched CFU-based inactivation rates, ensuring that
PAW treatment achieved reliable and safe bacterial inactivation.
Additionally, these results suggest that the presence of PI-positive
cells is unlikely to be solely due to temporary permeabilization of
the membrane caused by PAW treatment. While such cells would
typically stain positive for PI yet retain the ability to recover and
proliferate on agar plates, the observed data do not support this as
the dominant mechanism. The verification of bacteria inactivation
by PAW through flow cytometry and the live/dead BacLight
staining performed in this study is of fundamental importance for
the validation of these PAW samples as reliable decontamination

FIGURE 3

Flow cytometry results indicating the average % of single cells
positive to PI and SYTO9 over three biological replicates of the
negative control, the positive control treated with isopropanol and
static and dynamic PAW-20-treated cells.

agents, excluding the possibility of the VBNC bacteria state. For
food quality applications, for example, guaranteeing that bacteria
are not viable and lack membrane integrity is an important
step in safety assessment to avoid potential toxicity arising from
metabolite accumulation by non-growing organisms. Metabolic
activity and growth depend on the integrity of the cytoplasmic
membrane, which shields the cell from its environment. Cells
with intact membranes can performmetabolic functions, duplicate,
and repair, unless confronted with irreparable DNA damage. Cells
lacking an intact membrane are classified as non-viable since
they are not capable of maintaining or establishing the negative
membrane potential. Their internal structures become exposed to
the environment, leading to eventual decomposition (Nebe-Von-
Caron et al., 2000).

This flow cytometry study not only quantifies E. coli

inactivation but also provides valuable insights into the bacterial
morphological changes induced by PAW.

First, the presence of PI-positive bacteria indicates that
the bacteria membrane has been compromised or damaged by
the treatment (Rosenberg et al., 2019). Possibly, the extent of
membrane disruption has to be sufficient to form pores large
enough to allow PI molecules to penetrate (≈668.4Da) (Johnson
and Criss, 2013). Second, modifications of the cell size can be
observed in the FSC and SSC plots of PAW-treated cells, as
demonstrated by Figure 5.

Indeed, FSC intensity correlates with the cell diameter since it
is associated with the light diffraction around the cell (FlowJo -
Forward Scatter vs. Side Scatter, 2025), while SSC correlates with
cell complexity (Vermes et al., 2000; Bortner and Cidlowski, 2007).
Control cells, shown in Figure 5a, are almost entirely SYTO9-
positive and cluster at higher SSC and FSC values compared to
dynamic PAW-treated cells in Figure 5b. Following the sublethal
static PAW treatment, a portion of cells remain alive and as
shown in Figure 5c, PI-positive and SYTO9-positive populations
form two distinct clusters, reflecting differences in cell size.
Specifically, SYTO9-positive cells appear larger than PI-positive
cells, suggesting that PAW inactivation induced cell shrinkage. The
observed cell shrinkage is in agreement with previous findings,
where cell shrinkage has been measured by TEM (Gan et al.,
2022) and SEM (Zhao et al., 2021). This phenomenon is typically

FIGURE 4

Comparison of the E. coli percentage of inactivation measured by flow cytometry (FC) and CFU counting following static PAW-20 (a) and dynamic
PAW-20 treatment (b).
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FIGURE 5

FSC and SSC measured for control cells (a), and dynamic (b) and static (c) PAW-20-treated E. coli. Noticeable cell shrinkage is visible for cells
inactivated by the treatment and PI+.

observed in bacteria in association with programmed cell death
and membrane blebbing (Bayles, 2014), whereas the opposite,
bacterial swelling, is more commonly induced by cell wall-targeting
antibiotics, which inhibit cross-linking enzymes and lead to cell
lysis (Wong and Amir, 2019).

As previously mentioned, the PAW samples analyzed in
this study contain high concentrations of RNS, including nitrite
(NO−

2 ) and nitrate (NO−
3 ), whereas the hydrogen peroxide

(H2O2) concentrations are two orders of magnitude lower than
those of RNS. This suggests that the observed cell shrinkage
and membrane damage, detected by flow cytometry, are most
likely due to nitrosative stress (Agus, 2025). RNS are well-
documented disruptors of essential cellular processes, including
protein synthesis and DNA replication, while also compromising
membrane integrity and function (Vine, 2011; Chautrand et al.,

2022). Peroxynitrous acid is known to be capable of causing
membrane poration (Balazinski et al., 2021); however, this
hypothesis is excluded here, as both H2O2 and NO−

2 are
required for its formation (Machala et al., 2018). Since the H2O2

concentrations are below 0.5mg L−1 in each tested PAW sample
and two orders of magnitude lower than the NO−

2 concentration,
this reactive species is considered negligible (Agus et al., 2024b).
Given that the average pH of the PAW samples is below 3.2, the
majority of NO−

2 is expected to be in its protonated form as nitrous
acid (HNO2), which has a pKa of 3.3 (Cai et al., 2001). Nitrous acid
is known to undergo disproportionation, generating nitrogen oxide
(NO), nitrogen dioxide (NO2), and nitric acid (HNO3) (Rayson
et al., 2012; Agus et al., 2024b). In contrast, nearly all of the detected
NO−

3 would remain in its ionic form due to the low acid constant
(pKa = −1.37) (Lukes et al., 2012; Bradu et al., 2020). Notably, NO

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1592471
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Agus et al. 10.3389/fmicb.2025.1592471

generated via nitrous acid disproportionation plays a crucial role
in post-translational modifications of bacterial membrane proteins,
particularly through S-nitrosylation of cysteine residues (Fang and
Vázquez-Torres, 2019; Nguyen et al., 2023). At the same time, NO2

has been implicated in lipid peroxidation, leading to membrane
damage, and it is also capable of oxidizing proteins at multiple
sites in a non-specific manner (Halliwell, 1992; Ischiropoulos and
Al-Mehdi, 1995; Shuhong, 2016).

4 Conclusions

Using florescence flow cytometry, this study demonstrates and
quantifies E. coli inactivation by PAW generated through the
non-contact exposure of ultra-pure deionized water to an SDBD
plasma. Flow cytometry analysis confirmed that PAW treatment
compromised bacterial membrane integrity, as evidenced by
increased propidium iodide uptake in PAW-treated cells.

Comparing the flow cytometry results with CFU counting
revealed consistent inactivation rates between the two methods.
The agreement between these techniques suggests that PAW
effectively inactivates bacteria rather than inducing a viable but
non-culturable state, underscoring the reliability of this RNS-rich
PAW as a decontamination agent.

Additionally, cell shrinkage was observed, highlighting
significant physiological changes induced in E. coli by PAW
exposure. The predominance of reactive nitrogen species in the
PAW used here suggests that nitrosative stress plays a key role in
bacterial inactivation, contributing to both membrane damage and
cell shrinkage (Agus, 2025). Nitrosative stress is known to disrupt
essential cellular processes, including protein synthesis and DNA
replication (Vine, 2011; Chautrand et al., 2022).

Overall, these findings, excluding the presence of VBNC cell,
reinforce the potential of PAW as an effective and robust bacterial
decontamination strategy with promising applications in food
safety, healthcare, and industrial sterilization. Other diagnostics,
such as energy-dispersive X-ray spectroscopy, v-PCR, and EMA-
PCR, could be performed to evaluate bacterial viability and support
these findings (Truchado et al., 2020; Haddad et al., 2022; Chen
et al., 2022). Additionally, scanning electron microscopy and
atomic force microscopy could provide valuable insights into the
outer membrane modifications induced by PAW (Eaton et al.,
2008).

This study represents an initial step in elucidating the
mechanisms underlying E. coli inactivation by RNS-rich PAW,
suggesting cell shinkage and membrane damage. Future research
should focus on molecular-level investigations such as proteomics
or RNA sequencing to precisely characterize the pathways involved
in PAW-induced bacterial inactivation.
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