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Land use change in coastal wetlands is often associated with microbial

diversity and function, which plays a crucial role in mediating soil ecosystem

multifunctionality (EMF). However, the linkage between microbial functional

genes and soil EMF under di�erent land uses requires further investigation. This

study investigated the relative abundance and community structure of microbial

functional genes associated with carbon (C), nitrogen (N), phosphorus (P) and

sulfur (S) cycling and their relationship with soil EMF across five di�erent land

uses (reed wetland, tidal flat, grassland, agricultural land and fallow land) in the

Min River Estuary using high-throughput quantitative PCR technique. Results

showed that microbial functional gene composition changed significantly across

di�erent land uses. Soil electrical conductivity (EC) ranged from5.73mS/cm (tidal

flat) to 0.29 mS/cm (fallow land), driving significant shifts in microbial functional

gene composition. Soil EMF exhibited a U-shaped trend across reed wetlands,

tidal flats, grasslands, agricultural lands, and fallow lands, with the lowest in

grasslands and peaking in fallow lands. Random forest analysis indicated that

soil EC as the most influential environmental factor shaping microbial functional

gene compositions, while functional gene richness directly correlated with EMF.

Notably, soil EC modulates the relationship between microbial functional gene

compositions and EMF. These findings enhance our understanding of soil EMF

variations across di�erent coastal land uses and underscore the need to integrate

microbial functionality into coastal wetland management.

KEYWORDS

coastal wetland, ecosystem multifunctionality, land use, microbial functional gene,

salinity

1 Introduction

Coastal wetlands are vital ecosystems that provide various ecological services, including

carbon (C) sequestration, water purification, and habitats for diverse flora and fauna.

Human activities have led to an estimated annual loss of approximately 1% of coastal

habitats, including wetlands (Temmink et al., 2022). Changes in land use, such as

converting wetlands for agricultural or aquaculture purposes, have a significant effect

on ecosystem multifunctionality (EMF) (Tan et al., 2022), leading to land degradation
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(Haddad et al., 2015; Mao et al., 2018) and a decline in belowground

biodiversity (Tang et al., 2021). Alterations in aboveground

vegetation in wetlands can greatly influence belowground dynamics

at both community and ecosystem levels (Abdu et al., 2016).

Therefore, the consequences of land use change must be carefully

considered in the management of coastal wetlands, particularly in

the context of global change.

Land use changes significantly alter soil characteristics

and biological attributes, particularly in coastal regions where

ecosystems are highly sensitive to human interventions. For

instance, the conversion of natural wetlands into agricultural fields

is often associated with a marked decline in soil organic C and

nitrogen (N) levels, as well as a substantial reduction in vegetation

cover (Ding et al., 2013; Zhu X. et al., 2022). This degradation not

only affects soil fertility but also disrupts ecological functions, such

as C sequestration and nutrient cycling (Lal, 2004). Moreover, soil

properties, including soil salinity (Hu et al., 2023b) and soil pH

(O’Brien et al., 2019), often exhibit significant co-variation with

total C and N contents, suggesting that these factors are interlinked

through complex biogeochemical processes. Such changes in soil

attributes can have cascading effects on microbial communities

and plant diversity, further exacerbating ecosystem degradation

(Schimel et al., 2007; Smith et al., 2015). Therefore, understanding

the interactions between land use changes and soil properties is

critical for designing sustainable land management strategies and

mitigating the adverse impacts on coastal ecosystems.

Soil electrical conductivity (EC) is often used as a proxy

for salinity, is widely acknowledged as a key edaphic factor

shaping bacterial diversity (Siles and Margesin, 2016; O’Brien

et al., 2019), and is one of the most variable parameters in terms

of coastal land conversion. Microorganisms in coastal wetlands,

such as reed wetlands, are accustomed to high-salinity habitats

due to their natural habitat in the intertidal zone and must

acclimate to lower salinity conditions if these areas are converted

to cropland. Previous research has indicated that salinity decreases

microbial α diversity in soils with lower salinity compared to

seawater conditions (Hu et al., 2023a). Furthermore, numerous

pieces of evidence has demonstrated that land conversion is often

accompanied by change in microbial community diversity and

composition (Wang Z. et al., 2022), and significant divergences in

microbial community structure (Liang et al., 2024). However, the

response of microbial functional groups to land use changes in

estuary areas has not been well addressed.

Although previous studies have highlighted the importance of

microbial community diversity, limited research has linked

microbial functions to ecosystem processes (Tian et al.,

2022). Alterations in the microbial community can influence

biogeochemical cycling processes (Zhang et al., 2020; Bastida

et al., 2021), such as nitrification (Liu et al., 2023), C fixation

(Manoharan et al., 2017), sulfur (S) oxidation and reduction

(Huang et al., 2023), and phosphorus (P) cycling (Hu et al., 2023b),

consequently affecting soil EMF (Jing and He, 2021). For example,

nosZ I and nosZ II have been used as biomarkers to quantify

nitrous oxide (N2O) reducers (Jones et al., 2014; Xu et al., 2020).

Meanwhile, genes gcd and phoD serve as biomarkers for microbial

processes involved in P-solubilization and mineralization (Hu

et al., 2023a). These functional genes are sensitive to land use

changes and are associated with soil properties and ecosystem

functions. For instance, low abundance of genes related to P

cycling were detected in native grasslands than in croplands

(Liu et al., 2018). The microbial community related to P cycling

respond positively to moderate increases in salinity by enhancing

microbial solubilization andmineralization of soil P, which, in turn,

influences soil P availability and nutrient balance (Hu et al., 2023a).

Moreover, changes in nutrient availability would affect soil enzyme

activities and ecosystem functions (Delgado-Baquerizo et al.,

2020). However, research addressing the response of a combination

of the key biogeochemical processes to land use change remains

limited. Additionally, land use change would simplify microbial

diversity, leading to the reduction of soil EMF (Delgado-Baquerizo

et al., 2016; Wang K. et al., 2022). Understanding the genetic basis

of microbial functionality is essential for managing ecological

processes and services, as microbial functional gene abundances

are strongly associated with soil processes, thereby supporting soil

functions and overall soil health (Jia et al., 2025). Land reclamation

can enhance the activity and function of microbial groups (Gou

et al., 2019). For example, soil microbial biomass increased in

restored salt marshes in Netherlands, suggesting potential recovery

of soil microbial function with appropriate management practices

(Wu et al., 2015). However, other research has shown that artificial

restoration significantly decreased soil EMF in alpine meadows

(Wu et al., 2023). The inconsistent results may be attributed

to multiple factors, such as land management practices and

nutrient levels. Therefore, investigating the correlation between

soil EMF and key microbial functional guilds is crucial for

assessing the impacts of land use change on soil EMF in coastal

wetland ecosystems.

The Min River Estuary in southeastern China is a typical

intertidal zone along the eastern coast of China, that has

experienced prolonged human interference. This region faces

major threats, including sea-level rise, coastal erosion, human

activities, and improper land management practices (Sun et al.,

2015). We therefore hypothesized that land use changes in coastal

wetlands will reduce microbial diversity and subsequently affect

soil EMF. This study aimed to firstly investigate the impacts of

different land uses on soil properties and microbial communities,

and secondly to examine their associations with soil EMF in the

Min River estuarine wetlands.

2 Material and methods

2.1 Study site

This study was conducted in the Shanyutan tidal wetland of

Min River Estuary (26◦ 1′-26◦3′N, 119◦36′-119◦38′E), in Fujian

province, China (Figure 1). This region is one of the most

important tidal wetlands in southeast China (Tong et al., 2010;

Zhang et al., 2015). The weather for this region is hot and rainy

in the summer, while dry in the winter (Luo et al., 2016). The

marsh soil type is dominated by saline soil (Li et al., 2020b).

Soil descriptions and classifications followed the United States

Department of Agriculture (USDA) (Li et al., 2020a). Based on

the USDA classification system and a previous study, the soil
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FIGURE 1

Sampling site location of Shanyutan tidal wetland and sampling point profile. Di�erent colors and shapes represent di�erent sampling areas. RW, reed

wetland; TF, tidal flat; GR, grassland; AL, agricultural land; FL, fallow land.

textures in this area can be delineated as silt loam (> 70% silt and

clay) (Luo et al., 2016). Phragmites australis is the dominant plant

species in the reed wetland, a main component of the Shanyutan

tidal wetland (Tong et al., 2010). The tidal flat is now a plain

without vegetation cover. The reed wetland gradually transformed

into grassland dominated by C. compressus due to the waterways

changed (Gao et al., 2019). Agricultural land is located within the

dam, where vegetables were grown at the time of sampling, and the

land has been reclaimed for decades. Fallow land is also within the

dam, with plants such as watercress, wormwood, and other shrubs,

and has remained fallow for about a decade. To maintain wetland

functionality, land managers have recently adopted fallowing as a

reclamation strategy.

2.2 Soil sampling

The common land use types in the Shanyutan tidal wetland

of the Min River Estuary include reed wetland (RW), tidal flat

(TF), grassland (GR), agricultural land (AL), fallow land (FL), and

aquaculture ponds (Zeng et al., 2008). In this study, five land use

types including RW, TF, GR, AL, and FL were selected from this

region in April 2021 (Shen et al., 2024) (Figure 1). RW here was

considered original coastal wetland, while TF, GR and AL were

the most recently impacted land use types. Land reclamation was

implemented in FL. For the sampling process, five random soil

cores, with 3.5 cm in diameter and 10 cm deep, were collected in

each 5m × 5m plot. After removing plant material, fine roots,

and gravel, soil samples from each plot were mixed and screened

through a 2-mm mesh, resulting in a total of 15 soil samples. Each

land use type included three plots with the distance over 10m

from each other. Soil samples were placed in the refrigerator and

transported back to the laboratory for further analysis.

2.3 Soil properties determination

The determination of soil total dissolved organic carbon (DOC)

and nitrogen (DON) and soil available N content including NO−
3 -

N and NH+
4 -N were determined according to previous research

(Hou et al., 2021; Deng et al., 2024; Shen et al., 2024). Soil salinity,

indicated by electrical conductivity (EC) was measured using an

EC meter, and soil pH was determined in a soil to water ratio of

1:2.5 with a pH meter (Bai et al., 2023). Soil total carbon (TC) and

soil total nitrogen (TN) were analyzed using an element analyzer

(VarioMAX, Elementar, Germany). Total phosphorus (TP) was

determined using the molybdenum blue method at 880 nm with

an automatic microplate reader (SPARK A-5082, Grodig, Austria)

after extraction with the H2SO4-HClO4 fusion method. Available

phosphorus (AP) was determined by M3 extract method and a

continuous flow analyzer. Microbial biomass was determined using

the chloroform fumigation method, and conversion factor was 0.45

and 0.54 for the calculation of microbial biomass C and biomass N,

respectively (Li et al., 2021; Deng et al., 2024).
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Four soil enzymes were included in this study: β-1, 4-

glucosidase (βG), L-leucine aminopeptidase (LAP), acid

phosphatase (ACP) and β-1, 4-n-acetylglucosaminidase (NAG),

which are associated with sugar degradation, protein degradation,

phosphorus mineralization, and chitin degradation, respectively.

The detailed process for the determination of enzyme activities

followed previous studies (Bell et al., 2013; Deng et al., 2024). Soil

properties are listed in Supplementary Table 1.

2.4 High-throughput quantitative PCR
analyses

Genomic DNA in soil samples was extracted from 0.5 g freezing

samples using the FastDNA
R©
Spin Kit for Soil (MP Biomedicals,

USA) and the obtained DNA concentration and quality were

checked according to previous research (Deng et al., 2024).

High-throughput quantitative PCR was applied to detect the

abundance ofmicrobial functional genes in soil samples (WaferGen

Biosystems, California, USA) (Li H. et al., 2020). The Quantitative

Microbial Elemental Cycling (QMEC) method, a high-throughput

quantitative PCR technique, was used to determine the relative

abundance of microbial functional genes (Zheng et al., 2018),

including 71 functional genes related to C, N, P, S metabolism.

The primers information is listed in Supplementary Table 2. The

quantitative PCR amplification cycles, amplification efficiency and

threshold were carried out as previously (Zheng et al., 2018; Li H.

et al., 2020), and the results were calculated based on previous study

(Equation 1) (Zheng et al., 2018).

Gene relative copy number = (31− CT)/(10/3) (1)

2.5 Soil ecosystem multifunctionality
calculation

We calculated the EMF index using two standardized methods:

Z-scores and 0-1 normalization. A total of 11 ecosystem functions,

including nutrient parameters (NH+
4 -N, NO

−
3 -N, DOC, DON, AP,

MBC andMBN) and enzyme activities (ACP, βG, NAG, LAP), were

selected based on previous research (Deng et al., 2024), and other

physicochemical properties, including TC, TN, TP, EC, and pH,

were considered as environmental factors for downstream analysis.

The average of the Z-scores for the measured variables was used

as EMF for each sample for the first method (Jing et al., 2015). The

secondmethod involved standardizing each variable between 0 and

1 using the formula (Equation 2) (Delgado-Baquerizo et al., 2020;

Jiao et al., 2022). The EMF index was obtained by averaging these

standardized values.

SV = (V− Vmin)/(Vmax− Vmin) (2)

SV represents the standardized variable, and V, Vmin, and

Vmax refer to the raw function, the min raw function, and the max

raw function of each variable, respectively.

2.6 Statistical analyses

In this study, R environment (https://www.r-project.org/)

was applied for statistical analysis. Functional gene richness,

representing alpha diversity, was calculated based on the rarefied

abundance tables, and non-metric multidimensional scaling

(NMDS) analysis based on the relative abundance of each gene

was performed to assess community structure using “vegan”

package (Dixon, 2003). Random forest analysis was performed

to identify the best predictors for functional gene community

structure (NMDS1) and soil EMF using “randomForest” package

in R (v.4.2.3). Mantel tests were conducted to reveal correlations

between microbial functional gene community similarity and

environmental factors. Correlations between microbial functional

genes (C, N, P and S) composition and soil environmental factors

were analyzed using the “ggcor” package. Regression analysis

was performed using the “ggpmisc” package. Chord diagrams

of functional genes were drawn using the “circlize” package.

Structural equation modeling (SEM) was applied to evaluate the

contribution of TN, EC, NMDS1 and functional gene richness to

EMF. All the variables were included as independent observable

variables and the modeling was computed using SPSS-Amos

28 software.

3 Results

3.1 Microbial functional gene diversity and
their influencing factors

Soil properties exhibited significant variation across different

land uses (Supplementary Table 1). Generally, soil pH, EC, and

nutrient parameters all showed a U-shaped pattern from RW, TF,

GR, AL to FL. A total of 55 functional genes related to key nutrient

element cycling were detected. Among these, the largest number

of genes was found in C cycling around 27, and S cycling genes

were the fewest around 5 (Figure 2a). The richness of microbial

functional genes decreased from RW to TF and GR, then increased

in AL and FL. The highest richness was in RW (43), and the

lowest was in GR (34) (Figure 2a). Pearson analysis indicated

significant correlations between soil NH+
4 -N, DOC and NO−

3 -N

with soil pH (P < 0.05) (Figure 2b). Soil DOC and DON were

noteworthy correlated with TC and TN (P < 0.05). Notably, DOC

was significantly correlated with soil NH+
4 -N and NO−

3 -N, while

TP showed a significantly negative correlation with NH+
4 -N (P

< 0.05).

Mantel test revealed that soil EC was the strongest driver of

the relative abundance of microbial functional genes. Additionally,

soil pH was significantly correlated with the relative abundance

of those microbial genes related to C, N and P cycling, and soil

DOC with those involved in C, N and S cycling (Figure 2b). NMDS

analysis showed a distinct distribution pattern among land uses,

clustering into three groups: RW and TF, GR, AL and FL. The first

two groups were significantly separated from the third group along

the x-axis (Figure 2c). Random forest analysis identified that soil

ECwas themost significant contributor to the community structure

of microbial functional genes (NMDS1) (Figure 2d).
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FIGURE 2

Distribution pattern and community structure of microbial functional gene Microbial functional genes richness (a), mantel test showing the

correlation between functional genes community composition and environmental factor (b), non-metric multidimensional scaling (NMDS) analysis

of functional gene community structure based on their abundance (c), and Random forest analysis of factors a�ecting functional gene community

structure (d). Di�erent letters indicate significant di�erences among di�erent land use (P < 0.05). Pairwise comparisons of environmental factors are

shown, with color gradient denoting Pearson’s correlation coe�cients. Edge width corresponds to the Mantel’s r statistic for the correlations, and

edge color denotes the statistical significance. Significance levels are denoted with *
P < 0.05, **P < 0.01 and ***

P < 0.001. pH, power of hydrogen;

AP, Available phosphorus; DOC, dissolved carbon; DON, dissolved nitrogen; EC, electrical conductivity; NH+
4 -N, ammonium nitrogen; NO−

3 -N, nitrate

nitrogen; TP, total phosphorus; TC, total carbon; TN, total nitrogen. Significance levels are denoted with *
P < 0.05, **P < 0.01, ***P < 0.001. Di�erent

colors represent di�erent land use and functional genes. RW, reed wetland; TF, tidal flat; GR, grassland; AL, agricultural land; FL, fallow land.

3.2 Top 10 functional gene di�erences and
correlation analysis with soil properties

The top 10 abundant microbial functional genes were shown

in this study (Supplementary Figure 1), and ureC gene had the

peak relative abundance in all the samples, followed by arcsA,

nifH, rbcL, phnK, dsrB, nirS1, dsrA, phoD, and nirS2 genes.

ANOVA analysis of the relative abundance of top 10 genes showed

varied patterns across land uses (Figure 3). For example, genes

nifH, dsrB, nirS1, dsrA, and nirS2 showed a decreasing trend

from RW to FL, whereas, the relative abundances of ureC and

phoD genes showed an opposite trend, with the highest found

in AL. No significant differences in the relative abundances

of acsA, rbcL and phnK genes were found across different

land uses.

Significant positive correlations between microbial functional

genes abundance and environmental variables were observed

(Figure 4). Significant positive correlations were detected between

microbial functional genes and soil properties, such as nifH,

dsrB, nirS1, dsrA, and nirS2 with EC, dsrB and dsrA with TP,

and ureC and phoD with TC and TN (Figure 4). Conversely,

significant negative correlations were found, between nifH and

pH, NH+
4 -N, NO3

−-N, DOC, between rbcL and pH, DOC; and

between nirS1 and pH, NH+
4 -N, DOC. These results suggest

that environmental variables significantly influence the relative

abundance of microbial genes.

Regression analysis indicated that soil EC exhibited a

negative correlation with functional gene NMDS1 (P <

0.05) (Supplementary Figure 2). Regression analysis further

demonstrated that soil EC plays a major role in the distribution of

the top 10 functional genes, with significant (P < 0.05) R2 value:

0.83 for nirS2, 0.62 for nirS1 and dsrB, 0.57 for dsrA, 0.40 for nifH,

0.29 for rbcL, 0.27 for phoD, and 0.23 for ureC (Figure 5).

3.3 Soil EMF and driving factors across
di�erent land use

Soil EMF based on both the 0-1 normalization and Z-

scores methods showed a U-shaped trend across the land use

types, from RW, FL, including TF, GR, to AL (Figure 6a,

Supplementary Figure 3). The lowest EMF was recorded in GR,

while no significant differences were observed between RW, AL

and FL. This consistency supports the reliability of our EMF values.

Given its widespread use in the literature, we ultimately chose the

0-1 normalization method in the downstream analysis.

Random forest analysis indicated that the relative abundance of

the dsrB, nifH, rbcL, nirS2, and dsrA genes were themajor microbial
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FIGURE 3

Relative abundance of top 10 microbial functional genes in di�erent land use. Di�erent lowercase letters above the bar indicate significant

di�erences among di�erent land use (P < 0.05). Di�erent colors represent di�erent land uses. RW, reed wetland; TF, tidal flat; GR, grassland; AL,

agricultural land; FL, fallow land.

FIGURE 4

Correlation analysis of top 10 functional genes abundance and environmental factors. Significance levels are denoted with *P < 0.05, **P < 0.01 and

***P < 0.001. pH, power of hydrogen; AP, Available phosphorus; DOC, dissolved carbon; DON, dissolved nitrogen; EC, electrical conductivity;

NH+
4 -N, ammonium nitrogen; NO−

3 -N, nitrate nitrogen; TP, total phosphorus; TC, total carbon; TN, total nitrogen. Red means positive correlation,

green means negative correlation.
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FIGURE 5

Regression analysis of functional genes and EMF. Soil EC and top 10 functional genes (a) and soil EMF, EC, NMDS1and richness, TC and TN (b). The

shady region shows the regression model’s 95 % confidence interval. Richness: microbial functional genes richness, NMDS1: the first axis of

non-metric multidimensional scaling (NMDS) Di�erent colors represent di�erent genes and variables.

FIGURE 6

Soil EMF in di�erent land uses (a) and random forest analysis of factors a�ecting EMF (b). Di�erent letters indicate significant di�erences among

di�erent land use (P < 0.05). RW, reed wetland; TF, tidal flat; GR, grassland; AL, agricultural land; FL, fallow land. Significance levels are denoted with

*P < 0.05, **P < 0.01. pH, power of hydrogen; EC, electrical conductivity; TP, total phosphorus; TC, total carbon; TN, total nitrogen; Richness,

microbial functional genes richness; NMDS1, microbial functional genes community structure. Di�erent colors represent di�erent variables.

factors contributing to soil EMF (Supplementary Figure 4).

Furthermore, TN, microbial functional gene richness, TC,

NMDS1 and EC were identified as major factors influencing soil

EMF (Figure 6b). Regression analysis indicated that microbial

community structure (NMDS1), TC, TN, and functional gene

richness all have noteworthy correlations with soil EMF (P < 0.05)

(Figure 5).

SEM approach was employed to further investigate the direct

and indirect factors contributing to soil EMF. Results indicated

that soil EC indirectly affects EMF through microbial functional
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gene community structure (NMDS1) (Figure 7a). The model also

showed that microbial functional gene richness had a positive

impact on EMF. Additionally, it was found that soil EC and TN

had no direct significant impact on the richness and NMDS1 of

microbial functional genes. By calculating the effects of all variables

on SEM, we found that the gene richness had the strongest impact

on EMF, followed by microbial community structure (NMDS1)

(Figure 7b).

4 Discussion

4.1 E�ect of land use on soil properties and
microbial functional genes

Coastal estuarine wetlands play a vital role in regulating

biogeochemical cycles between land and sea (Wang K. et al., 2022).

In this study, we found significant variations in soil properties

across different land uses, which is consistent with the findings

of previous studies (Ding et al., 2013; Zhu X. et al., 2022). This

variation is partly attributed to land use and reclamation duration

(Sun et al., 2011), which were well addressed in our previous study

(Liu et al., 2022). Estuarine wetlands are particularly vulnerable

to subtle environmental changes due to their unique geographical

positions. Land use changes can affect soil physicochemical

properties, biogeochemical processes, and consequently influence

ecosystem function (Feng et al., 2022). Soil salinity is the most

influential in coastal regions (Lorrain-Soligon et al., 2023). Our

results further corroborate this conclusion by revealing marked

salinity gradients from intertidal to nearshore zones (Zhang et al.,

2020).

Land use changes alter soil physicochemical properties and

microbial habitat conditions, leading to distinct characteristics in

microbial community composition andmicrobe-mediated nutrient

cycles, thereby shaping functional gene profiles (Dong et al., 2020;

Mohapatra et al., 2021). Our findings indicated that significant

difference in the community structure ofmicrobial functional genes

between intertidal and offshore zones, corroborating previous

research by Zhu Y. et al. (2022). They observed notable distinctions

in the bacterial abundance and community structure across

various land reclamation periods in the Yellow River Delta

(Zhu Y. et al., 2022). Furthermore, the response of microbial

functional genes varied when natural land converted to agricultural

habitats. For example, the transition from steppe to farmland

diversified the spatial distribution of functional genes, resulting in

a higher abundance of specific functional genes (Liu et al., 2023).

However, a recent study showed that the transition from natural

ecosystems to agricultural soils would result in the classification

and functional homogenization of soil bacteria (Peng et al., 2024).

In this study, we found nifH, dsrB, nirS1, dsrA, and nirS2 genes

showed a decreasing trend along RW, TF, GR, AL and FL

(Figure 3). This trend is largely attributed to the microhabitat-

specific characteristics of microorganisms. For example, nirS1 and

nirS2 genes encoding for cytochrome cd1-containing reductase

(NirS), primarily drive denitrification via denitrifying bacteria,

which generally prefer anaerobic systems, such as river sediments

(Li et al., 2014), sediment subsurface (Smith et al., 2007). The genes

dsrA and dsrB encode dissimilatory sulfite reductase (DsrAB),

which catalyzes the reduction of sulfite to sulfide during sulfate

anaerobic respiration (Pelikan et al., 2016). RW and TF, which

are located in the intertidal zones with limited O2 availability,

exhibited higher numbers and relative abundances of dsrB, nirS1,

dsrA, and nirS2. The nifH gene involved in N fixation was often

FIGURE 7

Structural equation modeling (SEM) showing the TN, EC, NMDS1, microbial functional gene richness and EMF (a). EC, electrical conductivity; TN,

total nitrogen. Richness, microbial functional genes richness; NMDS1, the first axis of non-metric multidimensional scaling (NMDS). Adjacent number

in the same direction as the arrow represents path coe�cients. Solid and dotted lines represent significant (*P < 0.05) and non-significant

relationships, respectively, with red represents positive correlation and blue gray represents negative correlation, and significance levels denoted as

*P < 0.05, **P < 0.01, and ***P < 0.001. The standardized e�ects of multiple factors on the soil EMF (b). Di�erent colors represent di�erent e�ects.
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affected by the availability of N and aboveground vegetation

(Chen et al., 2019).

Salinity stress could inhibit plant growth and photosynthetic

rate. Previous research has established that salinity as a critical

soil characteristic affecting microbial communities and associated

biogeochemical cycles, especially in estuary (Sheng et al., 2015).

Salinity induces osmotic stress, altering microbial metabolism and

the abundance of functional genes (e.g., nosZ, nirK, pccA). It also

affects nutrient availability and microbial competition, reshaping

community composition and ecosystem functions (Li et al., 2022,

2024). In subtropical coastal wetlands, salinity is the main factor

affecting N cycling genes like nosZ I and nosZ II (Lin et al., 2023).

In this study, soil EC was the dominant factor driving functional

gene community structure and was positive correlations with

soil microbial functional genes, including nifH, dsrB, nirS1, dsrA,

and nirS2. Long-term fluctuations in seawater alter the growth

environment for vegetation in intertidal and offshore zones (Costa

et al., 2003). The continuous accumulation of salts by plant roots

and litter leads to the flocculation and buildup of humic substances

under high salinity conditions in coastal wetlands (Kida et al., 2017;

Li et al., 2022; Lin et al., 2023). Intertidal vegetation significantly

influences the abundance of microbial functional genes through

root exudates and plant litter (Chaudhary et al., 2018). In this

study, land use conversion significantly affected soil pH, which is a

crucial factor affectingmicrobial diversity and composition (Lauber

et al., 2009). Nevertheless, the influence of soil pH on microbial

functional gene community was less significant than that of soil

EC, which is consistent with findings in saline soils (Mutlu et al.,

2008). Soil salinity strongly drives microbial community structure

and function (Zhang et al., 2020), particularly in coastal estuaries

(O’Brien et al., 2019). Alterations in the composition and diversity

of microbial functional genes in saline soils in coastal zone provide

critical biological indicators for land use transitions.

4.2 Role of soil EMF in coastal wetland

Our findings indicated that soil EMF varied significantly across

five land uses. Fallow land had the highest soil EMF among the

five land uses. Soil EMF was positively correlated with microbial

functional gene richness, and both decreased initially from reed

wetlands to fallow land. Land use changes play a crucial role

in regulating EMF by driving key biogeochemical cycles. In

saline soils, reductions in microbial C, N, and P metabolism

alter nutrient availability and reshape community composition,

ultimately influencing EMF (Hu et al., 2023a; Liu et al., 2023).

Consequently, microbial functional genes directly regulate key soil

processes, such as nutrient transformation and organic matter

decomposition, which in turn support overall soil EMF (Li et al.,

2022, 2024; Luo et al., 2025). Biodiversity has been considered

as a major contributor to EMF in various environments (Wagg

et al., 2014), including grassland (Guo et al., 2021; Ding et al.,

2025) and agricultural systems (Jiao et al., 2021; Deng et al.,

2024). In this study, soil EMF was strongly associated with the

richness of microbial functional genes as confirmed by SEM

analysis. Previous studies have demonstrated that soil food web

structure (e.g., trophic interactions among bacteria, fungi, and

nematodes) and microbial community composition play crucial

roles in regulating EMF (Zhu et al., 2024; Ding et al., 2025). While

functional gene richness more directly reflects microbial metabolic

potential, linking biogeochemical processes such as C and N

cycling. This suggests that interrogating biodiversity at multiple

biological scales, i.e., from genes to communities or food webs,

provides a holistic view of how biodiversity sustains ecosystem

services. Additionally, we also found that soil TC and TN all

showed strong correlations with soil EMF, but not with soil EC.

Soil salinity is mainly associated with parent materials and local

habitats, such as coastal wetlands (Zhang et al., 2024). However, the

effects of salinity on microbial activity and function are generally

mitigated when coastal wetlands are converted to other upland

types, such as agricultural land. Both microbial functional gene

richness and community structure explained more variation in

soil EMF than soil EC, although soil EC is the best predictor

for microbial gene community. This is likely due to other factors

combined with microbial characteristics driving soil EMF, such

as TC and TN. Previous research demonstrated that nitrogen

application can improve nutrients characteristics and microbial

metabolic activities in coastal agro-ecosystems by creating more

suitable bacterial microhabitats (Yao et al., 2021). This aligns with

our finding that higher soil EMFwere recorded in AL and FL, which

received fertilizers and litter inputs, respectively. In this study,

fertilization benefits agricultural land (AL) by enhancing nutrients,

while fallow land (FL) maintains high C and N levels due to

minimal disturbance (Supplementary Table 1). Our results extend

the understanding of the links between soil microbial communities

and EMF and further clarify their environmental implications.

Soil EMF provides a comprehensive assessment of soil

functions. Previous studies of EMF are mostly related to

plant productivity, vegetation biomass, and nutrient cycling

(Delgado-Baquerizo et al., 2016, 2020). Natural ecosystems

exhibit highly complex taxonomic diversity and environmental

heterogeneity, making it challenging to understand the factors

influencing subsurface electromagnetic fields (Jiao et al., 2021). Soil

biodiversity, especially microbial diversity, is an important part for

maintaining ecosystem function (Delgado-Baquerizo et al., 2016).

In addition, previous research found that soil EMF significantly

increased during ecosystem restoration (Tian et al., 2022). During

the restoration process, increased plant litter and soil microbial

activity enhance litter decomposition and nutrients transformation

(Zhang et al., 2022). Higher biodiversity and diverse ecosystem

functions ultimately promote ecosystem assembly and significantly

enhance restoration outcomes (Guo et al., 2021). Future research

should combine biodiversity and EMF together to better assess land

conservation and ecosystem restoration efforts.

5 Conclusion

This study elucidates the interplay between land use change,

microbial functional communities, and soil EMF in subtropical

coastal wetlands. Soil EC emerged as the dominant factor

structuring microbial functional communities, yet EMF was more

strongly influenced by microbial gene richness and nutrient

dynamics (i.e., TC, TN). Fallow land characterized with low

disturbance exhibited the highest EMF, highlighting the ecological
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benefits of land restoration. Conversely, the conversion of

wetlands to grassland reduced EMF. Future research should

integrate multi-trophic interactions and long-term monitoring to

refine land management strategies. These findings emphasize the

critical role of soil microbial diversity and nutrient cycling in

maintaining ecosystem services and provide practical insights for

minimizing anthropogenic impacts while promoting sustainable

wetland management.
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