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The human gut is one of the most densely populated microbial environments, home 
to trillions of microorganisms that live in harmony with the body. These microbes 
help with digestion and play key roles in maintaining a balanced immune system 
and protecting us from harmful pathogens. However, the crowded nature of this 
ecosystem makes it easier for harmful bacteria to acquire antimicrobial resistance 
(AMR) genes, which can lead to multidrug-resistant (MDR) infections. The rise of 
MDR infections makes treatments harder, leading to more extended hospital stays, 
relapses, and worse outcomes for patients, ultimately increasing healthcare costs and 
environmental strain. Since many MDR infections are challenging to treat, nosocomial 
infection control protocols and infection prevention programmes are frequently the 
only measures in our hands to stop the spread of these bacteria. New approaches 
are therefore urgently required to prevent the colonization of MDR infections. This 
review aims to explore the current understanding of antimicrobial resistance pathways, 
focusing on how the gut microbiota contributes to AMR. We have also emphasized 
the potential strategies to prevent the spread and colonization of MDR infections.
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1 Introduction

The gut microbiome, a complex ecosystem in the gastrointestinal tract, harbours trillions 
of commensals, symbiotic organisms, including bacteria, viruses, fungi, archaea, and 
eukaryotes. These organisms contribute intestinal integrity, immunity, metabolism, digestion, 
mental health, and pathogen defence to the host (Anto and Blesso, 2022; Lane and Yadav, 
2020). The microbial composition of each individual is unique and stable, but the significant 
phyla remain the same, and an individual will conserve over 60% of the gut microbial 
phylotypes for 2 years (Manichanh et al., 2010). The microbiome encodes nearly three million 
genes that produce hundreds of metabolites, outnumbering the roughly 23,000 genes in the 
host genome (Valdes et al., 2018). However, this ecosystem can serve as a reservoir and 
epicenter for developing antimicrobial resistance (AMR).

AMR, a global health concern of since the mid-20th century, is the development of resistance 
by microorganisms to the antimicrobial medications that are used to treat them, reducing clinical 
efficacy and increasing treatment costs (Penders et  al., 2013; Prestinaci et  al., 2015). Since 
antibiotics are not pathogen-specific and are prescribed to treat infections leading to overdose, 
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they impact commensal microbiota present in the same habitat (Bag 
et al., 2019; Llor and Bjerrum, 2014). The continuous emergence of 
resistant genes and mechanisms contributes to the global spread of 
AMR. Several diseases previously treated successfully, with any of the 
several drug classes have developed resistance, making it difficult to 
inhibit their growth. The emergence of resistant pathogens such as 
methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant 
and macrolide-resistant Streptococcus pneumoniae, carbapenem-
resistant Enterobacteriaceae, third-generation cephalosporin-resistant 
Klebsiella pneumoniae, cephalosporin-resistant Escherichia coli, 
carbapenem-resistant and multidrug-resistant Pseudomonas aeruginosa, 
have all been classified by the World Health Organization as high or 
critical priorities for the development of new antibiotics (Kessler et al., 
2022). AMR is developed by selecting resistant characteristics, which 
permits organisms to survive and reproduce, resulting in the persistence 
of resistant populations (Ferri et al., 2017). Resistance arises because of 
genetic mutation and horizontal gene transfer. Horizontal gene transfer, 
a prevalent mechanism, occurs due to the acquisition of resistance genes 
from environmental and microbial reservoirs. Bacteria employ various 
mechanisms to achieve antimicrobial resistance namely use of efflux 
pump, altering the antibiotic target (for example, by altering binding sites 
in ribosomal RNA), reprogramming metabolic pathways, and 
production of enzyme to inactivate the antibiotic (Wright, 2005). 
Antibiotic resistance affects both developed and developing nations 
equally, therefore, it is essential to examine how antibiotic resistance is 
spreading over the world. The widespread use of antibiotics in hospitals, 
the general population, and agriculture has increased the stress on 
selection, leading to the persistence of resistant microbes in high-income 
nations, necessitating shifting to more expensive, broad-spectrum 
antibiotics. The need for antibiotics is rising in low- and middle-income 
nations due to increased incomes, a more significant hospitalisation rate, 
and a high prevalence of hospital infections (Laxminarayan et al., 2013). 
By 2050, according to estimates, antibiotic resistance will cause almost 
10 million deaths annually and a loss of $100.2 trillion in GDP (Chokshi 
et al., 2019). It is essential to investigate the key socioeconomic and 
political factors that influence how quickly AMR spreads in both 
developed and developing nations (Chokshi et al., 2019). The direct 
monetary effects of AMR on health care are high expenses associated 
with expensive and intensive treatments and an increase in resource 
consumption (Dadgostar, 2019).

Numerous in silico metagenomics studies have confirmed that the 
human gastrointestinal tract acts as a reservoir for AMR genes, capable 
of transferring these genes to transient, pathogenic bacteria (Bag et al., 
2019; Cheng et al., 2012; Radovanovic et al., 2023; Ghosh et al., 2013). 
The spread of antibiotic resistance genes (ARGs) is increased in 
international human interaction, wherein antibiotic-resistant bacteria 
from one part of the world are swiftly transferred and spread to far-off 
nations at great geographic distances (Okeke and Edelman, 2001). Since 
the development of antibiotic resistance increases the probability of 
therapeutic failure, relapses, extended hospital stays, and poorer clinical 
outcomes, treating infections caused by multidrug-resistant organisms 
provides a significant clinical challenge (Gargiullo et  al., 2019). 
Determining the antimicrobial resistome of the human gastrointestinal 
microflora will, therefore, be of great importance in evaluating the 
process of resistance genes being transferred among intestinal 
microorganisms. The ways through which mutualistic and pathogenic 
bacteria in the human gut potentially exchange antimicrobial resistance 
genes have been investigated in the current review.

2 Human gut microbiome

The gut microbiome, plays a vital role in the overall wellbeing of 
the individual, consists of, principally, of five significant phyla of 
distinct and complex colony of microorganisms. Firmicutes include 
Lactobacillus, Bacillus, Clostridium, Enterococcus, and Ruminococcus 
(Kho and Lal, 2018; Rinninella et al., 2019). Bacteroidetes include 
Bacteroidia, Flavobacteria, Sphingobacteria, and Cytophagia (Thomas 
et  al., 2011). Actinobacteria include Corynebacterium, 
Propionibacterium, Rothia, Actinomyces, and Bifidobacterium (Wu, 
2013). Proteobacteria include Escherichia coli, Salmonella, and 
Campylobacter (Moon et  al., 2018). Verrucomicrobia is primarily 
represented by Akkermansia muciniphila (Dubourg et al., 2013).

The human gastrointestinal tract (GI tract), with a surface area of 
250–400 m2, forms an interface between the host, environmental 
factors, and antigens. Over the course of a lifetime, the human GI tract 
processes about 60 tonnes of food and encounters various pathogens 
that can be detrimental to gut health (Thursby and Juge, 2017). Initially, 
the newborn gut is aerobic, but the first colonizers, facultative 
anaerobes, create a new environment with a low level of oxygen, 
beneficial for the growth of anaerobes such as Bacteroides, Clostridium, 
and Bifidobacterium spp. (Breitbart et al., 2008; Fouhy et al., 2012; 
Rodríguez et al., 2015). The sources of this diversity of gut microbes 
include nutritional, environmental, and maternal factors, gestational 
age, delivery technique (vaginal birth vs. assisted delivery), feeding 
(breast milk vs. formula), sanitation, and antibiotic use (Rodríguez 
et al., 2015; Townsend et al., 2021). Studies show that vaginal delivery 
exposes newborns to maternal vaginal microbiota (primarily 
Lactobacilli), whereas caesarean sections result in significantly different 
microbial populations (McCann et  al., 2018; Firoozeh and Zibaei, 
2019). By human anatomy, exposure to the mother’s faecal microbiota 
after birth is a significant means of transmission. One of the bacterial 
species with the highest likelihood of direct transmission from mother 
to newborn through faeces is Enterobacteriaceae (Rodríguez et  al., 
2015). Mother’s breastmilk acts as a vehicle for the vertical transmission 
of Bifidobacterium, Streptococcus, and Staphylococcus (Hunt et al., 2011).

The structure, diversity, and functional capabilities of the newborn 
microbiota increase and resemble those of the adult microbiota by the 
time the child is 2.5 years old, with temporal patterns that are unique 
to each newborn (Eckburg et al., 2005; Bäckhed, 2011; Firoozeh and 
Zibaei, 2019). The Bacteroidetes phylum and Clostridium cluster IV are 
more prevalent in those over 65 than in younger people (Claesson 
et al., 2011).

Furthermore, the composition of gut microbiome varies 
significantly among individuals due to genetics and environmental 
factors such as routine habits, dietary pattern, personal hygiene, health, 
medications such as antibiotics, and the use of prebiotics and probiotics 
(Ahmad et al., 2019; Cunningham et al., 2021). Diet is considered one 
of the key factors affecting the composition of an individual’s microbiota 
irrespective of age. Seasonal variation in the gut microbiome, influenced 
by the consumption of fresh foods, leads to shifts in composition, with 
Bacteroides common in summer and Actinobacteria in winter, indicating 
the influence of complex carbohydrate intake on microbiome plasticity 
(Davenport et  al., 2014). Furthermore the composition and 
heterogeneity can be altered in case of obese and nonobese individuals, 
where more Firmicutes and fewer Bacteroidetes were observed in obese 
compared to non-obese adults (Pinart et al., 2021). The composition 
varies widely among ethnic groups and provides more information 
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about the individual influenced by the same geographical area 
(Deschasaux et al., 2018; Gaulke and Sharpton, 2018; Schnorr et al., 
2014). The gut microbiome greatly influences the health, brain, well-
being, stress, and anxiety. Social interactions increase the diversity of the 
microbiome while anxiety and stress decrease the same (Johnson, 2020).

The gut microbiota coevolved with humans and maintains host 
health by regulating metabolism, physiology, and immune functions 
(den Besten et al., 2013; Natividad and Verdu, 2013; Singh et al., 2019). 
According to estimates, the human microbiota contains roughly 1014 
microbial cells, with a microbial cell-to-human cell ratio of 1:1 (Sender 
et  al., 2016; Thursby and Juge, 2017). Colonic bacteria produce 
carbohydrate-active enzymes that convert complex carbohydrates into 
short-chain fatty acids (SCFAs) like propionate, butyrate, and acetate 
(Louis et al., 2014; Thursby and Juge, 2017). These SCFAs are absorbed 
by epithelial cells, regulating gene expression, inflammation, and cell 
proliferation (Corrêa-Oliveira et  al., 2016). Gut anaerobes create 

acetate, whereas Bacteroidetes and Firmicutes synthesis propionate, 
butyrate through glycolytic and acetyl-CoA pathways, as well as 
succinate or propanediol pathways (Louis and Flint, 2009; Louis and 
Flint, 2017; Macfarlane and Macfarlane, 2003; Morrison and Preston, 
2016). Variations in the composition of the gut microbiome can 
endanger human health, indicating its critical role in human health 
(Vandenplas et al., 2020) (see Table 1).

3 The gut microbiome and 
antimicrobial resistance

Antibiotic resistance, a severe threat to public health, signals the 
end of an era of antibiotics as a “golden therapy” and returns us to a 
time when effective treatments for microbial infections existed 
(Huddleston, 2014). Infectious disease remains one of the primary 

TABLE 1 Factors influencing gut microbiome.

S. No. Factor Description Impact on AMR 
and host

Examples References

1. Diet Nutrient intake Change in microbial 

community protect from 

inflammations and non-

infectious colonic diseases

Fiber diet, plant or animal 

based

David et al. (2014), De 

Filippo et al. (2010), and Wu 

et al. (2011)

2. Age Microbiome changes across 

lifespan

Different microbiota 

depending upon age

Infant vs. young vs. elderly Ghosh et al. (2022) and Li 

et al. (2024)

3. Health status Presence of diseased 

condition

Maintaining homeostasis, 

promotes overall health

Inflammatory bowel disease 

and metabolic disorders

Afzaal et al. (2022) and 

Shreiner et al. (2015)

4. Geographical location Regional differences Change in microbial 

diversity

Urban vs. rural areas, 

western

Gaulke and Sharpton (2018)

5. Sanitation and hygiene Access to clean water and 

sanitation facilities

Shift in microbial diversity Hand wash Monira et al. (2023)

6. Exposure to antibiotics Misuse of antibiotics Selects for resistant 

strains, reduces diversity

Use of tetracycline, 

amoxycillin, influencing 

overall microbial 

community resilience

Nhu and Young (2023)

7. Lifestyle factors Habits and behaviors 

affecting microbiome

Modify the microbial 

diversity

Smoking, alcohol 

consumption, sleep 

deprivation

Ren et al. (2023)

8. Genetic factors Genetic makeup of host 

influence microbiome 

composition and function

Genetic predisposition to 

harbour certain resistant 

strains

Variations in immune 

response genes

Blekhman et al. (2015)

9. Immune system Immune response of the host Influence the microbial 

composition

Inflammatory responses, 

immune tolerance

Zheng et al. (2020)

10. Mode of delivery Vaginal or caesarean Influences the initial gut 

colonization

Bifidobacterium, 

Enterococcus spp.

Brinkac et al. (2017), Wen 

and Duffy (2017), and Zhang 

et al. (2021)

11. Feeding method Breastfeeding or formula They are one among the 

first microbes to enter the 

infant’s body, and they 

could play an important 

role in health

Breast milk contains 

potential probiotic bacteria 

and IgA antibody

Davis et al. (2022) and Wen 

and Duffy (2017)

12. Gender Biological differences Differences in microbial 

diversity and composition

Hormones influence the 

microbiota

Niemela et al. (2024) and 

Yoon and Kim (2021)
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causes of death worldwide, pharmaceutical companies have slowed 
the drug development process, providing only 0.2% of new drugs 
(Spellberg et  al., 2004). Bacteria develop resistance through 
mechanisms such as horizontal gene transfer, overexpression of efflux 
pumps, and protection of the drug target site by designing a specific 
protein (Munita and Arias, 2016).

The gut microbiome, essential for host wellbeing and a reservoir 
for ARGs are disrupted by dietary modifications, stress, antibiotic use, 
causing microbial dysbiosis, having detrimental effect on health and 
reduces resistance to pathogen colonization (Singh et  al., 2019; 
Gargiullo et al., 2019).

The human gut microbiome, which houses 3.3 million 
non-reductant genes, is estimated to be  150 times larger than the 
human host (Qin et  al., 2010). The confined environments of the 
diverse microbiome provide favourable conditions for genetic 
exchange between transitory and resident bacteria, as well as resident 
microbes (Brinkac et al., 2017). AMR genes in the gut, collectively 
termed the resistome, are categorized as intrinsic and mobile 
(Gargiullo et  al., 2019; Singh et  al., 2019). Intrinsic AMR genes, 
relatively stationary, in addition to producing a resistant phenotype, 
help regulate the physiology and metabolism of bacteria (Cox and 
Wright, 2013). Mobile AMR genes can rapidly spread by horizontal 
gene transfer occurring either through transformation, conjugation or 
transmission (Singh et al., 2019; von Wintersdorff et al., 2016). Mobile 
genetic elements—plasmids, integrons, transposons, genomic islands, 
are vehicles for transferring AMR genes in the gut microbiota (Table 2).

3.1 Mechanism

3.1.1 Horizontal gene transfer

3.1.1.1 Conjugation
Conjugation, known as bacterial sex, is a major horizontal gene 

transfer mechanism where the donor DNA is transferred to the 

recipient by direct contact via pilus or pore (Guglielmini et al., 2013; 
Virolle et al., 2020). Conjugation occurs through a series of events, 
including cell-to-cell contact, the formation of mating pairs, and the 
horizontal transfer of genetic material, such as plasmids or 
transposons, into the recipient cell’s cytoplasm (Peterson et al., 2011). 
Conjugative transposons integrate into new genome locations, 
facilitating genetic diversity and responsible for developing AMR and 
virulence (Salyers et al., 1995; Singh et al., 2019). Genetic flux through 
conjugation can be  observed in inflammatory conditions like 
inflammatory bowel syndrome or infections caused by E. coli or 
Salmonella spp. (Stecher et al., 2012). The conjugation efficacy of the 
β-lactamase plasmid was reduced in research by Machado and 
Sommer (2014) when clinical isolates of E. coli were co-cultured with 
human intestinal cells that produce protein-based factors. They 
concluded that any damage to intestinal cells caused by toxins, drugs, 
or inflammation reduces the production of peptides, thereby 
promoting conjugation. A study revealed that a transitory intestinal 
colonization by an animal-derived E. faecium strain that carries 
mobile elements with the vanA gene resistance to a human-derived 
E. faecium isolate poses a risk of infection, particularly in 
immunocompromised patients (Lester et al., 2006).

Rooney et al. (2019) used a triple stage chemostat model of the 
human gut to demonstrate the colonization, clonal expansion, and 
transfer of CRE genes from Klebsiella pneumoniae to the microbiota 
of CRE-negative human faeces.

A mouse model with human-derived microbiota was created in 
order to evaluate the conjugative transfer of ARGs by E. coli utilizing 
fluorescently labeled protein in the gut without the use of antibiotic 
selection pressure. According to their findings, the ARG-bearing RP4 
plasmid from E. coli spread to a variety of bacterial taxa, and the 
model can be used to comprehend the prerequisites for gene transfer 
and conjugation (Sher et al., 2025).

Factors such as biofilm formation, the density of donor or recipient 
bacteria, environmental conditions (availability of nutrients, pH, 
temperature), exposure to medications and preservatives decides the rate 

TABLE 2 Mechanism of antibiotic resistance.

S. No. Mechanism Description Examples References

1. Enzymatic degradation Bacteria produce enzymes that 

degrade the antibiotic

Beta-lactamases, carbapenemases Bush (2018) and Bush and 

Jacoby (2010)

2. Efflux pumps Remove any potentially 

dangerous molecules from the 

anterior of the cell

RND and MATE Ghotaslou et al. (2018) and Soto 

(2013)

3. Target modification Modification of antibiotic target Methylation of 16S rRNA or 23S 

rRNA, MRSA (mecA gene)

Peterson and Kaur (2018)

4. Reduced permeability Changes in cell membrane 

permeability

Porin Delcour (2009)

5. Biofilm formation Bacteria form biofilms that 

protect them from antibiotics 

and the immune system

Campylobacter jejuni Buret and Allain (2023) and 

Grooters et al. (2024)

6. Horizontal gene transfer Transfer of ARGs between 

bacteria via plasmids, 

transposons, or phages

Conjugation, transformation, 

transduction

Groussin et al. (2021) and 

Huddleston (2014),

7. Antibiotic modification Enzymatic alteration of the 

antibiotic (phosphorylation, 

acetylation, and adenylation)

N-acetyl transferases, 

O-phosphotransferases, 

O-adenyltransferases

Peterson and Kaur (2018)
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of conjugation (Liu et  al., 2023). According to the study, the level of 
antibiotic-induced dysbiosis affects the colonization of Salmonella species 
in the gut and the conjugative transfer of the multi-drug resistant IncA/C 
plasmid to commensal E. coli. They also came to the conclusion that using 
antibiotics ethically is crucial because the latter may cause the dissemination 
of ARG (Yilmaz et al., 2024). The antibiotic resistance profile of mucin-
degrader Akkermansia muciniphila, ubiquitously present in the adult 
human gut microbiota is poorly understood. Recent studies revealed 
resistance to quinolones and horizontal gene transfer of sulphonamide and 
aminoglycoside resistance genes from Salmonella enterica, indicating the 
need to access the spread of ARGs (Guo et al., 2017).

3.1.1.2 Transformation
It refers to the ability of the bacterial cell to uptake and integrate 

extracellular DNA enabled by bacterial competence (Finkel and 
Kolter, 2001). The primary catalyst for transformation in gut 
microflora includes conditions like nutrition competition or DNA 
repair as a result of antibiotic damage (Finkel and Kolter, 2001; 
Huddleston, 2014). Extracellular DNA maintains the structural 
integrity of intestinal biofilms, suggesting transformation a crucial 
mechanism for bacterial persistence and adaptation in the gut 
environment (Licht et al., 1999).

According to Chowdhury et  al. (2024), Enterococcus fecium 
developed kanamycin resistance by transformation in the presence of 
antibiotics, demonstrating that bacteria in the gut can absorb eARGs 
from their surroundings. According to the findings, the degree of gene 
uptake is correlated with antibiotic levels, suggesting that resistance 
gene acquisition may be facilitated by higher antibiotic concentrations.

3.1.1.3 Transduction
The transfer of bacterial DNA through bacteriophages and are 

classified into generalized transduction and specialised transduction 
(Thierauf et  al., 2009). There is little knowledge regarding the 
transmission of the AMR gene by bacteriophages in the gut. In 
transduction, phages can transfer genes between bacteria without 
requiring coexistence and can cross taxonomic boundaries (Muniesa 
et al., 2013). ARG-carrying phages are prevalent in the human gut and 
other environment and the number rises following an antibiotic 
exposure (Fernández-Orth et al., 2019). Studies conducted on mouse 
models have demonstrated that transduction drives genetic diversity 
in E. coli strains that colonize the gut and can lead to the development 
of drug resistance in gut bacteria (Frazão et al., 2019).

Studies have reported that on treatment with β-lactam antibiotics, 
the expression of phage encoded genes in Staphylococcus aureus, 
responsible for encoding proteins that regulate cell wall metabolism, 
stress are upregulated (Maiques et al., 2006). Antibiotic treatment 
results in the abundance of phage-encoded AMR genes increasing the 
spread within the gut microflora (Modi et al., 2013). For instance, 
Streptococcus pyogenes emm12 resistance has emerged in multiples due 
to the phage element Φ HKU.vir, which carries the superantigen gene 
ssa as well as the spec and DNase genes spd1 (Davies et al., 2015). In 
metagenomic research, crAssphage—one of the most prevalent phages 
in the human gut—has been employed as a marker for faecal 
contamination. The abundance of resistance genes in the environment 
must be related to faecal contamination rather than environmental 
selection, according to Karkman’s et al. (2019) analysis. Therefore, in 
order to prevent erroneous assumptions regarding environmental 
selection for antibiotic resistance, the degree of faecal contamination 

must be taken into account (Dutilh et al., 2014; Karkman et al., 2019) 
(Figure 1).

3.1.2 Antibiotic and target modification
Exposure protection, a common method of resistance, prevents 

antibiotic exposure in adjacent sensitive cells by allowing specific 
bacterial species to degrade antibiotics. The degradation of the 
antibiotic reduces antibiotic concentrations, which can benefit 
neighbouring susceptible cells is well recognized and demonstrated 
using various antimicrobial compounds (Gjonbalaj et al., 2020; Pathak 
et al., 2023).

The gut microbiota also regulates antibiotic absorption by 
metabolizing the drug or modifying the intestinal environment, 
resulting in variations in drug bioavailability, affecting their efficacy 
and toxicity. Certain bacteria in the gut, for example, can metabolize 
beta-lactam antibiotics such as penicillin by releasing β-lactamases, 
rendering them inactive and reducing their potency (Ramirez et al., 
2020). The cfxA, cfiA, and cepA genes are associated with resistance to 
β-lactam antibiotics, while the tetQ gene is associated with resistance 
to tetracyclines (Lamberte and van Schaik, 2022).

Vancomycin’s interaction with the gut microbiota is one of the 
most important instances showing how the gut microbiota influences 
the choice of antibiotic therapy. Vancomycin’s pharmacokinetics and 
pharmacodynamics can be influenced by the gut microbiota through 
changes in its distribution, metabolism, and absorption, as well as its 
capacity to trigger an immunological response. Moreover, 
vancomycin-induced dysbiosis of the gut microbiota has been linked 
to heightened vulnerability to Clostridium difficile infection.

Harris et  al. (2000) shown that animals express a variety of 
catecholamine-degrading enzymes throughout the GI tract, 
particularly in the colon, where the gut microbiome is most abundant.

A study has demonstrated that the intestinal microbiota’s diversity 
is significantly diminished for at least 28 days following a single 
dosage of clindamycin, with an ongoing loss of almost 90% of the 
usual microbial taxa from the cecum. Prior to antibiotic treatment, a 
fraction of bacterial taxa that contributed only slightly to the microbial 
consortium experienced rapid sequential expansion and contraction 
due to the loss of microbial complexity (Buffie et al., 2015).

Adenylyltransferases (ANT) catalyze the adenylation of a hydroxyl 
group in response to ATP, O-phosphotransferases (APH) catalyze the 
phosphorylation of a hydroxyl group in response to ATP, and 
N-acetyltransferases (AAC) catalyze the acetyl-CoA-dependent 
acetylation of an amino group. These three types of enzymes are 
known to modify aminoglycosides (Shete et al., 2017). An investigation 
found that enterococcal isolates had a high frequency of genes 
modifying aminoglycosides (Shete et al., 2017).

Additionally, bacteria can alter the molecular targets of antibiotics, 
causing minor structural changes that disrupt the highly precise 
interaction between the antibiotic and its target molecule. For instance, 
mutations in 23S rRNA confer resistance to macrolides, lincosamides, 
and streptogramin B; mutations in DNA topoisomerase II and IV result 
in resistance to quinolones and fluoroquinolones; and mutations in 
penicillin-binding proteins decrease the effectiveness of β-lactams. 
Through the efflux proteins found in their cell membrane, bacteria are 
able to pump out antimicrobial substances. The majority of these proteins 
are multidrug transporters, while some may be  antibiotic-specific. 
Reduced permeability of the outer membrane, which lowers antibiotic 
absorption, is another mechanism of resistance (Ramirez et al., 2020).
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3.1.3 Efflux pumps
Efflux pumps actively transport antibiotics out of bacterial cells, 

lowering their intracellular concentrations and leading to multidrug 
resistance (Gaurav et  al., 2023). The ATP-binding cassette (ABC) 
superfamily, the major facilitator superfamily (MFS), the multidrug 
and toxic compound extrusion (MATE) family, the resistance 
nodulation cell division (RND) family, the small multidrug resistance 
(SMR) family, and the proteobacterial antimicrobial compound efflux 
(PACE) family are the six main families of efflux pumps that have been 
identified in bacteria thus far (Gaurav et al., 2023).

The E. coli genome contains around 20 drug efflux system genes. 
Previously unknown, E. coli cells survive in the intestine, which has a low 
oxygen concentration. Anaerobic conditions dramatically increase the 
expression of the MdtEF drug efflux system in E. coli, and the resulting 
increase in drug efflux activity results in MDR (Nishino et al., 2021).

Biofilms, as opposed to their planktonic state, are organized group 
of microorganisms that reside in a matrix of extracellular polymeric 
substance (EPS) that they produce. They form colonies by adhering to 
one another on living or non-living surfaces, and they differ in their 
rates of growth and gene expression (Rather et al., 2021). Additionally, 
species that are essential for a healthy gut mucosa form biofilm, which 
can help the host by strengthening defenses, lengthening the time 
bacteria stay in the body, improving nutrient exchange between the 
microbiota and the host, increasing plasmid transfer rates, expressing 
colonization factors, and indicating resistance to colonization by a 
healthy mucosal biofilm (Miller et al., 2021; Tytgat et al., 2019).

B. thetaiotaomicron accounts for 12% of the gut microbiota and 
6% of the faecal microbiome. B. thetaiotaomicron has been found to 
break down sugar moieties in food particles and in the mucus layer, 
indicating that biofilm production may play a significant role in their 
way of life. As a result, biofilms in the human gut can be useful or 
harmful to the host, depending on whether they are formed by 
commensal microbiota or enteric pathogens (Béchon and 
Ghigo, 2022).

Most clinically utilized antibacterial medicines must permeate one 
or both of the cell envelope membranes in order to reach their 
required site of action, such as the outer leaflet of the Outer membrane. 
Loss of porins and other transport systems might alter a drug’s overall 
capacity to pass through this membrane, which can result in clinical 
antibacterial resistance, especially in Enterobacteriaceae. Mutations in 
porin expression reduce expression, limiting nutrients and mediating 
resistance in bacteria (Masi et al., 2017).

3.2 The progression of colonization and 
microbial resistance

Overuse of antimicrobial medications, especially in 
immunocompromised individual, increases the risk of infection from 
opportunistic pathogens and result in the development of MDR 
bacteria in the gut microbiome (Dethlefsen and Relman, 2011). 
Common antimicrobial resistance genes, that are resistant to 
tetracycline, vancomycin, bacitracin, cephalosporin, and the 
macrolide-lincosamide-streptogramin (MLS) group have been found 
in the gut microbiomes globally (Forslund et al., 2014). Gut microbiota 
plays an important role in host defence by preventing exogenous 
bacteria and facilitating the growth of indigenous bacteria (Pilmis 
et al., 2020). This defensive role, referred as colonization resistance, is 

disturbed by the inappropriate use of broad-spectrum antibiotics 
(Nasiri et al., 2018; Pilmis et al., 2020). Studies have shown that, oral 
streptomycin administration altered the gut microbiota in mice 
increasing the susceptibility to Salmonella infections, with similar 
findings observed in other animal and human studies (Bartosch et al., 
2004; Pecquet et al., 1991; Pilmis et al., 2020).

3.3 Mechanisms responsible for 
colonization resistance

Colonization resistance, mediated by various mechanisms, is a 
process where the commensals in a healthy gut from the upper 
proximal to the intestine guard the host from pathogen invasion 
(Ducarmon et  al., 2019; Ke et  al., 2023; Kim et  al., 2017). This 
mechanism was discovered when the depletion of the commensal 
bacteria due to antibiotic treatment increases the vulnerability to 
enteric pathogens. The gut microbiota aids in the process by 
synthesizing and secreting over 500,000 metabolites into the lumen 
(Chang, 2020). Although the mechanisms underlying colonization 
resistance are poorly understood, they can be broadly divided into 
direct and indirect mechanisms (Ducarmon et al., 2019; Khan et al., 
2021) (Figure 2).

3.3.1 Direct mechanism
The microbiota encourages direct colonization resistance, through 

antagonism and resource competition. Using variety of mechanisms, 
bacteria compete for both limited physical space and scarce nutrients. 
Closely related bacterial species that occupy same niches or resources 
tend to outcompete (Pickard et al., 2017).

3.3.1.1 Nutrient competition
The nutrient niche theory, proposed by Rolf Freter in 1983, states 

that microorganisms will colonize, multiply and utilize the nutrients 
as per their requirements. The gut microbiota has a unique nutritional 
ability enabling it to digest resistant starch, cellulose, inulin, pectin, 
mucus and bile salts into carbon and nitrogen sources support their 
growth. Pathogens must compete with gut commensals for nutrition 
and to colonize (Horrocks et al., 2023; Pickard et al., 2017).

Commensals generally alter the pathogens virulence factor 
directly by the production of metabolites (Khan et al., 2021). Studies 
have shown that commensal E. coli with EHEC competes for amino 
acids, organic acids, and other nutrients (Fabich et al., 2008; Leatham 
et al., 2009). SCFA such as, butyrate, downregulates the expression of 
secretion system type 3 proteins (SST3) in Salmonella enteritidis and 
Salmonella Typhimurium (Gantois et  al., 2006). Inhibiting the 
pathogen growth and colonization requires phylogenetically diverse 
species to prevent nutrient access and establish colonization resistance 
(Spragge et al., 2023).

Commensal species have evolved metabolic pathways to utilize 
mucins and dietary carbohydrates as key intestine nutrition source 
(Kim and Ho, 2010; Kamada et al., 2012). Citrobacter rodentium and 
E. coli may compete for monosaccharides while mutualistic Bacteroides 
species secrete sialic acid and fucose from host glycans, which are 
essential sugar source for Salmonella Typhimurium and C. difficile 
invasion. These carbohydrates are only accessible to pathogens when 
antibiotic therapy decreases the commensal population (Ng et al., 
2013; Pickard et al., 2017). Bacterial development requires iron, a 
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crucial trace metal that even the host firmly holds, especially during 
an inflammatory response. Through siderophores, Salmonella 
Typhimurium scavenge the host and commensal requirement for iron 
throughout an infection (Ducarmon et al., 2019; Sassone-Corsi and 
Raffatellu, 2015). An efficient way to lessen the severity of a Salmonella 
infection is to use immunization strategies against siderophores 
(Sorbara and Pamer, 2019). According to studies, two Klebshiella 
species—K. oxytoca and K. michiganensis—provide colonization 
resistance against Enterobacteriaceae that are resistant to antibiotics by 
means of nutritional competition. Colonization resistance was 
associated with resource utilization, and Klebshiella species reduced 
the colonization of E. coli and Klebshiella pneumoniae in mice and 
ex vivo investigations (Horrocks et al., 2023). When the commensal 
gut microbiota reduces dietary amino acids, it has been shown to 
increase resistance to Citrobacter rodentium colonization (Caballero-
Flores et al., 2020).

3.3.1.2 Bacteriocin
Bacteriocins are short, toxic ribosomal synthesized antimicrobial 

peptides produced by specific bacterial species that can inhibit the 
colonization and growth of other species. Their mechanisms of action 
are multiple including disturbing RNA and DNA metabolism, pore 
formation in the cell membrane, influence on protein and DNA 
synthesis (Benítez-Chao et al., 2021; Ducarmon et al., 2019; Pilmis 
et al., 2020). Peptides are categorized into post-transduction modified 
(type I) and unmodified peptides (type II), are typically effective 
against closely related bacteria and exhibit strong specific activity 
against clinical targets (including MDR strains) (Cotter et al., 2013). 
Many bacteriocins, from the lactic acid bacteria, human and animal 
gut microbes, and probiotics like Bifidobacteria, would engage in 
gastrointestinal competition (Hammami et  al., 2013). It has been 

discovered that the Sactibiotic thuricin CD (bacteriocin type I) is 
effective against C. difficile. While sactibiotic, subtilosin A, exhibits 
efficacy against Listeria monocytogenes, Streptococcus pyogenes, and 
Enterococcus faecalis. In contrast, Pediococcus acidilactici MM33 
secretes pediocin PA-1 (bactericin type II), that act against 
vancomycin-resistant Enterococci (VRE) colonization in the gut 
(Pilmis et al., 2020). The extent to which bacteriocins contribute to 
colonization resistance to pertinent intestinal pathogens is still 
unknown while they support ongoing intraspecies competition in the 
gut (Pickard et al., 2017). Pediococcus acidilactici produces bacteriocins 
that hinder the growth of planktonic cells of Salmonella Typhimurium 
in addition to preventing the formation of biofilms. Probiotic Bacilli, 
on the other hand, generate bacteriocins such subtilin and subtilosin 
A, which particularly prevent Salmonella from forming biofilms 
without harming the planktonic cells (Deng and Wang, 2024).

3.3.1.3 Type VI secretion system
Type VI secretion system (T6SSs) is a mechanism by which 

bacteria transport proteins into or out of target cells during infection, 
facilitating interbacterial competition (Russell et al., 2011).

Enteric pathogens use T6SSs to antagonize symbiotic gut E. coli, 
facilitating colonization and disease progression. T6SS loci are also 
widely distributed in human gut Bacteroidales including Bacteroides, 
Parabacteroides, and Prevotella, and exist in three forms: GA1, GA2, 
and GA3 (Coyne and Comstock, 2019).

The GA1 and GA2 T6SS loci can be transferred between many 
intestinal species and Bacteroidales families, however the GA3 T6SSs 
are exclusive to Bacteroides fragilis. The GA3 T6SSs are the only ones 
that have been demonstrated to target  almost every type of 
Bacteroidales found in the gut (Coyne and Comstock, 2019). Numerous 
studies have discovered the existence of a T6SS and its related effectors 

FIGURE 1

Mechanism of gene transfer and factors affecting gut microbiome. Created using BioRender.com.
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and immune proteins that significantly influences the competitiveness 
between as it involves a variety of effector and immune protein 
combinations, and can have a wider target range (Pickard et al., 2017).

3.3.2 Indirect mechanism
Indirect colonization resistance is facilitated by the host-

commensal flora interaction, by maintaining the epithelial barrier, 
regulation of bile acid metabolism, and production of antimicrobial 
peptides (RegIII and angiotensin-4) (Pilmis et al., 2020).

3.3.2.1 Antimicrobial peptide production
Antimicrobial peptides (AMPs), recognized as a crucial line of 

defence against infections, are produced by all life forms (Pilmis et al., 
2020). AMPs have a multiple mechanism of action, targeting 
peptidoglycan and bacterial cell membrane (Mookherjee and 
Hancock, 2007). Bacterial membranes, composed of cardiolipin and 
phosphatidylglycerol are negatively charged, interact with the 
positively charged antimicrobial peptides leading to lysis (Pilmis et al., 
2020). The host (epithelial and paneth cells) requires taurine or 
lipopolysaccharide to produce ANG-4 (ribonuclease) and RegIII 
(type C lectin). Furthermore, the gut bacterium Bacteroides 

thetaiotaomicron induces ANG-4 expression, which has bactericidal 
effect against both Gram-negative and Gram-positive bacteria (Pilmis 
et  al., 2020). Lipopolysaccharide-stimulated Toll like receptors 
(TLRs), notably TLR-4, in the microbiome can trigger RegIII 
production (Mukherjee et al., 2014). Flagellin also activates the TLR-5 
and TLR7 receptors on dendritic cells resulting in the release of IL-23, 
which prompts innate lymphoid cells to release IL-22, increasing the 
synthesis of RegIII (Pilmis et al., 2020). Commensal bacteria activate 
MyD88 signaling in paneth cells and other epithelial cells, which in 
turn promotes the synthesis of the antimicrobial lectin regenerating 
islet-derived protein 3γ (REG3γ). By preventing Salmonella 
Typhimurium from penetrating host tissues, this antimicrobial 
response promotes gut health and prevents infection (Deng and 
Wang, 2024).

3.3.2.2 Bile acid metabolism
Bile acids, produced by the liver to breakdown dietary lipids, have 

antibacterial characteristics. Primary bile acids are linked with glycine 
or taurine to improve solubility (Ducarmon et al., 2019). Bile acids 
exhibits dual role in microbial growth where primary bile salts 
influence germination and vegetative growth of C. difficile spores and 

FIGURE 2

Mechanism of colonization resistance. Direct mechanisms: production of antimicrobial compounds (e.g., bacteriocins, short-chain fatty acids, bile 
salts), nutrient competition and host glycosylation of epithelial cells by bacteria, for nutrient adhesion, directly kill pathogens via contact-dependent 
inhibition (CDI), the type VI secretion system (T6SS) or secreted molecules. Indirect mechanisms: stimulation of mucin production by goblet cells 
forms a protective barrier. Microorganism-associated molecular patterns (MAMPs) trigger the secretion of antimicrobial peptides, which prime 
macrophages and dendritic cells. Macrophages inhibit pathogens through phagocytosis and the release of reactive oxygen species (ROS). Dendritic 
cells activate T cells, leading to the activation of immune responses and the stimulation of interleukin production. In Peyer’s patches, dendritic cells 
stimulate B cells to produce antibodies. Iron-binding proteins limit free iron availability to pathogens. Created using BioRender.com.
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Secondary bile acids have been discovered to prevent the growth (Sorg 
and Sonenshein, 2008). For instance, the symbiotic microbe 
Clostridium scindens can change the main bile acids (cholic acid and 
chenodeoxycholic acid) into the secondary bile acids (deoxycholic 
acid and lithocholic acid). Thus, in both animals and humans, 
C. scindens increases resistance to C. difficile infections in a secondary 
bile acid-dependent manner (Buffie et al., 2015).

3.3.2.3 Epithelial barrier maintenance
The inner and outer mucous layers, the epithelial barrier, and its 

associated immunological barrier make up the physical gut barrier. 
The inner mucus layer is impermeable and strongly adhered to 
epithelium thus restricting the movement of bacteria, preventing 
direct contact between host and commensal bacteria of gut 
microbiome, thereby avoiding inflammatory reaction (Pilmis et al., 
2020). As the thickness of the mucus layer decreases it becomes more 
vulnerable to pathogen colonization. Therefore, a western-style diet 
poor in carbohydrates, antibiotic therapy, or other medications that 
have an impact on the microbiota, alters the thickness of the mucus 
layer increasing vulnerability to infection (Desai et al., 2016; Pilmis 

et al., 2020). The NF-κBpathway is activated by the gut bacteria when 
the mucus layer is altered, encouraging tissue healing by activating 
innate immunity receptors such as synthesis of anti-apoptotic proteins, 
increasing cell proliferation, stabilising tight junctions, negatively 
regulating the production of pro-inflammatory cytokines (Pilmis 
et al., 2020; Rakoff-Nahoum et al., 2004).

4 Screening for AMR

Antibiotic resistance genes in the gut microbiota can be passed to 
other bacteria, increasing the risk of evolution of pathogenic strains 
(Hu et al., 2013; Theophilus and Taft, 2023). AMR, characterised using 
a variety of techniques, are necessary for the understanding and 
monitoring of a variety of resistance genes that can contribute to 
treatment failures and the spread of resistant infections, in complete 
environmental communities. The screening of AMR, concern for 
human health and socioeconomic development, helps in the better 
understanding of the ARGs and identification of novel ARGs 
(Theophilus and Taft, 2023) (Figure 3 and Table 3).

FIGURE 3

Techniques for AMR screening culture-based methods, metagenomic approaches, PCR-based techniques, and functional metagenomic approach. 
Culture-based methods involve disc diffusion, MIC. Metagenomic approaches: next-generation sequencing (NGS) and shotgun metagenomic 
sequencing. PCR-based techniques: conventional PCR and quantitative PCR (qPCR). Functional metagenomics: using vectors involves cloning 
resistance genes and screening for their functional traits. Created using BioRender.com.
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4.1 Culture based techniques

Culture-based analysis, as recommended by the European 
Committee on Antimicrobial Susceptibility Testing (EUCAST) and 
the Clinical Laboratory Standards Institute (CLSI), is the gold 
standard technique for detecting AMR in gut microbiota (Hassall 
et  al., 2024). The diffusion assay and e-test minimum inhibitory 
concentration approach, part of the standard methods, detects 
bacterial growth in various antibiotic concentrations after being 
isolated from selective media (Yamin et al., 2023). Culture-based 
approaches have several benefits such as targeted isolation, 
reproducibility, cost effectiveness, quantitative and qualitative 
measurements (McLain et al., 2016). However, they can be potentially 
variability in the results, time consuming, limited options for 
antibiotic testing and ability to detect all potential resistance genes 
(Hassall et al., 2024). Due to these limitations, the evaluation of the 
antimicrobial susceptibility (AMS) patterns of the entire microbiome 
is restricted to indicator bacteria like E. coli, a reservoir of ARGs 
(Firoozeh et al., 2011; Firoozeh et al., 2013; Nyirabahizi et al., 2020; 
Penders et al., 2013; Neamati et al., 2015). Studies using enterococci 
or E. coli as markers have shed light on the occurrence of AMS 

throughout geographical regions, the effects of hospitalisation and 
population density, and the link between AMS in humans and food 
animals (Nyirabahizi et al., 2020). Culture-based analysis of AMS 
have shown the link between the AMS of faecal E. coli and that of 
E. coli implicated in diseases including urinary tract infections. A 
broad range of antibiotics like ampicillin (Amp), amoxicillin (Amx), 
aztreonam (Azt), cefotaxime (Cefo), ceftriaxone (Ceft), imipenem 
(Imp), meropenem (Mer), cefepime (Cef), piperacillin (Pip), 
vancomycin (Van), clindamycin (Cli), colistin (Col), polymyxin B 
(PolB), daptomycin (Dap), Fosfomycin (Fos), tetracycline (Tet), 
doxycycline (Dox) is used to test the commensals antimicrobial drug 
susceptibility. The minimum inhibitory concentration (MIC) of each 
antibiotic is determined by the observing the bacterial growth with 
the strip of chosen antibiotic (Bag et al., 2019). Culture-based studies 
have advanced the understanding of the relationship between 
antibiotic use and AMS of gut bacteria, revealing an association 
between antibiotic use and the prevalence of resistant faecal Gram-
negative bacteria (Bruinsma et al., 2003; Murray et al., 1982; van der 
Veen et al., 2009). Individuals who have received medical treatment 
with antibiotics have been found to harbour these antimicrobial-
resistant bacteria (Bartoloni et al., 2004; Grenet et al., 2004).

TABLE 3 Current and emerging techniques for AMR screening.

S. No. Method Description Advantages Limitations References

1. Metagenomic Sequencing Sequencing of DNA to find 

ARGs

Comprehensive Expensive, requires experts 

in bioinformatics

Bogri et al. (2024) and 

Merrick et al. (2023)

2. qPCR Quantifies specific genes 

using primers

Ability to test for multiple 

antibiotic genes, rapid

Lower specificity compared 

to culture and staining, 

expensive, limited to 

known targets

Liu et al. (2019)

3. Culture-based methods Isolates organisms in 

selective media and 

antibiotics

Provide reproducible results 

with minimal error, 

isolation of specific target 

organisms, screening at a 

range of antibiotic 

concentrations

Turnaround time, 

contamination

Figdor and Gulabivala 

(2008) and McLain et al. 

(2016)

4. Functional metagenomics Clones DNA into host to 

find ARGs

Identifies ARGs based on 

function, highly sensitive

Limited insert size, require 

experts

De (2019), Mullany (2014), 

and Yadav and Kapley 

(2021)

5. Resistome profiling Comprehensive analysis of 

all resistance genes in a 

sample

Predicting the possible 

resistance pattern, 

determine resistome

Requires advanced 

sequencing and 

bioinformatics, limited 

differentiation

Waskito et al. (2022)

6. Nanopore sequencing Real-time sequencing of 

long DNA fragments

Analysing sequences in real 

time, size, cost, simple 

library prep, and portability

High error rate, expensive Delahaye and Nicolas 

(2021) and Jain et al. (2016)

7. CRISPR-based detection Uses CRISPR-Cas systems 

to detect specific DNA 

sequences

Simplicity, sensitivity, and 

specificity, robust result

Off-target effects, expert 

required, cost and 

accessibility

Kaminski et al. (2021), 

Mayorga-Ramos et al. 

(2023), and Shin et al. 

(2024)

8. Single-cell genomics Analyzes genetic material 

from individual cells

High resolution, identifies 

rare cells

Nosier and more variable 

data

Chen et al. (2019)

9. Metaproteomics Studies the protein 

composition of 

microbiomes

Direct functional insights, 

comprehensive analysis

Limited database, complex 

data analysis

Kleiner (2019) and Petriz 

and Franco (2017)
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Other studies have found that people who do not have access to 
antimicrobial agents, such as those who live in remote areas, can 
develop faecal antimicrobial-resistant bacteria as a result of 
environmental exposure to organisms producing antibiotics (mould 
contaminated food), heavy metal contamination in drinking water 
(Bartoloni et al., 2004; Calomiris et al., 1984; Timoney et al., 1978).

4.2 Molecular diagnostics used for 
detection antimicrobial resistance

Molecular diagnostics have recently received attention due to their 
speed, accuracy, and independence from culture (Anjum et al., 2017). 
Advanced techniques like polymerase chain reaction assays, 
sequencing, and various genotyping approaches provide insights into 
the mechanisms of resistance transfer by identifying resistant-carrying 
integrons after antibiotic treatment (Geser et al., 2012; Gijón et al., 
2012; Overdevest, 2011; van der Veen et al., 2009; Vinue et al., 2008; 
Vo et  al., 2010). Following an outbreak, when phenotypic data is 
insufficiently precise to prevent potential outbreaks involving resistant 
bacteria, genetic characterization is sometimes employed as an 
indirect way to support epidemiological investigations. Also, local, 
national, or even international surveillance of AMR utilizes molecular 
characterization of AMR determinants (Anjum et al., 2017).

4.3 Metagenomics to characterize the AMR

Metagenomics involves the study of metagenomes or genetic 
material directly collected from environmental sources enabling the 
genomic analysis of every bacterium in a microbial ecosystem without 
individual identification (Lepage et al., 2013). Targeted PCR-based 
metagenomics, functional metagenomics, and sequence-based 
metagenomics are three different metagenomic methods that have 
been used to explore the resistome (Penders et al., 2013).

4.3.1 PCR-based metagenomics
PCR and qPCR are widely used in vitro techniques that allow the 

exponential amplification of specific DNA and RNA sequences with 
high specificity, providing rapid means of identifying bacteria from 
various environments, including the detection of resistance genes 
(Galhano et al., 2021). Research have shown that transfer of resistant 
genes occurs within an ecosystem and across species, emphasizing the 
real-time applications of PCR-based metagenomics. The relative 
abundance of the resistant genes can be estimated by analysing the 
semi-quantitative result of qPCR (Knapp et al., 2011; Koike et al., 
2007). PCR was utilized to detect the blaCTX-M gene variations in 
E. coli isolated from the human and chicken faecal sample, indicating 
the presence of ARGs in the gut microbiome (Valenzuela et al., 2023). 
The presence of blaCMY and blaSHV resistance genes in E. coli from 
migratory birds, indicated the potential for analysing gut microbiota 
resistance genes (Islam et al., 2022). Vien et al. (2012) using qPCR, 
showed that higher levels of Plasmid-mediated quinolone resistance 
genes in gut flora lead to fluoroquinolone resistance. Targeted 
PCR-based metagenomics remains a valuable technique for 
identifying the resistome due to the accessibility, and provides high-
throughput analysis at reasonable costs. However, the fundamental 
drawback is that the data are skewed toward known resistance genes 

and pathways predominantly in case of convergent evolution, where 
a number of genes perform similar roles. Furthermore, a resistance 
gene with sequence variation found in numerous species may skew 
the results in favour of the species (Penders et al., 2013).

4.3.2 Functional metagenomics
Functional metagenomics involves cloning DNA segments into a 

vector (like a plasmid) and expressing these segments in heterologous 
hosts, often E. coli. Transformants are cultivated on antibiotic-
containing media to assess the expression of resistance genes, with 
findings relying on each gene’s ability to express in surrogate hosts, 
allowing for subsequent sequencing (Schmieder and Edwards, 2012). 
Functional metagenomics DNA screening was used to identify the 
reservoir for resistance in samples of faeces and saliva from two 
healthy people. Sequencing and annotation of clones exhibited 
resistance to 13 different antibiotics resulted in identification of 95 
unique inserts encoding functional antibiotic resistance genes. Out of 
these, 10 previously unknown beta-lactamase gene families where 
identified indicating an underappreciated barrier separating these 
unique resistance-producing bacteria from common human 
pathogens (Schmieder and Edwards, 2012; Sommer et  al., 2009). 
Additionally, a functional screening for seven antibiotics utilizing gut 
microbiome metagenomic libraries from healthy people revealed 
novel AMR genes against kanamycin, D-cycloserine, and amoxicillin 
(Cheng et al., 2012). A recent study using functional metagenomics 
identified three novel genes, TMSRP1, ABCTPP, and TLSRP1, 
responsible for the osmotolerance in human gut microbiota (Verma 
et  al., 2018). Despite being commonly used, the functional 
metagenomics-based approach has several drawbacks. The method 
depends on individual gene’s ability to express itself in surrogate hosts, 
leading to false negative results if resistance genes that are not 
produced by the surrogate host because they require several regulatory 
elements, or posttranslational modifications. Also, the foreign gene 
may engage in unique interactions with the surrogate host’s cellular 
machinery, leading to false positives (Penders et al., 2013; Schmieder 
and Edwards, 2012).

4.3.3 Sequence based metagenomics
Sequence-based metagenomics eliminates the requirement for 

culturing by directly sequencing DNA from an environmental sample 
once it has been extracted, fragmented, and size-separated. Resistance 
genes are recognized by comparing metagenomic sequences to global 
sequence databases. The transition from Sanger sequencing to next-
generation sequencing technologies, including the Roche 454 
sequencer, Illumina’s Genome Analyzer, and Applied Biosystems’ 
SOLiD system, has significantly reduced the cost of metagenomic 
sequencing initiatives by producing shorter contiguous reads, higher 
genome coverage, and fewer consumable costs (Niedringhaus et al., 
2011). Sequence-based metagenomics is increasingly used to study 
the human gut microbiome, but not directly targeting the AMR 
genes. However, the in-silico identification of resistance components 
has been made possible by the uploading of these metagenomic 
libraries to public databases (Penders et  al., 2013). The ratio of 
chromosomal and extra-chromosomal genomes will always 
be  heavily in support of chromosomes, producing a tonne of 
redundant data when one is only interested in the extra-chromosomal 
metagenome (Li et al., 2012). Sequence-based metagenomics is often 
only useful for identifying known genes because it is difficult to 
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discover sequences with little resemblance to known reference 
sequences (Penders et  al., 2013; Schmieder and Edwards, 2012). 
Additionally, the expression of the discovered genes is not provided 
by sequence-based metagenomics. Contrarily, sequence-based 
metagenomics offers a large amount of data not just on AMR genes 
but also on the whole gene content, making it possible to determine 
the metabolic profile and community composition. These 
metagenomic sets of data in particular make it possible to examine 
which bacteria in the community possess specific functional genes 
(Penders et al., 2013). A metagenomic study using a sequence data of 
2,037 samples concludes that the human gut resistome is influenced 
by geographical locations and to a lesser extent on the disease 
conditions (Qiu et al., 2020) According to the metagenome data from 
mice with UTIs, oral antibiotic therapy led to an enrichment of 
particular taxa and ARGs and a decrease in the overall diversity of 
gut microbes. The results of this model demonstrated that after 24 to 
72 h of cipro and fosfo treatment, cross-resistance to several types of 
antibiotics emerged (Xu et al., 2020).

5 Impact of AMR on health

Antimicrobial resistance, a naturally occurring process, has been 
accelerated due to the inappropriate overuse of antibiotics and poor 
infection control practices (Salam et  al., 2023). Greater patient 
mobility and movement of carriers have increased the risk of spread 
of resistant pathogens globally (Findlater and Bogoch, 2018). Delays 
in appropriate treatments prolong the infection, this in turn puts at 
risk the immediate contacts of those infected, including health 
professionals, but it also enhances the dissemination of resistance 
within communities. Longer duration of disease and treatment due to 
AMR leads to increased financial costs for families and healthcare 
systems (O’Neill, 2016; Dadgostar, 2019). Development of new 
antibiotics has reached an almost complete standstill; no new classes 
have been discovered after 1987 (Silver, 2011). Drugs for chronic 
illnesses like those for diabetes and hypertension may provide more 
profitable economic opportunities for pharmaceutical corporations 
than newer antibiotics due to their extensive usage in each patient and 
the lack of problems with resistance. Additionally, smaller 
pharmaceutical companies struggle to meet the strict requirements for 
clinical trials involving antibiotics. This puts the development of 
several potential new agents in danger (Jindal et al., 2015).

This misuse of antibiotics, both in public and private health care 
facilities, is very common in developing countries like India, where 
studies indicate that 45–80% of patients suffering from viral 
respiratory infections and diarrhoea were inappropriately provided 
with antibiotics without proper diagnosis (Jindal et al., 2015; Kumar 
et al., 2008). Moreover, the use of antibiotics in agriculture to improve 
the yield has increased the diversity and abundance of AMR genes in 
urban, agricultural, and environmental settings (Baquero et al., 2008; 
Nesme et al., 2014; Wright, 2010; Zhu et al., 2013).

Vaccination plays an important role in blocking the spread of 
infectious diseases. But as the vaccination rates decline, the 
unvaccinated population, such as children, and immunocompromised 
patients are susceptible to the infection, in-turn enhancing the 
reservoirs of pathogens, some of which may acquire resistance to 
antibiotics. To effectively address AMR, multiple strategies are 
necessary, which include enhancing antibiotic stewardship, investing 

in new drug development, and maintaining a high level of vaccination 
to prevent the spread of infectious diseases (Muhsen et al., 2012; Zhu 
et al., 2013).

6 Effects of AMR on environment

Environmental factors have a global impact on development of 
AMR. Drug-resistant microorganisms and resistance genes could 
spread into the environment through excreta, water bodies (Konopka 
et al., 2022; Singer et al., 2016). In agriculture, out of the total antibiotics 
given to animals, 30–90% are excreted through urine and faeces, leading 
to environmental pollution and the development of resistance 
(Berendsen et al., 2015). Animal manure has been identified as one of 
the significant vectors of both antibiotic-resistant bacteria and residual 
antibiotics that may persist in the environment (Sarmah et al., 2006; 
Udikovic-Kolic et  al., 2014). Heavy metals also contribute to the 
dissemination of AMR, often present in WWTPs from urban sources 
like domestic and commercial effluents, vehicle emissions, and industrial 
activities. The contamination is further increased by the widespread use 
of disinfectants, textiles, and common household items containing metal 
nanoparticles, including those of titanium, copper, and silver. In addition, 
other metals, including Pb, Cu, Zn, and Cd, were utilized in agriculture 
and aquaculture as fertilizers and for insecticides, fungicides, and animal 
growth promotion, thereby producing an optimal ecological 
environment for the development of AMR.

7 Effect of AMR on economy

The economic burden of AMR includes both direct or indirect 
costs. These direct medical costs of AMR relate to treatments, including 
prescription drugs for the disease and hospitalisation costs. Indirect 
costs are essentially the wider consequences of increased sickness and 
mortality, leading to decreased productivity and reduced economic 
output (National Academies of Sciences, Engineering, and Medicine 
et al., 2018). According to the CDC reports, antibiotic resistance in the 
United States alone might result in a $1,400 rise in hospital costs for 
treating patients with any type of bacterial infection (Centers for 
Disease Control and Prevention, 2013; Thorpe et al., 2018). However, 
this can sharply rise to more than $2 billion per year. According to a 
number of estimates, AMR costs would range from $300 billion to over 
$1 trillion annually globally by 2050. Healthcare is directly impacted 
financially by AMR, as seen by increased resource use and high costs 
for complex and expensive treatments (Dadgostar, 2019).

8 Future perspectives

To combat AMR, new solutions are urgently needed. Faecal 
microbiota transplantation (FMT) is the most advance treatment to 
tackle AMR and other tactics (such probiotics and bacteriophages) 
as prospective substitutes for infection prevention solutions 
(Gargiullo et  al., 2019). FMT involves the endoscopic or oral 
administration of tablet preparations to a patient’s colon for 
transferring the microbiota from a donor. FMT is being researched 
for additional uses, however it is now recognized as a clinically 
extremely successful therapy for persistent Clostridioides difficile 
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infection. FMT has recently been taken into consideration for the 
elimination of antibiotic-resistant bacteria from their reservoir in the 
intestine (Pilmis et al., 2020). FMT has been recognized as an effective 
treatment for additional conditions linked to altered gut microbiome, 
including intestinal inflammatory diseases like IBD, in addition to its 
use for MDR infections (Paramsothy et al., 2017; Wang et al., 2016).

Prebiotics, non-digestible food ingredients, favourably influence 
one or more species of bacteria in the colon by increasing their growth 
and/or activity. In contrast, probiotics are isolated, live organisms that 
are given to the host in order to boost their health.

These products have the potential to restore the balance of the gut 
microbiota by encouraging the recolonization of species, either directly via 
the action of prebiotics or indirectly through the careful selection of 
bacterial species in probiotics (Pilmis et  al., 2020). When healthy 
individuals are exposed to antibiotic therapy, human milk oligosaccharides, 
a typical example of a prebiotic, are known to assist in re-establishing the 
balance between Firmicutes and Bacteroidetes (Elison et  al., 2016). 
According to Cochrane, use of probiotics have successfully used in 
prevention diarrhoea (Wei et al., 2018). Using Lactobacillus rhamnosus, 
patients with vancomycin-resistant enterococci were successfully 
decolonized in two randomised investigations, while the combination of 
Lactobacillus bulgaris and Lactobacillus rhamnosus had no effect on the 
colonization rate in the Gram-negative range (Salomão et al., 2016).

9 Conclusion

Antimicrobial resistance is spreading across the globe and is 
contributing to an increase in hospital-acquired infections, mortality, 
and expenditures. Presently, bacterial enteric infections continue to 
contribute significantly to the global illness burden. Very little is known 
about the failure of the gut microbiota to give colonization resistance 
against these enteropathogens, even though the virulence factors 
involved in infection for many infectious agents are well understood. 
When established in a human, drug-resistant bacteria and resistance 
genes could spread into the environment through human waste. The 
antimicrobial susceptibility among these strains in various hosts, 
through time, and in various geographic regions has been the focus of 
extensive prior study on marker gut bacteria. Culture-based 
investigations are still relevant in the modern era of molecular methods 
since they are required to determine antibiotic susceptibility. To learn 
more about the possibility of the human gut microbiome as an AMR 
reservoir, however, targeted, functional, or sequence-based 
metagenomics are needed. Strategies based on the microbiota should 
be considered for MDRO prevention and therapy. Faecal microbial 
transplantation is a very promising approach, particularly when tested 
treatment have failed. Faecal microbial transplantation has so far been 
proven to be reliable and effective. However, in order to use faecal 
microbial transplantation in MDR clinical therapy, RCTs are required 
to standardise the methodology and establish regulatory parameters.
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