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A vaccine is considered essential for controlling the HIV pandemic and ultimately 
eradicating AIDS. Neutralizing antibodies and MHC-E-restricted CD8+ T cells 
have shown the ability to protect against the simian counterpart of HIV, SIV, in 
rhesus macaques. In this study, we provide preliminary evidence that combining 
these orthogonal antiviral mechanisms can offer increased protection against SIV. 
Specifically, the replication arrest observed following vaccination with a rhesus 
cytomegalovirus (RhCMV/SIV)-based vaccine was enhanced by the presence of a 
passively administered neutralizing antibody at incompletely protective levels. This 
report encourages studies involving larger cohorts of macaques and alternative 
methods for administering neutralizing antibodies.
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Introduction

Only two vaccination modalities have consistently shown to provide protection against 
the human immunodeficiency virus (HIV) and/or its simian counterpart, the simian 
immunodeficiency virus (SIV). The first modality is neutralizing antibodies (nAbs). 
Autologous nAbs induced through vaccination with a stabilized recombinant envelope (Env) 
molecule have been demonstrated to provide protection against challenges with the 
corresponding HIV/SIV chimera (SHIV) in rhesus macaques (RMs) (Pauthner et al., 2017; 
Petitdemange et  al., 2019). Furthermore, passively administered broadly neutralizing 
antibodies have been shown to provide protection against SHIV and SIV in RMs (Parren et al., 
2001; Pegu et al., 2019; Zhao et al., 2022) and against exposure to antibody-sensitive strains of 
HIV in humans (Corey et al., 2021). The second modality is the MHC-E-restricted CD8+ T 
cell-targeted rhesus cytomegalovirus (RhCMV/SIV)-based vaccine. When properly genetically 
programmed (strain 68-1 and certain derivatives), RhCMV/SIV vaccine vectors elicit 
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MHC-E-restricted CD8+ T cells in RMs, and these responses mediate 
the early complete arrest of SIVmac239 replication in approximately 
60% of RM after they are SIV infected by repeated, limiting-dose SIV 
challenge, with the vast majority of these protected RMs subsequently 
clearing SIV infection completely (Hansen et al., 2011; Hansen et al., 
2013a; Hansen et al., 2013b; Hansen et al., 2016; Hansen et al., 2019; 
Malouli et al., 2021; Verweij et al., 2021; Picker et al., 2023). RhCMV/
SIV vaccines (typically containing Gag, Rev/Tat/Nef, and 5’-Pol 
inserts) do not induce antibodies and are effective in the absence of 
Env expression (Hansen et al., 2011; Hansen et al., 2013a; Hansen 
et al., 2019; Malouli et al., 2021; Hansen et al., 2022). Therefore, they 
represent a mode of protection completely orthogonal relative to nAbs 
(Hansen et al., 2011; Hansen et al., 2013a; Hansen et al., 2019; Malouli 
et al., 2021; Hansen et al., 2022). The MHC-E restricted CD8+ T cell 
responses are long-lived, with protective efficacy shown up to 10 years 
post-primary vaccination in RMs (Picker et al., 2023).

An important distinction exists between the nature of protection 
mediated by nAbs and the MHC-E-restricted CD8+ T cell responses 
described above. For nAbs, protection is generally observed as an early 
sterilizing type of immunity, with very little or no viral replication or 
spread observed following challenge (Hessell et al., 2007; Hessell et al., 
2010; Barouch et  al., 2013; Burton, 2023; Stab et  al., 2023). For 
RhCMV/SIV-induced MHC-E restricted CD8+ T cell-mediated 
protection in RMs, some SIV replication and spread occur early after 
effective challenge, as evidenced by direct viral measurements in 
tissues in the first few weeks following infection and by the post-
challenge induction of T cell responses to SIV antigens (Ags) not 
included in the vaccine (e.g., anti-Vif and anti-Env T cell responses) 
(Hansen et al., 2013a; Picker et al., 2023). Infection may also result in 
“blips” in plasma virus, and can be definitively demonstrated by the 
adoptive transfer of hematolymphoid cells from protected RM to naive 
RMs, resulting in typical SIV infection in the recipient animals 
(Hansen et al., 2013a; Hansen et al., 2019). In RhCMV/SIV-vaccine-
protected RMs, this early stage of infection is strictly controlled 
(“replication arrest”), and eventually, SIV is cleared (Hansen et al., 
2011; Hansen et al., 2013a; Hansen et al., 2019; Picker et al., 2023). 
Thus, while nAbs act to prevent viral entry and establishment of 
infection, RhCMV/SIV-induced T cells arrest viral replication after 
infection has been initiated. These fundamentally distinct mechanisms 
suggest the potential for complementary and possibly synergistic 
protection when both are present. This potential synergy arises 
because nAbs and MHC-E-restricted T cells act most effectively at 
different points along the infection timeline: nAbs reduce the initial 
number of infected cells, while CD8+ T cells target those that escape 
early antibody control. By lowering the initial viral burden, 
sub-protective nAbs may reduce the number of infected cells, 
increasing the efficiency of replication arrest and effectively lowering 
the immune threshold needed for successful T cell-mediated control.

Both of these effective protective modalities have significant 
limitations. The serum nAb titers required for sterilizing immunity 
against (S)HIV (and indeed against many viruses) are high, typically 
reaching several hundred (Pauthner et al., 2019; Pegu et al., 2019; 
Saunders et al., 2022; Zhao et al., 2022), and these titers are challenging 
to induce and sustain by vaccination. Although the RhCMV/SIV 
vaccine is very durable, it still only protects approximately 60% of 
SIV-challenged RMs (Hansen et  al., 2011; Hansen et  al., 2013a; 
Hansen et al., 2019; Picker et al., 2023). A key question is whether 
these two modalities can synergize, particularly when nAb titers 

decrease below the level required to fully prevent the infection. 
Specifically, does the presence of nAbs at sub-completely protective 
(sub-threshold) neutralizing titers at the time of challenge increase 
the proportion of RhCMV/SIV-vaccinated RMs undergoing 
replication arrest? In other words, can lower nAb titers contribute to 
protection in the presence of an MHC-E-restricted T-cell 
response to HIV?

By administering sub-protective doses of nAbs, we aimed to test 
whether early partial restriction of viral spread could shift outcomes 
in RhCMV/SIV-vaccinated animals from uncontrolled infection to 
replication arrest, thereby probing the threshold for effective T cell-
mediated protection. We investigated these questions in a pilot study 
using the RM model, which utilized a 68-1 RhCMV/SIV vaccine, 
passive administration of an anti-SIV nAb, and SIVmac239 
challenge. Passive antibody administration was selected because no 
SIV Env-targeted vaccine has yet been developed that can reliably 
induce nAbs against SIVmac239. We  first identified the serum 
neutralizing antibody titer required for complete protection against 
SIVmac239 to intentionally use a sub-protective dose in the synergy 
experiment. We  then vaccinated two cohorts of RMs with the 
RhCMV/SIV vaccine and 73 weeks later, they were administered 
nAbs or control Abs, followed by a challenge with high-dose 
SIVmac239. A high-dose SIV challenge was used to limit the number 
of passive antibody administrations required. The results from this 
pilot study are promising, indicating potential synergy between 
nAbs and MHC-E-restricted CD8+ T cells in resisting SIV infection, 
even under conditions of a stringent high-dose viral challenge.

Materials and methods

Rhesus macaques

This study used 39 Indian RMs (Macaca mulatta). Of these 39 
RMs, 15 were used to determine the ideal conditions for the main 
study (Figures  1, 2), while 24 were used to evaluate the synergy 
between antibodies and the RhCMV/SIV vaccine (Figures 3, 4). All 
RMs were classified as specific pathogen-free, meaning they were free 
from cercopithecine herpesvirus 1, D-type simian retrovirus, simian 
T-lymphotropic virus type 1, SIV, and M. tuberculosis, although they 
were naturally infected with RhCMV at the start of the study. All RMs 
involved in this study were housed at the Oregon National Primate 
Research Center (ONPRC) in Animal Biosafety Level 2+ rooms. RM 
care and all experimental protocols and procedures were approved by 
the ONPRC Institutional Animal Care and Use Committee (IACUC). 
The ONPRC is a category I facility. The Laboratory Animal Care and 
Use Program at the ONPRC is fully accredited by the American 
Association for Accreditation of Laboratory Animal Care, and the 
program has an approved assurance (No. A3304-01) for the care and 
use of animals, which is documented with the National Institutes of 
Health for Protection from Research Risks. The IACUC adheres to 
national guidelines established by the Animal Welfare Act 
(7 U.S.C. Sections 2131-2159) and the Guide for the Care and Use of 
Laboratory Animals (eighth edition) as mandated by the US Public 
Health Service Policy. RMs were administered either DEN3 or K11-LS 
intravenously (IV) at a controlled rate by trained personnel, following 
the IACUC-approved protocol of the study, with no adverse 
events observed.
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FIGURE 1

A neutralization ID50 of 1:300 is the threshold for protection against high-dose (900 FFU) SIVmac239 challenge by antibody K11-LS. (A) The half-life of 
K11-LS was determined to be 9.5 days after two RMs (A1 and A2) were administered 20 mg/kg and titers were allowed to decay. (B) RMs A3-A6 were 
administered 20 mg/kg K11-LS on day −10 followed by 10 mg/kg on day −3. *Animals A1 and A2 were administered 20 mg/kg K11-LS and titers were 
allowed to decay to 1:100 or less prior to a second infusion of 10 mg/kg at day 42 to calculate half-life. All RMs were challenged 3 days after the 
second K11-LS infusion and every week thereafter until infected (blue arrow). Red lines indicate blood draws. (C) Neutralization ID50s against 
SIVmac239 PSV were on average 1:296 at time of infection. This excludes outlier animal A1, who became infected after 9 challenges with an ID50 of 
1:44, thus, exhibiting an inherent resistance to SIVmac239. Arrows indicate the last challenge before infection. (D) Neutralization ID50 at time of 
infection for each animal. (E) Viral load in all 6 RMs shown in panel C post first effective 900 FFU SIVmac239 challenge. Arrows indicate weekly 900 
FFU challenge.

FIGURE 2

Administering K11-LS at a dose of 3 mg/kg achieves a neutralization titer between 1:100 and 1:300 within 21 days. RMs were administered 4 mg/kg 
(Group 1), 3 mg/kg (Group 2), or 2 mg/kg (Group 3) on day 0. 20 days later, the geometric mean ID50s were within the desired range of 1:100–1:200. A 
second dose of 3 mg/kg K11-LS was administered to all 3 groups on day 49 as the 3 mg/kg group exhibited the least variability between animals. 
20 days after the second K11-LS infusion, geometric mean ID50s were 1:153, 1:215, and 1:314 for Groups 1, 2, and 3, respectively. A dose of 3 mg/kg of 
K11-LS was chosen for subsequent studies as ID50s were within the desired range and were the most consistent between animals.
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Cell lines

TZM-bl cells (NIH AIDS Reagent Program) were used for the 
pseudovirus neutralization assay. Human HEK 293 T cells (ATCC) 
were used for pseudovirus production. Expi293F cells (ThermoFisher) 
were used for monoclonal antibody production.

SIV pseudovirus production

SIV pseudovirus Env construct was co-transfected with 
Env-deficient backbone plasmid (pSG3ΔEnv) in a 1:2 ratio using the 
transfection reagent FuGENE 6 (Promega) in HEK 293 T cells, 
following the manufacturer’s instructions. Cells were cultured in 
Dulbecco’s Modified Eagle’s Medium (DMEM), which contained 
4.5 g/L of glucose and sodium pyruvate and supplemented with 10% 
fetal bovine serum (FBS), 2 mM L-glutamine (Gibco), and 100 U/mL 
Penicillin–Streptomycin Solution (Gibco). The cultures were 
maintained at 37°C in a humidified incubator with 5% CO₂. After 72 h 
of transfection, the supernatants containing the viruses were 
harvested, sterile-filtered (0.22 μm) (EMD Millipore), and frozen at 
−80°C for long-term storage.

Antibody production and characterization

Antibody heavy chain (HC) and light chain (LC) constructs were 
transiently expressed using the Expi293 Expression System 
(ThermoFisher). HC and LC plasmids were cotransfected at a 1:2.5 
rasstio using the transfection reagent FectoPRO (Polyplus) in Expi293 
cells, according to the manufacturer’s instructions. Cells were 
cultured in Expi293™ Expression Medium (Gibco), which was 
supplemented with 10% Opti-MEM™ I Reduced Serum Medium 
(Gibco) and maintained at 37°C on a shaker in a humidified 
incubator with 5% CO₂. After 24 h, the cell culture media were 
supplemented with 300 mM valproic acid and 40% glucose (Gibco). 
After 5 days of transfection, the cell supernatants were harvested and 
sterile filtered (0.22 μm). The antibody was purified by Protein A 
Sepharose (GE Healthcare), as described previously (Sok et al., 2013). 
The antibody batches were analyzed using an analytical high-
performance liquid chromatography (HPLC) system (Agilent 1260 
Infinity II) to ensure they were of the correct size and purity. They 
were also examined in neutralization assays to confirm batch-to-
batch potency, and endotoxin levels were tested before pooling all 
batches and freezing at −80°C for long-term storage or shipment 
to OHSU.

FIGURE 3

Durability and induction of both SIV-specific T cell responses and unconventionally restricted T cells elicited by 68-1 RhCMV/SIV vaccine vectors. 
(A) Longitudinal analysis of the overall SIV-specific CD4+ and CD8+ T cell responses in peripheral blood. Responses were determined by ICS analysis 
(TNF vs. IFN-γ) using whole open reading frame (ORF) mixes of overlapping 15mer peptides (Gag; Rev./Nef/Tat; 5’-Pol) to stimulate PBMC. The 
frequency of IFN-γ and/or TNF-positive memory T cell responses to each ORF peptide mix was summed to get the overall responses shown in the 
figure. Vaccinations are indicated by the arrowhead above the graph. (B) Longitudinal analyses of CD8+ T cell responses to individual MHC-E- (green; 
left panel) and MHC-II- (blue; right panel)-restricted 15mer supertopes. Responses were determined by ICS as described in (A).
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TZM-bl neutralization assay

Serially diluted heat-inactivated serum or antibodies were 
incubated with SIVmac239 pseudovirus or murine leukemia (MLV) 
(negative control) pseudovirus in half-area 96-well white plates using 
DMEM (Gibco) supplemented with 10% FBS, 2 mM L-glutamine 
(Gibco), and 100 U/mL Penicillin/Streptomycin (Gibco). K11-LS and 
DEN3 served as positive and negative antibody controls, respectively. 
After incubating at 37°C for 1 h, TZM-bl cells (with 20 μg/mL DEAE-
dextran) were added onto the plates at 10,000 cells/well. Final antibody 
concentrations for the dilution series were calculated based on the 
total volume of the assay (antibody or serum + virus + TZM-bl cells). 
After 72 h of incubation at 37°C in a humidified incubator with 5% 
CO₂, culture supernatants were removed, and the cells were lysed in a 
luciferase lysis buffer (25 mM Gly-Gly pH 7.8, 15 mM MgSO4, 4 mM 
EGTA, 1% Triton X-100). Luciferase activity was measured by adding 
Bright-Glo (Promega), according to the manufacturer’s instructions. 

The assays were tested in duplicate wells and were independently 
repeated at least twice. Neutralization IC50 or ID50 titers were 
calculated using “One-Site Fit LogIC50” regression in GraphPad 
Prism 10.

T-cell assays

Intracellular cytokine staining (ICS) was performed as described 
below. SIV-specific CD4+ and CD8+ T-cell responses were analyzed 
in peripheral blood mononuclear cells (PBMCs) using flow cytometric 
ICS, as previously described (Hansen et al., 2011; Hansen et al., 2013a; 
Malouli et al., 2021; Hansen et al., 2022). T-cell responses to total SIV 
antigens were measured using combinations of sequential 15-mer 
peptides (with an 11 amino acid overlap) that encompass the 
SIVmac239 Gag, Pol, Nef, Rev., Tat, and Vif proteins. Mononuclear 
cells were stimulated in the presence of antibodies, namely anti-CD28 

FIGURE 4

nAb K11-LS facilitates 68-1 RhCMV/SIV vector-mediated protection via replication arrest. (A) The vaccine phase consisted of 12 months during which 
RMs were administered the RhCMV/SIV vaccine on weeks 0 and 14. During the challenge phase, RMs were administered 3 mg/kg K11-LS (Groups 1 
[n=9] and 3 [n=6]) or control antibody (Group 2 [n=9]) 21 to 24 days before SIVmac239 challenge. Animals A3, B3, B7, B8, C1, C3, C4, C5, and C6 
received a second dose of 3 mg/kg K11-LS (Groups 1 and 3) or control antibody (Group 2) 39 days after primary challenge. RMs A3, B3, B7, B8, C3, C4, 
C5, and C6 were challenged a second time on day 77. RM C1, having been found to be infected after the primary challenge, was not re-challenged. 
(B) At the time of primary challenge (designated as day 0), the neutralization ID50s against SIVmac239 pseudovirus averaged 1:130 and 1:160 for 
Groups 1 and 3, respectively. Group 2 showed no neutralization activity, as animals received DEN3 control IgG instead of K11-LS. (C) Within Group 1, 
nAb titers at time of effective challenge were on average 1:164 and 1:95 for SIV protected and SIV non-protected RM, respectively. (D) Plasma viral load 
(PVL) and SIVmac239 Vif-specific CD8+ T cell responses are shown for infected RMs across all three groups. The x-axis represents days post effective 
challenge, with day 0 marking the time point at which infection was established, as indicated by the onset of plasma viremia and/or de novo detection 
of Vif-specific T cell responses. RMs were considered protected if they exhibited only anti-Vif responses without sustained viremia (with or without 
transient viral blips; shown as red lines), and non-protected if they developed sustained plasma viremia (black lines). In Group 3, four RMs exhibited 
sustained viremia (non-protected; black lines), while two animals showed no evidence of viral replication or Vif-specific responses and are thus not 
shown on the graph. No difference was observed in absolute CD4+ and CD8+ T cell levels between Groups 1 and 2 and pre- and post-vaccination.
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(CD28.2, Purified 500 ng/test; Life Tech, CUST03277) and anti-
CD49d (9F10, Purified 500 ng/test; Life Tech, CUST03278). They were 
then incubated in R10, RPMI supplemented with 10% newborn calf 
serum (Hyclone, SH30401.01) at 37°C in a humidified incubator with 
5% CO₂, along with individual peptides or peptide mixtures and 
antibodies for 1 h, followed by an additional 8-h incubation in the 
presence of Brefeldin A (5 μg mL−1; BioLegend, 91850). Stimulation 
without peptides served as a background control.

After incubation, the stimulated cells were stored at 4°C until 
staining with combinations of fluorochrome-conjugated monoclonal 
antibodies including anti-CD3 (SP34-2: PacBlue, BD Biosciences, 
624034), anti-CD4 (L200; BV510, BD Biosciences, 624340), anti- 
CD8α (SK-1: Life Technologies, CUST04424), anti-CD69 (FN50: PE/
Dazzle594, BioLegend, 93437), anti-IFNγ (B27: APC, BioLegend, 
96019), anti-TNFα (Mab11: PE, BioLegend, 96019), and anti-Ki67 
(B57: BD Biosciences, 624046). For memory phenotyping from whole 
blood, the following antibodies were used: anti-CCR5 (3A9: APC, BD 
Biosciences, 624346), anti-CCR7 (G043H7: Biotin, BioLegend, 
93747), Streptavidin (BUV496, BD Biosciences, 624283), anti-CD20 
(2H7: APC-Fire 750, BioLegend, 93924), anti-CD28 (CD28.2: PE/
Dazzle594, BioLegend, 93924), anti-CD3 (SP34-2, BUV395, BD 
Biosciences, 624310), anti-CD8β (2ST8.5H7: BUV563, BD 
Biosciences, 624284), anti-CD25 (2A3: BUV737, BD Biosciences, 
624286), anti-CXCR5 (MU5UBEE: SuperBright436, Life Technologies, 
62-9185-42), anti-CD95 (DX2: BV605, BioLegend, 93384), anti-CD69 
(FN50: BV650, BioLegend, 93755), anti-CD8α (RPA-T8: BV711, 
BioLegend, 900006277), anti-PD-1 (eBioJ105: SuperBright780, Life 
Technologies, 78-2799-42), anti- γδTCR (B1; PerCP-eFluor710, 
BioLegend, 900002746), anti-CD127 (HIL-7R-M21: PE, BD 
Bioscience, 624048), anti-HLA-DR (L243: PE/Dazzle 594, BioLegend, 
93957), anti-CD4 (L200: BV510, BD Biosciences, 624340), and anti-
Ki67 (B57: FITC, BD Biosciences, 624046).

Stained samples were analyzed on an LSR-II or FACSymphony A5 
flow cytometer (BD Biosciences). Data analysis was performed using 
FlowJo software (BD Biosciences). In all analyses, gating on the 
lymphocyte population was followed by the separation of the CD3+ 
T-cell subset and progressive gating on CD4+ and CD8+ T-cell subsets. 
Antigen-responding cells in both CD4+ and CD8+ T-cell populations 
were determined by their intracellular expression of CD69 and one or 
both of the cytokines IFN-γ and TNFα. The assay limit of detection was 
determined at 0.05% as previously described (Hansen et  al., 2011; 
Hansen et al., 2013a; Hansen et al., 2019; Malouli et al., 2021; Hansen 
et  al., 2022), after background subtraction being the minimum 
threshold used in this study. After background subtraction, the raw 
response frequencies above the assay limit of detection were “memory-
corrected” (e.g., % responding out of the memory population), as 
described (Hansen et al., 2011; Hansen et al., 2013a; Hansen et al., 2019; 
Malouli et  al., 2021; Hansen et  al., 2022). For memory phenotype 
analysis, CD4+ or CD8+ T cells were subdivided into the memory 
subsets of interest based on surface phenotype (CD28 vs. CD95), with 
memory defined as CD28+/− and CD95+.

SIVmac239 challenge experiments

To define the half-life of K11-LS, two RMS were first 
administered with 20 mg/kg, allowing the neutralizing titers to 

decay, followed by a second dose of 10 mg/kg, after which the half-
life was determined. A second group of four RMs was treated with 
20 mg/kg K11-LS followed by 10 mg/kg of K11-LS (Figure 1). All 
RMs were then challenged with a dose of 900 focus-forming units 
(FFU) of SIVmac239. RMs were challenged weekly until a 
documented instance of infection, as indicated by sustained plasma 
viremia, was achieved. The SIVmac239 stock was titered using the 
CMMT-CD4-LTR-β-Gal sMAGI cell assay (National Institutes of 
Health AIDS Reagent Program). The dose of 900 FFU was selected 
based on titering experiments where 100% of unvaccinated, 
untreated animals became infected after two challenges. For the 
combined K11-LS/T cell protection studies, at the end of the vaccine 
phase, all vaccinated and unvaccinated RMs were SIV-challenged 
intrarectally with a dose of 900 FFU of SIVmac239 until infection 
could be documented as either onset of sustained plasma viremia 
and/or de novo development of CD4+ and CD8+ T cell responses to 
SIVvif, at which time challenge was discontinued, as previously 
described (Hansen et  al., 2011; Hansen et  al., 2013b; Hansen 
et al., 2019).

Viral load measurement

Plasma SIV RNA levels were determined using an SIV 
Gag-targeted quantitative RT-PCR format assay, with six replicate 
reactions analyzed per extracted sample for an assay threshold of 
15 SIV RNA copies/ml, as previously described (Bolton 
et al., 2016).

Results

Passive transfer studies of K11 to determine 
conditions for synergy experiment

The monoclonal nAb K11 was originally isolated from a 
SIVmac239-infected RM. It binds to a glycan hole on gp120 and 
neutralizes SIVmac239 with an IC50 of 100 ng/mL (Zhao et al., 2022). 
This high potency makes it a valuable tool for investigating potential 
synergy with other immune responses. A half-life extended version 
(Ko et al., 2014) of K11, known as K11-LS, was generated, and its half-
life was determined to be approximately 9.5 days in RMs, as assessed 
from neutralization ID50s against the SIVmac239 pseudovirus (PSV), 
following a single infusion of 20 mg/kg of K11-LS (Figure 1A). In a 
preliminary study, RMs were administered 20 mg/kg of K11-LS, 
allowing titers to decay to 1:100 or lower before administering a 
second dose of 10 mg/kg, followed by weekly intrarectal challenge 
with 900 FFU SIVmac239M (Fennessey et al., 2017; Khanal et al., 
2019) (Figure  1B). The study indicated that maintaining a 
neutralization ID50 above 1:300 prevented SIVmac239 infection in 
most RMs (Figures 1C–E). Notably, animal A1 remained uninfected 
until after nine challenges despite having an ID50 of just 1:44. While 
including this outlier would suggest a more conservative protective 
threshold of 1:250, excluding it suggests a more generalizable 
threshold of 1:300. Accordingly, to assess synergy with the RhCMV/
SIV vaccine, nAb titers were required to fall below 1:300 prior to 
SIVmac239 challenge.
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Notably, this protective threshold differs to some degree from the 
previously reported ID50 of 1:609 necessary for protection when RMs 
were challenged intravenously with low-dose SIVmac239 (Zhao et al., 
2022). This may reflect the use of a different challenge dose and/or 
different challenge routes in the two studies. To achieve a 
neutralization ID50 of 1:200 within 21 days, different doses of K11-LS 
(4, 3, and 2 mg/kg) were administered to nine RMs, with neutralization 
titers determined twice weekly. A dose of 3 mg/kg was identified as 
optimal for achieving the desired ID50 within the given time period 
(Figure 2).

The frequency of replication arrest efficacy 
was higher with the combined RhCMV/SIV 
vaccine and passive suboptimal 
neutralizing antibody than with the vaccine 
alone

In the next study, to investigate the potential ability of incompletely 
protective levels of nAb to enhance protection when combined with 
RhCMV/SIV vaccination, 24 RMs were divided into two groups of 
nine each and a control group of six. Groups 1 and 2 received 
RhCMV/SIV vaccination, and Group  3 remained unvaccinated. 
Vaccination was carried out over 12 months during which RMs were 
administered the RhCMV/SIV vaccine twice, on weeks 0 and 14, as 
previously described (Hansen et  al., 2011; Hansen et  al., 2013a; 
Hansen et al., 2019). The induction of SIV-specific CD4+ and CD8+ 
was monitored longitudinally in blood, as shown in Figure 3A. The 
analysis included CD8+ T-cell responses to individual MHC-E and 
MHC-II-restricted 15mer supertopes (Figure 3B).

Twelve months after the first vaccination, Groups 1 and 3 received 
3 mg/kg of K11-LS, while Group  2 received 3 mg/kg of DEN3, a 
Dengue virus control antibody, 21–24 days before high-dose (900 
FFU) SIVmac239 challenge (Figures 4A,B). At the time of this primary 
challenge, neutralization ID50s for Groups 1 and 3 were within the 
desired range of 1:100–1:200 (specifically, geomean values of 1:131 
and 1:153, respectively), while Group 2 exhibited no neutralization 
activity (Figure 4B). Following the challenge, one out of nine RMs in 
Group 1, two out of nine RMs in Group 2, and four out of six RMs in 
Group 3 remained uninfected, as evidenced by the absence of PVL 
and anti-Vif T-cell responses. The neutralization titers of the 
uninfected animals in Groups 1 and 3 were allowed to decrease to 
undetectable levels before a second dose of 3 mg/kg K11-LS or control 
antibody (Group 2) was administered on day 39. These RMs were then 
subsequently rechallenged on day 77, after their neutralization titers 
had reduced below 1:200 (Figures 4A,B).

After rechallenge, all the RMs in Groups 1 and 2 became infected 
as indicated by the development of Vif-specific T-cell responses 
(Figure 4D). In Group 1 (RhCMV/SIV + K11-LS), four out of nine 
animals (44%) exhibited typical replication arrest as characterized by 
undetectable levels of virus in plasma (Figure  4D). In Group  2 
(RhCMV/SIV + DEN3), only one out of nine animals showed 
replication arrest; the remaining RMs exhibited robust SIV replication 
(Figure 3D). Notably, the frequency of replication arrest in Group 2 
(11%) was significantly lower in response to the high-dose SIVmac239 
challenge (900 FFU) compared to the 50–60% previously observed in 
studies using repeated limiting-dose (100 FFU) viral challenges 
(Hansen et  al., 2011; Hansen et  al., 2013a; Hansen et  al., 2013b; 

Hansen et al., 2016; Hansen et al., 2019; Malouli et al., 2021; Verweij 
et al., 2021). In Group 3, four out of six animals became infected and 
exhibited robust replication of virus; two out of six animals were not 
infected and showed no indication of any viral replication as assessed 
by plasma viral load measurements or anti-Vif T-cell responses 
(Figure  3D). It appears that these two animals were completely 
protected by K11, despite the serum neutralizing titers being below 
the 1:300 threshold, or that they had some inherent levels of resistance 
to SIVmac239 infection. Importantly, the viral loads between groups 
appeared comparable by inspection, and there were no significant 
differences in viral load at peak or set point between the three groups. 
Among progressively infected RMs, the average peak plasma viral load 
was 3.95 × 107 (Group  1), 2.46 × 107 (Group  2), and 3.02 × 108 
(Group  3). The average viral load at set point (days 63–91) was 
5.68 × 105 (Group 1), 3.58 × 105 (Group 2), and 1.165 × 108 (Group 3).

On average, the neutralization ID50 in replication-arrested RMs 
in Group 1 was 1:164, whereas non-protected RMs had an ID50 of 
1:95 at the time of effective challenge when treated with RhCMV/SIV 
and K11-LS (Figure 4C). This finding suggests that the threshold of 
neutralization titers necessary for a synergistic effect may be quite high.

Discussion

We present here a pilot study examining the potential increase in 
protective activity against SIV infection by combining the orthogonal 
antiviral properties of a RhCMV/SIV vaccine and neutralizing 
antibodies. The number of animals involved was not sufficient to draw 
definitive conclusions, but the study does suggest certain trends that 
indicate a larger study employing more RMs is merited. With the 
caveat that it is a single experiment with small sample size of animals, 
this is the first study to assess the RhCMV/SIV vaccine efficacy against 
a high-dose SIVmac239 challenge and suggests that it is less effective 
against this challenge dose than the previously used low-dose viral 
challenge (Hansen et al., 2011; Hansen et al., 2013a; Hansen et al., 
2019; Picker et al., 2023). Thus, replication arrest and protection were 
observed in only 11% of animals compared to the typically observed 
rate of approximately 60%, albeit in much larger cohorts of RMs to 
establish the latter figure. Even with this higher dose challenge, 
replication arrest and protection were observed in 44% of RhCMV/
SIV-vaccinated animals when serum neutralizing antibody titers were 
in the range of 100–200, compared to 11% in the absence of 
neutralizing antibodies. We observed a higher rate of protection in 
RMs treated only with neutralizing antibodies than expected; however, 
the nature of protection was distinct, as it appeared to involve 
sterilizing immunity with no evidence of virus replication and, 
therefore, no replication arrest.

Notably, the data revealed variability in antibody-mediated 
protection, despite administering the same neutralizing antibody at 
the same dose and timing across animals likely due to a complex 
interplay of host immune factors. The kinetics and strength of the 
early innate response are crucial; an animal that initiates a rapid, 
robust, and well-regulated innate response (involving cytokines, 
interferons, and complement activation) shortly after infection may 
suppress the virus sufficiently for the effectiveness of the antibody’s 
sub-optimal neutralization or effector functions (Alter et al., 2020; 
Gorini et  al., 2020; Rosen et  al., 2024). Genetic variations, or 
polymorphisms, in human and macaque Fc gamma receptors (FcγRs) 
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also modulate antibody-mediated protection against HIV and SIV 
(Cocklin and Schmitz, 2014). High-affinity or highly expressed FcγRs, 
influenced by these polymorphisms, enable the antibody to engage 
innate immune cells more effectively for viral clearance (Hessell et al., 
2007). Furthermore, the functional capacity of innate effector cells, 
particularly NK cells, which mediate antibody-dependent cellular 
cytotoxicity (ADCC), also varies; an animal with highly potent NK 
cells might successfully clear infected cells targeted by the low-titer 
antibody, while another with less functional NK cells might not 
(Madhavi et al., 2013; Huot et al., 2021; Grunst et al., 2023). These 
findings underscore that innate immune variability can modulate the 
outcome of antibody-based interventions. In this context, combining 
RhCMV/SIV vaccination with bnAb delivery may buffer against such 
host-dependent variation, with MHC-E-restricted CD8+ T cells 
providing a durable, complementary mechanism of viral control.

Taken together, our observations suggest that the suboptimal 
nAb titers at the time of SIV challenge reduced the magnitude of the 
initial infection, thereby lowering the effective infectious dose. 
Thus, we posit that, as expected given their orthogonal mechanisms 
of antiviral activity, these immune modalities are potentially 
mutually supportive: RhCMV/SIV vaccination provides cell-
mediated replication arrest-type protection when nAb titers are too 
low to sterilize the challenge. Furthermore, even a sub-optimal level 
of neutralization might lower the effective infectious dose, allowing 
for vaccine protection when the viral load is too high for the 
vaccine-induced MHC-E-restricted CD8+ T cells to arrest 
completely on their own.

When considering follow-up studies to this report, a primary 
objective would be to provide statistically significant proof of concept 
in RMs regarding the combined efficacy of nAbs and RhCMV/
SIV-induced MHC-E-restricted CD8+ T cells to protect against 
SIV. Based on our power calculations, we estimate that a minimum of 
32 animals per group would be required to achieve 80% statistical 
power. We suggest that this could be achieved in the limiting dose 
SIVmac239 challenge model by microdosing neutralizing antibodies, 
i.e., administering low doses of nAbs frequently to RhCMV/
SIV-vaccinated animals. This strategy aims to maintain subprotective 
serum concentrations while subjecting the animals to repeated 
SIVmac239 challenge. An alternative approach is to provide an 
approximately constant level of subprotective nAbs through Adeno-
Associated Virus (AAV) delivery (Johnson et  al., 2009; Martinez-
Navio et al., 2020) and repeatedly challenging vaccinated animals. 
Finally, and perhaps most desirably, a study is needed to identify 
vaccine constructs capable of eliciting nAbs against SIVmac239, 
enabling the testing of the efficacy of such putative vaccines both alone 
and in combination with RhCMV/SIV vaccination.

From unpublished data, immunization of RMs with the 
SIVmac239.K180S soluble trimer formulated with the saponin/MPLA 
nanoparticle (SMNP) adjuvant generated an antibody response that 
was non-neutralizing. This limited immunogenicity may be due to 
SIVmac239’s dense glycan shield, which is more extensive than that of 
HIV-1, potentially restricting access to conserved neutralizing 
epitopes (Zhao et al., 2022). Therefore, selective removal of glycans 
may help create points of access to elicit neutralizing antibodies. 
Another strategy to enhance the immunogenic potential of SIVmac239 
Env is to further stabilize the trimer. BG505 SOSIP optimization offers 
a valuable model for such structural improvements. For example, 

replacing the furin cleavage site with flexible linkers, as demonstrated 
in the native flexibly linked (NFL) (Sarkar et al., 2018), Link14 (Willis 
et al., 2022), and uncleaved prefusion-optimized (UFO) designs (Kong 
et al., 2016), facilitates cleavage-independent expression of well-folded 
trimers while preserving their native antigenicity. Additional 
stabilization can be achieved through intra-protomer disulfide bonds 
that lock gp120 in the prefusion conformation and reduce spontaneous 
trimer opening or through structure-guided point mutations to fill 
hydrophobic cavities in gp120, increasing thermostability and 
minimizing exposure of non-neutralizing epitopes (Chuang et al., 
2017). These strategies could provide useful insights for designing the 
next generation of SIVmac239 SOSIP.
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