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A comprehensive multi-omics 
analysis uncovers the associations 
between gut microbiota and 
pancreatic cancer
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Pancreatic cancer is one of the most lethal malignant neoplasms. Pancreatic 
cancer is related to gut microbiota, but the associations between its treatment 
and microbial abundance as well as genetic variations remain unclear. In 
this study, we collected fecal samples from 58 pancreatic cancer patients 
including 43 pancreatic ductal adenocarcinoma (PDAC) and 15 non-PDAC, and 
40 healthy controls, and shotgun metagenomic sequencing and untargeted 
metabolome analysis were conducted. PDAC patients were divided into five 
groups according to treatment and tumor location, including treatment-
naive (UT), chemotherapy (CT), surgery combined with chemotherapy 
(SCT), Head, and body/tail (Tail) groups. Multivariate association analysis 
revealed that both CT and SCT were associated with increased abundance of 
Lactobacillus gasseri and Streptococcus equinus. The microbial single nucleotide 
polymorphisms (SNPs) densities of Streptococcus salivarius, Streptococcus 
vestibularis and Streptococcus thermophilus were positively associated with 
CT, while Lachnospiraceae bacterium 2_1_58FAA was positively associated 
with Head group. Compared with Tail group, the Head group showed positive 
associations with opportunistic pathogens, such as Escherichia coli, Shigella 
sonnei and Shigella flexneri. We assembled 424 medium-quality non-redundant 
metagenome-assembled genomes (nrMAGs) and 276 high-quality nrMAGs. 
In CT group, indole-3-acetic acid, capsaicin, sinigrin, chenodeoxycholic acid, 
and glycerol-3-phosphate were increased, and the accuracy of the model 
based on fecal metabolites reached 0.77 in distinguishing healthy controls 
and patients. This study identifies the associations between pancreatic cancer 
treatment and gut microbiota as well as its metabolites, reveals bacterial SNPs 
are related to tumor location, and extends our knowledge of gut microbiota 
and pancreatic cancer.
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Introduction

Pancreatic cancer is one of the most lethal malignant neoplasms, 
and the 5-year survival rate is less than 5% (Nagata et al., 2022). Over 
80% of pancreatic malignancies are pancreatic ductal adenocarcinoma 
(PDAC) (Zhou et al., 2021). Currently, surgical resection remains the 
only potentially curative treatment for pancreatic cancer, and the 
addition of adjuvant chemotherapy has been shown to improve 
survival rates (McGuigan et  al., 2018). Studies have revealed that 
pancreatic cancer is associated with age, sex, ethnicity, blood group 
and gut microbiota (McGuigan et al., 2018). Previous study indicated 
that PDAC group had a lower gut microbial Shannon Index compared 
with healthy controls (Hong et al., 2024), and gut microbiota as a 
biomarker for pancreatic cancer detection has been reported 
(Sidiropoulos et  al., 2024). Moreover, microbial composition and 
function can influence the onset and progression of pancreatic cancer 
(Cheng et al., 2025). In addition, higher fecal Lactobacillus abundance 
correlated with improved progression-free and overall survival of 
PDAC (Liang et al., 2025). While evidence supporting a potential link 
between gut microbiota and the progression of pancreatic cancer, the 
relationship between gut microbiota and treatment outcomes remains 
underexplored. The role of gut microbiota in the treatment of 
pancreatic cancer has yet to be fully established. Regarding tumor 
location, PDAC is typically classified into pancreatic head and body/

tail cancer, with several studies highlighting differences in prognosis 
between these subtypes (Yun et al., 2024). Although gut microbiota of 
patients with pancreatic head cancer has been characterized using 16S 
rRNA gene pyrosequencing (Mei et al., 2018), the limitations of this 
method have precluded a more detailed analysis at the species or 
strain level.

In addition, the majority of current association studies are 
primarily based on microbial abundance, which is a fundamental 
characteristic of microbial communities. However, abundance-based 
studies alone cannot comprehensively elucidate the complex 
relationship between gut microbiota and pancreatic cancer. Single 
nucleotide polymorphisms (SNPs) are prevalent in microbiome, and 
SNPs within gut microbial genome can influence bacterial functions, 
such as drug metabolism and response (Olm et al., 2021; Shi et al., 
2022). Some studies have established associations between microbial 
SNPs and various conditions such as host body mass index (Zahavi 
et al., 2023), colorectal cancer (Ma et al., 2021a) and liver cirrhosis 
(Chen et  al., 2021). However, the potential associations between 
microbial SNPs and pancreatic cancer have not been revealed.

Since the majority of microorganisms remain uncultured and lack 
complete reference genomes, taxonomic annotation of the gut 
microbiome often fails to capture many unknown taxa due to database 
incompleteness (Saheb Kashaf et al., 2021). Additionally, traditional 
microbial genes profiling methods are difficult to assign specific gene 
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to precise microbial species, posing a challenge for species-level 
functional analysis. Currently, de novo assembly and metagenomic 
binning approaches effectively reconstruct metagenome-assembled 
genomes (MAGs) from metagenomic sequencing short reads for 
organisms that have not yet been isolated and cultured. However, the 
reference genome of gut microbiota for pancreatic cancer has not been 
established. In addition, fecal metabolites produced by microbes are 
typically key mediators of host–microbe interactions. Metabolites 
derived from microbes hold considerable promise for the risk 
assessment and prognostication of pancreatic cancer (León-Letelier 
et al., 2024). However, associations between different treatments for 
pancreatic cancer and gut microbiota has not been revealed. Integrated 
analysis of microbiome and fecal metabolome is essential to identify 
microbial metabolites associated with pancreatic cancer treatments.

Here, we collected 98 fecal samples from 40 healthy controls (HC) 
and 58 pancreatic cancer patients, including 43 patients with pancreatic 
ductal adenocarcinoma (PDAC) and 15 with non-pancreatic ductal 
adenocarcinoma (nPDAC). PDAC patients were divided into three 
groups based on treatments: treatment-naive (UT, n  = 15), 
chemotherapy (CT, n = 19), surgery combined with chemotherapy 
(SCT, n = 9). All CT or SCT patients who received chemotherapy were 
treated with 5-FU-based protocols. The minimum interval between the 
initiation of chemotherapy and sample collection was 20 days, and the 
shortest interval between surgery and sampling was 83 days, ensuring 
sufficient time to observe changes of gut microbiota. Additionally, 
PDAC patients were classified by tumor location into pancreatic head 
cancer (Head, n = 22) and pancreatic body/tail cancer (Tail, n = 21) 
(Table  1). Metagenomic sequencing and untargeted metabolome 
analysis were performed on fecal samples. Furthermore, microbial 
SNPs analysis was conducted to establish associations between SNPs 
and pancreatic cancer. MAGs were constructed separately for HC and 
pancreatic cancer patients by metagenomic binning to recover 
genomes for organisms that have yet to be isolated and cultured.

Methods

Sample collection

The stool samples were collected at Chinese PLA General Hospital 
from participants who voluntarily enrolled in the study and provided 
informed consent. Our research protocol was approved by the Ethics 
Committee of the Chinese PLA General Hospital (S2024-015-01). 
Fresh stool specimens were collected in the morning following an 
overnight fast and were immediately flash-frozen in liquid nitrogen 
prior to storage at −80°C. Stool genomic DNA was extracted using a 
magnetic stool kit (TIANGEN, China), which effectively disrupts 
various components and ensures the integrity of DNA through the use 
of glass beads. To avoid potential batch effects, fecal genomic DNA 
extraction kits of the same brand and same production batch were 
used for all samples. In addition, fecal genomic DNA was extracted 
and sequenced in the same batch for all samples. Covariates including 
age, sex, body mass index, hypertension, diabetes and coronary heart 
disease were accounted for to minimize potential confounding factors. 
Diet is an important factor influencing the gut microbiota. In this 
study, the controls and patients were both included from the inpatients 
of our hospital. The control group were all inpatients due to fractures. 
During the hospitalization, the hospital provided a basically consistent 

diet to all inpatients every day, thereby effectively controlling the 
potential differences in diet. Inclusion criteria for this study: (1) 
Participants had not received antibiotics or probiotics within 3 months 
before sampling; (2) Participants had no other gastrointestinal cancers; 
(3) Participants were Han Chinese living in Beijing, China; (4) Patients 
in the treatment group received treatment for at least 20 days; (5) 
Participants had no family history of pancreatic cancer. (6) The 
healthy controls did not suffer from any other diseases or tumors.

Metagenomic sequencing

Quality control and assembly
Shotgun paired-end sequencing was performed on all DNA 

samples using the HiSeq  2,500 platform at Novogene Co., Ltd. 
(China). Quality control of the raw sequencing data was conducted to 
obtain high-quality clean reads using Readfq (v8.0). First, reads 
containing more than 40 consecutive low-quality bases (quality score 
< 38) were discarded. Second, reads with more than 10 “N” bases and 
reads with adapter contamination exceeding 15 bp were removed. To 
eliminate host sequences, the remaining reads were aligned to the 
human genome (GRCh37) using Bowtie2 (v2.2.4) with parameters 
“--end-to-end, --sensitive, -I 200, -X 400.” Finally, the clean reads were 
assembled into scaffolds using MEGAHIT (v1.0.4) with parameters 
“--presets meta-large,” and scaffolds without “N “are obtained by 
breaking from the “N “junction.

Gene predicting and abundance analysis
Open reading fragments (ORFs) on scaffolds were predicted using 

MetaGeneMark (v2.10) with default parameters, and ORFs shorter 
than 100 nucleotides were excluded. To construct a non-redundant 
initial gene catalog, redundant sequences in the predicted ORFs were 
removed using CD-HIT (v4.5.8) with parameters “-c 0.95, -G 0, -aS 0.9, 
-g 1, -d 0.” Clean reads after quality control and assembly were aligned 
to initial gene catalog to calculate the number of aligned reads for each 
gene using Bowtie2 (v2.2.4) with parameters “--end-to-end, --sensitive, 
-I 200, -X 400,” and genes with fewer than two aligned reads were 
excluded. The resulting gene catalog was then aligned to the NCBI NR 
database (v2018.01) using DIAMOND (v0.9.9.110) with parameters 
“blastp, -e 1e-5,” and the Lowest Common Ancestor algorithm was 
applied to determine the taxonomic information. The abundance of a 
specific taxonomical level in a sample was calculated as the sum of the 
abundances of genes assigned to that level. To determine functional 
hierarchies and their corresponding relative abundances, the gene 
catalog was aligned to the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (v2018.01) using DIAMOND.

Single nucleotide polymorphisms analysis

In total, the reference genomes of 86 species were downloaded 
from the NCBI database. Following quality control, the reads were 
aligned to the respective reference genomes using the Burrows-
Wheeler Aligner (BWA, v0.7.8). SNP calling was performed using 
BCFtools (v1.15.1) with parameters “-m 3 -F 0.0002 -C 50.” To reduce 
false-positive calls, the mpileup2snp command of VarScan (v2.4.4) was 
utilized with parameters “--min-coverage 10 --min-reads2 4 --min-var-
freq 0.2 --p-value 0.05.” Only SNPs identified by both BCFtools and 
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VarScan2 were retained for subsequent analysis. Given the positive 
correlation between SNPs frequency and sequencing depth, the 
normalized number of SNPs based on sequencing depth was used to 
calculate SNP density (Ma et al., 2021b). The number of normalized 
SNPs was equal to the original number of SNPs divided by the 
sequencing depth of the sample. The SNPs annotation was conducted 
using SnpEff (v4.3) (Cingolani et al., 2012), and the annotation results 
included synonymous mutations, missense mutations and other types.

Phylogenetic analysis of strains based on 
SNPs

We calculated the p-distance matrix using VCF2Dis (v1.52)1 based 
on Variant Call Format input. The distance matrix was subsequently 
utilized to construct a neighbor-joining phylogenetic tree via Fastme 
(v2.0) (Lefort et  al., 2015) online software. The resulting tree was 
visualized using the R package ggtree (v3.12.0) (Yu, 2022).

Microbial genome reconstruction

Metagenome assembly and binning
The microbial genome reconstruction was conducted using 

MetaWRAP (v1.3.2) (Uritskiy et al., 2018) following the recommended 
analysis pipeline. First, clean sequencing data from both disease and 
healthy control groups were separately assembled using the metawrap-
assembly module with MEGAHIT. Second, the assemblies were 
binned using the metawrap-binning module employing metaBAT2 
(Kang et  al., 2015), MaxBin2 (Wu et  al., 2016) and CONCOCT 

1 https://github.com/BGI-shenzhen/VCF2Dis

(Alneberg et al., 2014), respectively, and the minimum contig length 
used for bin construction was set as the default value. Third, the MAGs 
were refined using the bin_refinement module, and the completeness 
and contamination levels were evaluated with CheckM (Parks et al., 
2015). Only MAGs exhibiting greater than 50% completeness and less 
than 10% contamination were retained for further analysis.

Abundance estimation and taxonomy annotation
The abundance of MAGs across the samples was estimated using 

the quant_bins module of MetaWRAP. The abundance was calculated 
with Salmon (Patro et al., 2017) as “genome copies per million reads.” 
Taxonomic classification of each MAG was determined using the 
Classify_bins module, which employes Taxator-tk to assign taxonomy 
to individual contigs and subsequently integrates these assignments 
to estimate the overall taxonomic composition of the MAG. For 
taxonomic annotation, both the NCBI_nt BLAST database (v2023.11) 
and the NCBI taxonomy database (v2023.11) were utilized.

Dereplication and phylogenetic analysis of MAGs
The species-level genome bins (SGBs) were clustered at a 95% 

average nucleotide identity (ANI) threshold using the “dereplicate” 
function in dRep (v3.4.5) (Olm et al., 2017). Dereplication of all MAGs 
was conducted to obtain non-redundant MAGs (nrMAGs) at a 99% 
ANI threshold through a two-step process. First, MAGs were clustered 
into primary clusters based on a 90% ANI threshold. Second, these 
primary clusters were further clustered into secondary clusters using 
a 99% ANI threshold with a minimum overlap of 30%. Phylogenetic 
analysis of the nrMAGs was performed using PhyloPhlAn (v3.0.67) 
(Asnicar et al., 2020), and the resulting tree was visualized using the 
web-based application iTOL (Letunic and Bork, 2024).

Prediction of the secondary metabolites of MAGs
The secondary metabolites associated with each MAG were 

predicted using antiSMASH (v7.1.0) (Blin et al., 2023) with default 

TABLE 1 Demographic and clinical details of samples.

Variable Pancreatic cancer group

HC (n = 40) PDAC (n = 43) nPDAC (n = 15) p-value Effect size (Cohen’s 
d)

Age 44.95 ± 17 58.12 ± 8.05 55.8 ± 8.39 <0.001 −1.004 (−1.428~−0.574)

Gender (Female) 55.00% (22) 34.88% (15) 53.33% (8) 0.598

BMI 25.07 ± 3.72 22.99 ± 3.34 23.79 ± 3.45 0.011 0.534 (0.123~0.943)

Hypertension 0 37.21% (16) 26.67% (4) <0.001

Diabetes 0 25.58% (11) 20.00% (3) <0.001

Coronary heart disease 0 9.30% (4) 20.00% (3) 0.023

Treatments

  UT - 34.88% (15) 86.66% (13)

  CT - 44.19% (19) 6.67% (1)

  SCT - 20.93% (9) 6.67% (1)

Tumor location

  Pancreatic head - 51.16% (22) -

  Pancreatic body/tail - 48.83% (21) -

HC, healthy control; PDAC, pancreatic ductal adenocarcinoma; nPDAC, non-pancreatic ductal adenocarcinoma; BMI, body mass index; UT, treatment-naïve; CT, chemotherapy; SCT, surgery 
combined with chemotherapy. p value and effect size were calculated by comparing HC group and pancreatic cancer group.
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settings. The antiSMASH is a widely recognized tool designed to 
identify gene clusters involved in the biosynthesis of microbial 
secondary metabolites.

UHPLC-MS/MS analysis

Untargeted metabolomic analysis of stool samples was conducted 
at Novogene Co., Ltd. (China). An 80% methanol solution was added 
to the stool samples, which were then vortexed and incubated in a 
water bath at 4°C for 5 min. Subsequently, the samples were 
centrifuged at 15,000 × g for 20 min at 4°C. A specific volume of the 
supernatant was diluted with a 53% methanol solution and subjected 
to another centrifugation at 15,000 × g for 20 min at 4°C. The resulting 
supernatant was analyzed by LC–MS/MS. Chromatographic 
separation was achieved on a Hypesil Gold column using a linear 
gradient over 17 min at a flow rate of 0.2 mL/min. For positive ion 
mode, the mobile phases consisted of eluent A (0.1% formic acid in 
water) and eluent B (methanol). In negative ion mode, eluent A 
(5 mM ammonium acetate in water) and eluent B (methanol) were 
used as the mobile phases.

Machine learning

The eXtreme Gradient Boosting (XGBoost) algorithm was utilized 
for classifying healthy controls and pancreatic cancer patients based 
on metagenomic and metabolomic data using the R package xgboost 
(v1.6.0) (Chen and Guestrin, 2016). For the reproducibility of the 
models, we  employed multiple random seeds and 10-fold cross-
validation strategy. The receiver operating characteristic (ROC) curve 
visualization and the area under the ROC curve (AUC) value 
calculation were conducted using the R package ROCR (v1.0.11). For 
the training and validation datasets, a random selection process 
allocated 70% of the samples to the training set and 30% to the 
validation set. To determine the optimal number of iterations, 25 
repetitions of 10-fold cross-validation were performed.

Statistical analysis

The principal coordinate analysis (PCoA) was conducted 
using the R package ape (v5.7-1). To identify multivariable 
associations between phenotypes and microbial features, including 
microbial species, functional pathways, and SNP density, 
we employed R package MaAsLin2 (v1.6.0) (Mallick et al., 2021), 
which relies on general linear models to accommodate most 
microbiome study designs, including support for multiple 
covariates. To account for potential confounding factors, random 
effects were included as covariates, specifically gender, age, body 
mass index, hypertension, diabetes, and coronary heart disease. 
The p values were adjusted using the Benjamini-Hochberg method 
to control the false discovery rate (FDR), with a default 
significance threshold set at 0.25. The demographical and clinical 
indicators of HC group and pancreatic cancer group were 
compared using JASP (0.19.3) software. Continuous variables 
satisfying a normal distribution were tested using the Student’s 
t-test, otherwise Mann–Whitney U test was used. Effect size and 

95% confidence intervals were calculated with JASP. The 
Chi-square test was used for categorical variables.

Orthogonal partial least squares discriminant analysis (OPLS-
DA) was conducted on the metabolomic data obtained from both 
positive and negative ion modes after log transformation and 
UV-scaling using SIMCA 14.1 software. A permutation test (n = 200) 
was performed to assess the model’s robustness and validity. Variable 
importance in projection (VIP) values were calculated using SIMCA 
14.1 software to identify significant variables. The Wilcoxon rank 
sum test was applied to evaluate differences in metabolite levels, with 
p values adjusted for multiple testing using the Benjamini-Hochberg 
method (q value). Metabolites with q < 0.05 and VIP > 1 were 
identified as differential metabolites for further analysis. Visualization 
of differential metabolites was achieved using the R package 
pheatmap (v1.0.12). Pearson correlation analysis was conducted 
between the top 10% most abundant microbes and metabolites using 
the R package psych (v2.4.3), with p values corrected for multiple 
comparisons using the Benjamini-Hochberg method (q value). 
Correlation coefficients with |r| > 0.6 and q < 0.05 were visualized 
using Cytoscape (v3.8.2). Fisher’s exact test was performed using 
SPSS (v25) to examine the associations between phylogenetic clusters 
and study groups.

Results

Gut microbial composition in pancreatic 
cancer patients

To investigate the differences in microbial composition across 
groups, principal coordinate analysis (PCoA) was conducted. 
Results indicated no significant differences among HC, PDAC and 
nPDAC groups over the first two dimensions (ANOSIM test, 
p = 0.581). In PDAC and HC groups, distinct clusters were observed 
among UT, CT, SCT and HC groups (Anosim test, R = 0.105, 
p = 0.035, Figure 1A), while no significant differences were found 
among UT, CT and SCT groups (Anosim test, p = 0.182). Notably, 
in PDAC and HC groups, significant clustering differences were 
observed among HC, Head and Tail groups (Anosim test, R = 0.098, 
p = 0.018, Figure  1B), with a significant difference also noted 
between the Head and Tail groups (Anosim test, R = 0.043, 
p = 0.039, Figure  1B). Analysis of the top  10 abundant genera 
revealed that Lactobacillus, commonly used as a probiotic due to its 
promising applications in intestinal health and disease (Huang 
et al., 2022), was positively associated with CT and SCT groups but 
not with UT (Figures 1C,D). Previous studies have highlighted the 
potential of Lactobacillus spp. in ameliorating pancreatic cancer and 
modulating gut microbial homeostasis (Zhu et  al., 2023). 
Streptococcus showed a specific positive association with CT group, 
while Gloeobacter, Rhodococcus and Bosea were positively associated 
with UT group. In contrast, Dubosiella, which is positively 
correlated with short-chain fatty acids (Fang et al., 2023), exhibited 
a specific negative association with CT group.

Setting HC as the reference group, we further investigated the 
associations between disease groups and specific microbial species. 
The CT group exhibited increased abundances of Streptococcus spp. 
and Lactobacillus spp., such as Streptococcus pneumoniae, a cause 
agent of community-acquired pneumonia (Weiser et al., 2018), and 
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Streptococcus mutans, which is predominantly observed in patients 
with underlying cardiovascular conditions (Nomura et  al., 2020; 
Figure 1E). Conversely, the CT group showed decreased abundances 

of Ruminococcus gnavus, Ruminococcus gnavus CAG:126 and 
Clostridium spiroforme. Both CT and SCT groups were associated with 
increased abundances of Lactobacillus gasseri and Streptococcus 

FIGURE 1

Differences of gut microbial composition across groups. (A) PCoA result of gut microbial composition among HC, UT, CT and SCT groups. (B) PCoA 
result of gut microbial composition among HC, Head and Tail groups. (C) The relative abundance of the top 10 genera in each group. (D) Analysis of 
associations between microbial genera and groups with the HC as the reference group using MaAslin2. (E) Analysis of associations between microbial 
species and groups with the HC as the reference group using MaAslin2. (F) Analysis of associations between microbial genera and groups with the HC 
as the reference group using MaAslin2. (G) Analysis of associations between microbial species and groups with the HC as the reference group using 
MaAslin2, and the top 50 significant associations are displayed. (H) Analysis of associations between microbial KEGG modules and groups with the HC 
as the reference group using MaAslin2, and the top 50 significant associations are displayed.
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equinus, which has been implicated in colorectal cancer and infective 
endocarditis (Kaiki et al., 2021).

To investigate the associations between microbes and the Head or 
Tail groups, HC was designated as the reference group. Results 
revealed positive associations between Streptococcus and Anaeroglobus 
with Head group, while Massiliomicrobiota and Candidatus 
Stoquefichus showed negative associations (Figure 1F). Seinonella and 
Acidovorax exhibited positive associations with the Tail group. At the 
species level, out of 810 abundant species, 51 species showed 
significant associations with either Head or Tail group, and the top 50 
significant associations were displayed (Figure  1G). Specifically, 
Streptococcus vestibularis and Streptococcus oralis were positively 
associated with Head group, whereas Clostridium spiroforme and 
Absiella dolichum showed negative associations. Only six significant 
associations were identified between species and Tail group. Setting 
Head group as the reference, nine negative associations were found 
between species and Tail group, including opportunistic pathogens 
such as Escherichia coli, Shigella sonnei, Shigella flexneri and Shigella 
dysenteriae. Previous study has reported the association of Escherichia 
coli with the development of PDAC (Wei et al., 2019). Also, Veillonella 
spp., such as Veillonella parvula, Veillonella sp. oral taxon 158 and 
Veillonella tobetsuensis, were significantly negatively associated with 
Tail group.

Alterations of microbial function in 
pancreatic cancer patients

The KEGG module analysis revealed that the UT, CT and SCT 
groups were all characterized by an increased abundance of 
“Tetrahydrofolate biosynthesis” (M00841, M00126) (Figure 1H). In 
contrast, the CT group exhibited a decreased abundance of “Polyamine 
biosynthesis” (M00133), “D-Glucuronate degradation” (M00061) and 
“beta-Lactam resistance” (M00627). The SCT group showed increased 
abundance of “Pyocyanine biosynthesis” (M00835), “Sphingosine 
biosynthesis” (M00099) and “Cytochrome c oxidase” (M00156).

The enrichment analysis of KO genes indicated that pathways, 
such as “Cell cycle,” “MAPK signaling pathway,” “Autophagy” and 
“Endocytosis,” were significantly enriched in PDAC patients. 
Conversely, pathways like “Biosynthesis of amino acids,” “Porphyrin 
metabolism,” “Pentose phosphate pathway” and “Phenylalanine, 
tyrosine and tryptophan biosynthesis” were predominantly enriched 
in HC (Figure 2A). A total of 265 KO genes were associated with UT, 
CT or SCT groups, with 217 and 103 KO genes specifically linked to 
CT and SCT groups, respectively, and 71 KO genes shared between 
CT and SCT. The top 50 features with significant associations are 
illustrated (Figure  2B). Further analysis revealed significant 
associations between PDAC group and increased abundance of KO 
genes involved in microbial metabolic pathways, particularly 
“Mevalonate pathway,” “Pyruvate oxidation” and “Tetrahydrofolate 
biosynthesis” (Figure 2C). Notably, the CT and SCT groups showed 
elevated levels of PDHA (K00161) and PDHB (K00162), which are key 
enzymes in pyruvate oxidation, as well as MVK (K00869), E2.7.4.2 
(K00938) and MVD (K01597), which are involved in the mevalonate 
pathway. However, these changes were not observed in UT group, 
suggesting their potential modulations by treatments. Pearson 
correlation analysis demonstrated that KO genes involved in 
“Mevalonate pathway” and “Pyruvate oxidation” were significantly 

positively correlated with Lactobacillus spp. and Streptococcus spp., 
respectively, indicating that alterations in the abundance of these 
species may play a critical role in microbial pyruvate oxidation and 
mevalonate pathway in CT and SCT groups (|r| > 0.6, Figure 2D).

The associations between KEGG modules and the Head or Tail 
groups were further analyzed. Multi-group analysis revealed a 
significant positive correlation between the Head group and the 
KEGG modules “Tetrahydrofolate biosynthesis” (M00841, M00126, 
M00840), “Tetracycline resistance” (M00635) and “Sphingosine 
biosynthesis” (M00099) (Figure  2E). We  further examined the 
relationships between KO genes and the Head or Tail groups. Notably, 
positive associations were observed between the Head group and KO 
genes involved in “Lipopolysaccharide biosynthesis,” “Heme 
biosynthesis,” “Purine metabolism,” “Threonine biosynthesis” and 
“GABA biosynthesis” (Figure 2F). We further quantified the levels of 
intermediate metabolites from “Purine metabolism,” “Threonine 
biosynthesis” and “GABA biosynthesis” in fecal samples. Consistently, 
uric acid, hypoxanthine and xanthine levels were significantly elevated 
in the Head group, while no differences were observed between the 
HC and Tail groups (Figure 2G). Additionally, threonine and GABA 
levels in feces were significantly increased in the Head group 
compared to HC. These results suggested that the increased abundance 
of microbial KO genes associated with “Purine metabolism,” 
“Threonine biosynthesis” and “GABA biosynthesis” may be related to 
the elevation of fecal metabolites produced by these pathways. Pearson 
correlation analysis was conducted to identify species associated with 
altered KO genes involved in “Purine metabolism” (|r| > 0.6, 
Figure  2H). The results indicated that yagT (K13483) and yagR 
(K11177) were positively correlated with Shigella spp. and Escherichia 
coli, while purK (K01589), allB (K01466) and purM (K01933) were 
positively correlated with Bifidobacterium spp. Speculatively, the 
increased abundance of Shigella spp. and Escherichia coli in the Head 
group may be related to the elevated KO genes involved in purine 
metabolism and higher uric acid levels in feces.

Single nucleotide polymorphism of 
microbes in pancreatic cancer patients

Furthermore, single nucleotide polymorphisms (SNPs) analysis was 
conducted across 86 species, and the normalized SNP densities were 
calculated for each species. PCoA results indicated no significant 
differences in SNP density among HC, UT, CT and SCT (p > 0.05). 
Association analysis revealed that the SNP densities of Streptococcus 
salivarius, Streptococcus vestibularis and Streptococcus thermophilus were 
positively associated with CT, while Lachnospiraceae bacterium 
2_1_58FAA exhibited an inverse relationship (Figure 3A). The SNP 
density of Dialister invisus was positively associated with UT. Additionally, 
PCoA result showed a weak separation among HC, Head and Tail groups 
(Anosim test, R = 0.074, p = 0.025, Figure  3B). Further association 
analysis identified 27 out of 86 species significantly associated with the 
Head group, including 10 species not previously identified through 
abundance analysis (Figure 3C). However, no associations were found 
between microbial SNP density and the Tail group. Lachnospiraceae 
bacterium 2_1_58FAA showed the highest significance in SNP density 
between HC and Head groups. Moreover, Faecalibacterium prausnitzii, 
a highly abundant gut microbe, showed no differences in abundance but 
exhibited lower SNP density in Head group compared to HC.
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FIGURE 2

Microbial function and correlation analysis. (A) KO enrichment analysis for HC and patient groups. (B) Analysis of associations between microbial KO 
genes and groups with the HC as the reference group using MaAslin2, and the top 50 significant associations are displayed. (C) Microbial KEGG 
module analysis for “Pyruvate oxidation,” “Tetrahydrofolate biosynthesis,” “Tetrahydrofolate biosynthesis.” Red box represents microbial KO genes 
positively associated with PDAC group. Black dot represents an intermediate metabolite. (D) Pearson correlation analysis between microbial KO genes 
and species (|r| > 0.6). Red line represents positive correlation, and blue line represents negative correlation. The thickness of the line represents the 
strength of the correlation. (E) Analysis of associations between microbial KEGG modules and groups with the HC as the reference group using 
MaAslin2, and the top 50 significant associations are displayed. (F) Microbial KEGG module analysis for “Lipopolysaccharide biosynthesis,” “Heme 
biosynthesis,” “Purine metabolism,” “Threonine biosynthesis,” and “GABA biosynthesis.” Red box represents microbial KO genes positively associated 
with the Head group, and blue box represents microbial KO genes positively associated with the Tail group. Black dot represents an intermediate 
metabolite. (G) UHPLC–MS/MS analysis for fecal uric acid, hypoxanthine, xanthine, threonine and GABA levels. (H) Pearson correlation analysis 
between microbial KO genes involved in purine metabolism and species (|r| > 0.6). Red line represents positive correlation, and blue line represents 
negative correlation. The thickness of the line represents the strength of the correlation.
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To further identify the significant gene of Lachnospiraceae 
bacterium 2_1_58FAA associated with the Head group in terms of 
SNP density, association analysis was conducted between microbial 
gene SNP density and the Head group. Among the 3,578 genes 
analyzed, 3,570 genes exhibited a significant association with the Head 
group (q < 0.25). Notably, isoleucyl-tRNA synthetase (locus_tag: 
HMPREF0991_00796; GenBank: EGN49576.1) ranked highest in 

significance (Figure  3D). Additionally, out of 1,109 genes from 
Streptococcus thermophilus, 1,006 showed significant associations with 
the Head group, with DQ228_RS01180 gene showed the highest 
significance (Figure 3E).

To investigate the phylogenetic characteristics of 
Lachnospiraceae bacterium 2_1_58FAA across 83 samples, 
we constructed a phylogenetic tree based on SNPs (Figure 3F). 

FIGURE 3

Single nucleotide polymorphisms analysis. (A) Setting HC as the reference group, association analysis between each group and microbial SNPs 
densities. (B) PCoA result for HC, Head and Tail groups. (C) Setting HC as the reference group, significant associations between the Head group and 
microbial SNPs densities (q < 0.25). The positive associations were indicated by “+,” and the negative associations were indicated by “-.” The red, blue 
and gray dots represent positive, negative, and no associations between Head group and microbes in abundance, respectively. (D) The most significant 
gene of Lachnospiraceae bacterium 2_1_58FAA associated with Head group. (E) The most significant gene of Streptococcus thermophilus 2_1_58FAA 
associated with Head group. (F) Phylogenetic analysis for Lachnospiraceae bacterium 2_1_58FAA genome based on all genes across 83 samples. G 
and H. Phylogenetic analysis for isoleucyl-tRNA synthetase (HMPREF0991_00796) of Lachnospiraceae bacterium 2_1_58FAA (G) and single nucleotide 
mutation sites analysis (H). The red dots represent missense mutations, green dots represent synonymous mutations and blue dots represent other 
mutation types.
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The resulting tree was divided into three distinct clusters: Cluster 
1 and Cluster 2 predominantly comprised members from the Head 
group, while Cluster 3 mainly consisted of individuals from the 
HC and Tail groups. Fisher’s exact test confirmed a significant 
association between the phylogenetic characteristics and the Head 
group (OR = 34.7, p < 0.001). Furthermore, we analyzed the SNPs 
in the isoleucyl-tRNA synthetase gene of Lachnospiraceae 
bacterium 2_1_58FAA. A phylogenetic tree was constructed based 
on SNPs, and their distributions were visualized (Figures 3G,H). 
Most SNPs were observed in HC group, whereas almost all 
individuals in Head group have no SNPs. Importantly, the 
majority of SNPs are synonymous mutations, indicating that they 
do not alter the encoded amino acids. SNPs analysis results 
suggest a strong association between microbial SNPs and the 
Head group.

A high-quality microbial genome catalog 
for pancreatic cancer

To construct a high-quality microbial genome catalog, 
we performed metagenomic assembly and binning separately on HC 
and patient groups. A total of 324 MAGs were recovered from HC 
group, with an average completeness of 82.65%, contamination of 
2.32%, genome size of 2.24 megabases (Mb), and N50 of 18.75 
kilobases (kb). MAGs were obtained using thresholds of ≥ 50% 
genome completeness and ≤ 10% contamination. All 324 MAGs were 
retained at an average nucleotide identity (ANI) threshold of 95% to 
generate species-level genome bins (SGBs). Among these, six SGBs 
were classified as unknown SGBs that could only be annotated to the 
Bacteria kingdom or lower taxonomic levels (Figure 4A). In patient 
group, a total of 455 MAGs were recovered, with an average 
completeness of 80.21%, contamination of 2.34%, genome size of 2.14 
megabases (Mb) and N50 of 19.44 kb. All 455 MAGs were SGBs, 
among which 20 SGBs were classified as unknown SGBs (Figure 4B). 
Moreover, 86% of the SGBs in the patient group belonged to the phyla 
Bacillota and Bacteroidota.

We further integrated 779 SGBs and dereplicated them using an 
ANI threshold of 99% to obtain a final set of non-redundant MAGs 
(nrMAGs) with strain-level resolution. Ultimately, a total of 723 
nrMAGs were retained. Among these, 424 nrMAGs were classified as 
medium-quality (50% ≤ completeness < 90% and contamination ≤ 
5%), while 276 nrMAGs satisfied the high-quality criteria 
(completeness ≥ 90% and contamination ≤ 5%). Based on 723 
nrMAGs, phylogenetic tree was constructed and displayed 
(Figure  4C), and the genome size, contamination level, and 
completeness of nrMAGs were displayed (Figure 4D).

To investigate the metabolic functions of MAGs, the secondary 
metabolites produced by 779 MAGs were predicted. Results 
revealed that 22 metabolites could be  produced by MAGs 
assembled from HC group, whereas 31 metabolites were identified 
in MAGs from the patient group. Among these, 21 metabolites 
were common to both groups (Figure 4E). The top three prevalent 
metabolites across the majority of MAGs were ranthipeptide, 
RRE-containing and cyclic-lactone-autoinducer. HR-T2PKS was 
exclusively predicted in MAGs from HC group, while 10 
metabolites, such as thioamitides, archaeal-RiPP and hserlactone, 
were uniquely predicted in MAGs from the patient group 

(Figure 4F). Notably, thioamitides and lassopeptide, which have 
significant potential for anticancer drug development (Cheng and 
Hua, 2020; Hu et  al., 2022), as well as ectoine, a novel anti-
inflammatory and tissue-protective compound (Bethlehem and van 
Echten-Deckert, 2021), were specifically predicted in MAGs from 
the patient group.

Fecal metabolome analysis across groups

To further investigate the alterations in fecal metabolites, 
untargeted metabolomic analysis was conducted on 79 fecal samples. 
Orthogonal partial least squares discriminant analysis (OPLS-DA) 
was conducted to examine the differences in metabolome across 
groups. In positive ion mode, three distinct clusters were identified 
among the four groups (Figure 5A). To evaluate potential overfitting, 
a permutation test was performed, generating 200 OPLS models by 
randomly permuting the categorical variables (Figure  5B). The 
permuted Q2 and R2 values consistently fell below the original values, 
indicating that the model is robust and reliable without overfitting 
(Wen et al., 2019). In negative ion mode, a clear separation between 
the CT and HC groups was also observed (Figure 5C). The slope of R2 
was 0.285 (<0.4) and the intercept of Q2 was −0.258 (<0.05) 
(Figure 5D), confirming the absence of overfitting (Shi et al., 2020). 
Additionally, discriminant clusters were identified among the Head, 
Tail and HC groups based on positive and negative ion mode 
metabolites, separately (Figures 5E–H).

Differential analysis was conducted to identify discriminant 
metabolites in positive ion mode between the HC and other groups 
(VIP > 1, q < 0.05). The top-ranked differential metabolites in positive 
ion mode were displayed (Figure 5I). Notably, icaritin, known for its 
antitumor activities (Shi et al., 2020), was significantly up-regulated in 
CT group compared to HC. Formononetin and betulin, both of which 
exhibit antitumorigenic properties in vitro (Rzeski et al., 2009; Tay 
et  al., 2019), were also significantly up-regulated in CT group. 
Methionine sulfoxide, the major product of methionine oxidation 
which activates pyruvate kinase M2 to promote pancreatic cancer 
metastasis (He et al., 2022), was upregulated in CT group. Indole-3-
acetic acid, a modulator that enhances chemotherapy efficacy in 
pancreatic cancer (Tintelnot et al., 2023), was increased in CT group. 
Conversely, capsaicin, which has been shown to suppress the growth 
of pancreatic cancer (Zhang et al., 2008), was significantly decreased 
in CT group. Esculetin, which induces antiproliferative and apoptotic 
response in pancreatic cancer cells (Arora et al., 2016), was increased 
in CT group. S-Adenosylmethionine, which sensitizes pancreatic 
tumor cells to chemotherapeutic agents (Kesh et  al., 2022), was 
decreased in UT group.

In Head group, 147 out of 331 differential metabolites detected in 
positive ion mode were elevated compared to HC group, whereas only 
6 out of 13 differential metabolites showed increased levels in Tail 
group. The top-ranked differential metabolites in positive ion mode 
were displayed (Figure 5K). These results indicate that the Head group 
exhibits greater alterations in fecal metabolites relative to the HC 
group compared to Tail group.

To further investigate the correlations between differential 
metabolites and microbes, Pearson correlation analysis was conducted 
(Figure 5M). Results showed a positive correlation between icaritin and 
butyrate-producing bacteria, such as Roseburia intestinalis, Roseburia 
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FIGURE 4

De novo assembly and binning. (A) A total of 324 MAGs annotated to each phylum from HC dataset assembly. (B) A total of 455 MAGs annotated to 
each phylum from patient dataset assembly. (C) Phylogenetic analysis for 723 nrMAGs. (D) The distribution of completeness and contamination across 
nrMAGs. The color of point represents phylum, and the size of point represents the genome size of nrMAGs. (E) Microbial secondary metabolites 
predicted using antiSMASH based on all MAGs. (F) Specific microbial secondary metabolites predicted based on HC or patient MAGs.
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FIGURE 5

Untargeted metabolome analysis. (A,C) The orthogonal partial least squares discriminant analysis (OPLS-DA) scores plot for HC, UT, CT and SCT 
groups based on metabolites of positive and negative ion mode, respectively. (B,D) Permutation test (n = 200) for OPLS-DA model of panels (A,C), 
respectively. (E,G) OPLS-DA scores plot for HC, Head and Tail groups based on metabolites of positive and negative ion mode, respectively. (F,H) 
Permutation test (n = 200) for OPLS-DA model of panels (E,G), respectively. (I) The top-ranked differential metabolites of positive ion mode for UT, CT 
and SCT compared with HC. (J) The top-ranked differential metabolites of negative ion mode for UT and CT compared with HC. (K,L) The top-ranked 
differential metabolites of positive and negative ion mode for Head and Tail compared with HC, respectively. Differential metabolites with higher fold 
changes in comparison between groups are displayed with red dots (q < 0.05). (M,N) Correlation analysis between 810 abundant microbes and 
differential metabolites of interest in positive and negative ion mode, respectively (|r| > 0.4, q < 0.05).
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intestinalis CAG:13, and uncultured Butyricicoccus sp. (Kasahara et al., 
2018). Previous studies have shown that butyrate enhances anti-tumor 
activity in syngeneic murine pancreatic cancer model (Luu et al., 2021). 
Additionally, probiotics associated with antitumor effects, such as 
Bifidobacterium spp. (Luu et al., 2021), were found to be positively 
correlated with betulin and formononetin. Short-chain fatty acid-
producing probiotics, such as Butyrivibrio crossotus, Butyricicoccus 
pullicaecorum and Lactobacillus oris, showed positive correlations with 
cholecalciferol (vitamin D3). Clostridium, which has been identified as 
a promising agent for anticancer treatment (Yaghoubi et al., 2021), was 
positively correlated with neriifolin.

Differential analysis was conducted in negative ion mode to 
identify discriminant metabolites between the HC and other groups 
(VIP > 1, q < 0.05). The top-ranked differential metabolites in negative 
ion mode were displayed (Figure 5J). Notably, sinigrin, which has 
demonstrated anti-cancer, antibacterial and anti-inflammatory 
properties (Mazumder et al., 2016), was significantly upregulated in 
CT group. Glycerol-3-phosphate, which has been associated with 
improved survival rates in pancreatic cancer patients (Ohara et al., 
2024), showed a significant increase in CT group. Mevalonic acid, an 
essential compound for the growth of pancreatic cancer cells (Sumi 
et al., 1992), was also significantly increased in the CT group. Gluconic 
acid, which holds remarkable potential for monitoring the progression 
and metastasis of pancreatic cancer (Luo et al., 2020), was significantly 
elevated in CT group.

In Head group, 146 out of 184 differential metabolites in negative 
ion mode were significantly elevated compared to HC, whereas only 
7 differential metabolites were identified in Tail group. The top-ranked 
differential metabolites in negative ion mode were displayed 
(Figure 5L). Correlation analysis between microbes and metabolites 
in negative ion mode revealed that stearic acid was positively 
correlated with Prevotella spp., while Bacteroides spp. showed positive 
correlations with adrenic acid and palmitoleic acid (Figure  5N). 
Adrenic acid, identified as a potential biomarker for PDAC detection, 
exhibits excellent diagnostic performance (Cao et al., 2021). Prevotella 
intermedia, which has been associated with pancreatic cancer (Petrick 
et al., 2022), was positively correlated with palmitoleic acid. Study also 
has reported that overexpression of ZNF488 promotes pancreatic 
cancer cell proliferation and tumorigenesis by enhancing palmitoleic 
acid production (Xiao et  al., 2023). Odoribacter splanchnicus, 
implicated in colorectal carcinogenesis (Png et  al., 2022), was 
positively correlated with sinigrin.

Identification of pancreatic cancer patients

We further developed a classifier for distinguish between HC and 
pancreatic cancer patients using the eXtreme Gradient Boosting 
(XGBoost) method. Classifier was constructed based on the composition 
of gut microbes and fecal metabolites. Specifically, 28 species were 
selected as the optimal features for model construction. Notably, 
Streptococcus mitis, which was significantly enriched in CT group, 
emerged as the most important feature (Figure 6A). By integrating the 
abundance data of 28 species, the model achieved an AUC of 0.71 and 
an accuracy of 0.67 in the validation dataset (Figure 6B).

Furthermore, another model was constructed using 29 metabolites 
identified in positive ion mode. Notably, methionine sulfoxide, which 
was significantly enriched in UT, CT and SCT groups, emerged as the 

second most important feature (Figure 6C). Based on 29 metabolites, 
the model achieved an AUC of 0.858 and an accuracy of 0.7692 in the 
validation dataset (Figure  6D). Additionally, a comparable model 
performance was obtained using 25 metabolites identified in the 
negative ion mode (Figure 6E), with similar discriminatory power to 
the positive ion mode model (Figure 6F). The superior discriminatory 
ability of fecal metabolites compared to microbial markers underscores 
their potential utility in identifying pancreatic cancer patients.

Discussion

Our study revealed significant alterations in gut microbial 
composition between HC and pancreatic cancer patients with or 
without treatments. Notably, after excluding nPDAC patients, significant 
differences in gut microbiota were observed between the HC, UT, CT 
and SCT groups. However, no significant differences were found among 
the UT, CT and SCT groups. This suggests that the impact of pancreatic 
cancer itself on gut microbiota may be more substantial than the effect 
of treatment modalities. Additionally, most patients are ineligible for 
curative surgery, with chemotherapy and/or radiotherapy being the 
main treatment options, which often have limited efficacy (Merali et al., 
2024). Consequently, the unchanged disease status post-chemotherapy 
may determine microbial composition.

At present, gut microbiota and their metabolites have garnered 
increasing attention in pancreatic cancer therapy. Several species 
associated with enhanced tumor immune response were observed in 
long-term survivors of pancreatic cancer (Kharofa et al., 2023). Studies 
indicated that microbiota-derived metabolite has clinical implications 
in the treatment of PDAC (Mirji et al., 2022; Tintelnot et al., 2023). 
Murine experiments indicated that alterations in gut microbiota could 
influence tumor microbiota and tumor growth (Cheng et al., 2025). 
Therefore, microbial signatures may serve as novel biomarkers for the 
treatment and prognosis of pancreatic cancer. In our study, we found 
that Lactobacillus, previously identified as beneficial for pancreatic 
cancer alleviation (Zhu et  al., 2023), was enriched in CT and SCT 
groups. Specifically, Lactobacillus rhamnosus also has been shown to 
alleviate clinical symptoms and/or prevent intestinal disorders through 
both clinical studies and animal experiments (Huang et  al., 2022). 
Therefore, it is worth investigating whether the therapeutic effects of CT 
and SCT on pancreatic cancer are partly mediated by increased 
abundance of Lactobacillus.

We found that Streptococcu, such as Streptococcus mutans and 
Streptococcus pneumoniae, were positively associated with both CT and 
Head groups. Notably, oral carriage of Streptococcu was associated with 
a higher risk of PDAC (Wei et al., 2020). Additionally, a two-sample 
Mendelian Randomization analysis identified Streptococcu as potential 
causative factors for PDAC (Jiang et al., 2023). The increased abundance 
of Streptococcu in CT group may be associated with the progression of 
pancreatic cancer. Furthermore, only six differentially abundant species 
between HC and Tail groups were identified, suggesting that gut 
microbial composition of the Tail group is more similar to that of the 
HC group. Importantly, Veillonella and opportunistic pathogens such as 
Escherichia coli, Shigella sonnei, Shigella flexneri and Shigella dysenteriae 
were positively associated with the Head group but negatively associated 
with the Tail group. Pancreatic cancer patients are particularly 
predisposed to developing Escherichia coli (E. coli) bloodstream 
infection (Bai et  al., 2022). Moreover, multiple studies have 
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FIGURE 6

Classifiers for HC and pancreatic cancer patients using eXtreme Gradient Boosting (XGBoost) method. (A) The 28 optimal features of gut microbes 
selected for constructing classifier model. (B) Receiver operating characteristic (ROC) curve of the classifier based on 28 microbes. (C) The 29 optimal 
features of metabolites of the positive ion mode selected for constructing classifier model. (D) ROC curve of the classifier based on 29 metabolites of 
the positive ion mode. (E) The 25 optimal features of metabolites of the negative ion mode selected for constructing classifier model. (F) ROC curve of 
the classifier based on 25 metabolites of the negative ion mode.
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demonstrated that four genera, such as Escherichia, Shigella and 
Veillonella, are significantly elevated in PDAC patients compared to HC 
(Hong et  al., 2024). Therefore, we  speculate that Escherichia coli 
infection in pancreatic cancer patients may be  associated with the 
retrograde dissemination of gut increased Escherichia coli. Apart from 
the tumor location, other characteristics of the tumor are also associated 
with the gut microbiota, such as tumor size, and tumor stage (Yachida 
et al., 2019; Chen et al., 2022; Yang et al., 2023). In this study, we only 
focused on the associations between tumor location and gut microbiota. 
The relationship between other clinical variables and gut microbiota 
requires more research to reveal.

The elevated fecal UA levels in the Head group were associated with 
the increased abundance of Shigella spp. and Escherichia coli. Our 
previous research has established the associations of Shigella spp. and 
Escherichia coli with UA levels, supported by animal experiments that 
demonstrated the role of Escherichia coli in regulating host UA levels 
(Han et al., 2024). Consequently, the higher abundance of Shigella spp. 
and Escherichia coli likely contribute to the elevated UA levels in the 
Head group. Previous study has also reported an association between 
high serum UA levels and an increased risk of pancreatic cancer (Huang 
et al., 2020). Therefore, targeting Shigella spp. and Escherichia coli may 
represent a promising strategy for regulating host plasma UA levels and 
potentially preventing pancreatic cancer in future.

Several studies have indicated that pancreatic head cancer and 
pancreatic body/tail cancer are different diseases (Birnbaum et al., 2019; 
Sun et  al., 2022). In our study, we  found significant differences in 
microbial composition and SNP densities between the Head and Tail 
groups. What’s more, through analyzing 86 species, we found that SNPs 
of 27 species were associated with the Head group but not the Tail 
group. The SNP density of Lachnospiraceae bacterium 2_1_58FAA 
showed the highest significance and negatively associated with the Head 
group. Study has shown that the abundance of Lachnospiraceae 
bacterium 2_1_58FAA is positively associated with colorectal neoplasms 
(Wu et al., 2020). To our knowledge, our study is the first to reveal an 
association between SNPs of Lachnospiraceae bacterium 2_1_58FAA 
and pancreatic head cancer. Microbial SNPs account for considerable 
genetic variation, and some are linked to certain diseases. Previous 
study indicated that the 171S/L HtrA mutation in Helicobacter pylori 
promotes gastric cancer development and as a potential biomarker for 
risk predictions (Sharafutdinov et al., 2023). Also, bacterial SNPs in the 
human gut microbiome associate with host body mass index (Zahavi 
et al., 2023). However, whether individual SNPs in gut microbiota play 
an important role in pancreatic cancer development is unknown. Our 
results provide supports for further elucidation of the causal link 
between microbial SNPs and pancreatic cancer. On this basis, targeting 
individual strains or mutation sites may be  an effective strategy to 
personalized treatment and improve efficacy.

Totally, we assembled 723 nrMAGs using all samples, and obtained 
276 high-quality and 424 medium-quality nrMAGs. Among these, 26 
SGBs were classified as unknown SGBs. Given the limitations of read-
based taxonomic analysis due to incomplete reference databases, 
numerous studies have constructed microbial genome catalogs, such as 
those related to COVID-19 (Ke et al., 2022) and Hadza hunter-gatherers 
(Carter et al., 2023). To our knowledge, this is the first microbial genome 
catalog specifically for pancreatic cancer patients. We  identified 
thioamitides produced by MAG100 (Methanobrevibacter) and 
lassopeptide produced by MAG277 (Clostridium) and MAG331 
(Bacteroidales), which show great potential in anticancer drug 

development (Cheng and Hua, 2020; Eyles et al., 2021). However, the 
three MAGs could not be  annotated to the species level based on 
existing databases, hindering mechanistic studies. De novo assembly 
and binning to reconstruct MAGs for pancreatic cancer patients enable 
the study of organisms absent from reference databases. Our results 
provide a valuable reference dataset for further study of gut microbiota 
in patients with pancreatic cancer.

We identified several fecal metabolites with antitumor activity that 
were significantly elevated in CT group, including icaritin, 
formononetin, betulin and sinigrin. Notably, icaritin exhibited a 
positive correlation with butyrate-producing bacteria, whereas a 
decrease in butyrate-producing bacteria in pancreatic cancer patients 
was revealed (Sono et al., 2024). The elevated levels of icaritin in CT 
group may be associated with chemotherapy. Conversely, methionine 
oxidation metabolites, which promote pancreatic cancer metastasis 
(He et  al., 2022), and mevalonic acid, essential for the growth of 
pancreatic cancer cells (Sumi et al., 1992), were increased in CT group. 
Although chemotherapy increases certain anti-tumor related fecal 
metabolites, metabolites that promote tumor metastasis and growth 
are still increased, potentially contributing to the limited efficacy of 
chemotherapy (Merali et  al., 2024). Additionally, short-chain fatty 
acid-producing probiotics, such as Butyrivibrio crossotus, Butyricicoccus 
pullicaecorum and Lactobacillus oris, were positively correlated with 
cholecalciferol (vitamin D3). Numerous epidemiological and clinical 
studies suggest that higher vitamin D intake is associated with a lower 
risk of pancreatic cancer (Skinner et al., 2006; Altieri et al., 2017). The 
relationship between short-chain fatty acid-producing probiotics and 
vitamin D in pancreatic cancer patients warrants further investigation.

The early diagnosis of pancreatic cancer remains a challenge. 
Some studies have found that PDAC biomarkers from urine (Blyuss 
et al., 2020) and serum (Seifert et al., 2020) have limitations in the 
diagnosis of pancreatic cancer. Previous study results indicated that 
fecal microbiota screening for the early detection of PDAC is feasible 
(Kartal et al., 2022). In our study, the diagnostic model based on fecal 
metabolites outperformed the one based on gut microbiota, 
highlighting the potential of fecal metabolites in pancreatic cancer 
diagnosis. Also, the differences in gut microbial composition between 
HC and pancreatic cancer patients were minimal with only weak 
statistical significance. However, the fecal metabolome exhibited more 
pronounced differences between HC and pancreatic cancer patients. 
Previous research has demonstrated that a risk prediction model 
utilizing circulating microbial and non-microbial metabolites can 
serve as a promising tool for identifying individuals at high risk of 
pancreatic cancer (Irajizad et al., 2023). Our study further underscores 
the diagnostic potential of fecal metabolites in pancreatic cancer. The 
development of a screening or diagnostic tool for pancreatic cancer 
based on fecal metabolites is worthy of further testing.

Conclusion

Our study offers an in-depth and comprehensive analysis of the gut 
microbiota in pancreatic cancer patients, encompassing both treatment-
naïve individuals and those who have undergone chemotherapy and 
surgery combined with chemotherapy. Notably, our research is the first 
to uncover associations between microbial SNPs and pancreatic head 
cancer. We construct the first gut microbial genome catalog specific to 
pancreatic cancer patients, and revealed that fecal metabolites hold 
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potential for pancreatic cancer diagnosis. This study enhances our 
understanding of the relationship between gut microbiota and 
pancreatic cancer and paves the way for the development of microbiota-
based precision therapies for this malignancy.
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