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In the 21st century, three severe human coronavirus infections have occurred. 
One of them is the Middle East respiratory syndrome coronavirus (MERS-CoV), 
a merbecovirus belonging to the family Coronaviridae, is a human pathogenic 
coronavirus first detected in 2012. Several monoclonal antibodies (mAbs) have 
been developed for both therapeutics and prevention of MERS-CoV infection. 
However, the extent to which these anti-MERS-CoV antibodies neutralize other 
merbecoviruses remains unclear. Here, we evaluated the cross-neutralization ability 
of ten anti-MERS-CoV mAbs against the pseudoviruses with the spike proteins 
of five merbecoviruses known to bind to dipeptidyl peptidase 4 (DPP4): three 
clades of MERS-CoV, a bat-derived merbecovirus (BtCoV-422) and a pangolin-
derived merbecovirus (MjHKU4r-CoV). We show that all eight mAbs targeting the 
receptor-binding domain (RBD) potently neutralize all MERS-CoV clades, but not 
BtCoV-422 and MjHKU4r-CoV. Of these, the neutralization potency of one mAb, 
m336, against the MERS-CoV clade B declined due to the V530L substitution 
detected in certain isolates during the 2015 outbreak in South Korea. On the other 
hand, although BtCoV-422 was neutralized by the two non-RBD mAbs, 7D10 
(targeting the N-terminal domain) and G4 (targeting the S2 subunit), MjHKU4r-
CoV found to be resistant. Our findings suggest that combining multiple mAbs 
targeting different epitopes could be a promising strategy for prevention of future 
outbreaks caused by novel pathogenic merbecoviruses.
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Introduction

Betacoronaviruses are the viruses belonging to the family Coronaviridae. In the last 
decades, three highly pathogenic and contagious betacoronaviruses have emerged in the 
human population: severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, 
Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, and SARS-CoV-2 in 
2019 (Neumann and Kawaoka, 2023). Among these severe disease-causing coronaviruses 
(CoVs), MERS-CoV has the highest case-fatality rate at ~35% (WHO, 2024), and is the only 
documented member of the subgenus merbecovirus to infect humans (Tolentino et al., 2024).

OPEN ACCESS

EDITED BY

Ji-Ming Chen,  
Foshan University, China

REVIEWED BY

Junda Zhu,  
Chinese Academy of Sciences (CAS), China
Xiaoyu Zhao,  
Fudan University, China

*CORRESPONDENCE

Kei Sato  
 keisato@g.ecc.u-tokyo.ac.jp

†These authors have contributed equally to 
this work

RECEIVED 13 March 2025
ACCEPTED 10 June 2025
PUBLISHED 16 July 2025

CITATION

Pan L, Kaku Y, Tolentino JE, Kosugi Y and 
Sato K (2025) Cross-neutralization ability of 
anti-MERS-CoV monoclonal antibodies 
against a variety of merbecoviruses.
Front. Microbiol. 16:1593095.
doi: 10.3389/fmicb.2025.1593095

COPYRIGHT

© 2025 Pan, Kaku, Tolentino, Kosugi and 
Sato. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 16 July 2025
DOI 10.3389/fmicb.2025.1593095

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1593095&domain=pdf&date_stamp=2025-07-16
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1593095/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1593095/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1593095/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1593095/full
mailto:keisato@g.ecc.u-tokyo.ac.jp
https://doi.org/10.3389/fmicb.2025.1593095
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1593095


Pan et al. 10.3389/fmicb.2025.1593095

Frontiers in Microbiology 02 frontiersin.org

MERS-CoV infections in humans often originate from dromedary 
camels (Camelus dromedarius), with most cases occurring in the 
Arabian Peninsula (WHO, 2024; Hassan et al., 2025; Meyer et al., 
2016; Zaki et al., 2012). MERS-CoV outbreak can also be amplified by 
limited person-to-person transmission, especially during patient care 
or treatment (Cotten et al., 2014; Kim et al., 2017). Travel-associated 
cases also triggered MERS outbreaks in countries outside of the 
Arabian Peninsula (Su et al., 2016; Memish et al., 2013). Of these, the 
largest outbreak occurred in South Korea in 2015 and was linked to 
healthcare, resulting in 186 confirmed cases and 38 reported deaths 
(Oh et al., 2018; WHO, 2015).

MERS-CoV is phylogenetically classified into three major clades: 
A, B, and C (Chu et al., 2018; Kiambi et al., 2018; Farrag et al., 2021). 
The first recorded outbreak in Saudi Arabia in 2012 was caused by 
clade A (Zhou et  al., 2021), for which there have been no recent 
reports of circulation (Hassan et al., 2025; Ngere et al., 2022; Yusof 
et al., 2017; Reusken et al., 2014; Azhar et al., 2023). Succeeding major 
outbreaks, including the 2015 outbreak in South Korea, were 
attributed to clade B (Park et al., 2015; Kim et al., 2020). Clade C 
circulates in camels in Africa without human infection cases reported 
(Chu et al., 2018).

Other merbecoviruses, such as bat MERS-related CoVs (MERSr-
CoVs), HKU4-related CoVs (HKU4r-CoVs), HKU5-related CoVs 
(HKU5r-CoVs) and Hedgehog coronavirus-1 (Hedgehog-CoV-1), 
have been identified in various mammals (Xiong et al., 2022; Tolentino 
et al., 2024; Han et al., 2023; Li et al., 2021). MERSr-CoVs were mostly 
identified in bats (Tolentino et al., 2024). HKU4r-CoVs were detected 
in Tylonycteris bat species and pangolins (Chen et al., 2023; Woo et al., 
2006), while HKU5r-CoVs were primarily identified in Pipistrellus 
abramus (Woo et  al., 2006) but were recently detected in minks 
(Neogale vison) (Zhao et al., 2024). Hedgehog-CoV-1 was detected in 
hedgehogs (Erinaceus species) (Pomorska-Mol et al., 2022; Lau et al., 
2019). Not all but some of these merbecoviruses are known to bind to 
the cellular receptor DPP4 expressed on host cells to initiate infection 
in the same way as MERS-CoV (Tolentino et al., 2024; Raj et al., 2013).

The DPP4 recognition by the merbecoviruses is mediated by viral 
spike (S) protein, specifically by the receptor-binding domain (RBD) 
in the S1 subunit of S protein. Thus, blocking RBD-DPP4 interaction 
is the main neutralization mechanism of most MERS-CoV 
monoclonal antibodies (mAbs) (Tai et al., 2023; Tse et al., 2023). Other 
anti-MERS-CoV mAbs are reported to neutralize the virus by binding 
to other epitopes on the S protein than the RBD leading to impaired 
viral entry (Pallesen et al., 2017; Zhou et al., 2019; Wang N. et al., 
2019). The epitopes include the followings: the N-terminal domain 
(NTD) in the S1 subunit, which supports viral entry and immune 
interactions; and the other functional subunits, S2, which triggers the 
fusion of viral and cellular membranes (Pallesen et al., 2017; Gui et al., 
2017; Kirchdoerfer et al., 2016; Walls et al., 2016; Yuan et al., 2017).

Several anti-MERS-CoV mAbs have advanced to preclinical or 
clinical evaluation as candidates for both prevention and treatment of 
MERS-CoV infections (Sivapalasingam et al., 2022; Pascal et al., 2015; 
Wang et  al., 2018; Corti et  al., 2015; Chen et  al., 2017). It should 
be noted that the antiviral activity of almost all anti-MERS-CoV mAbs 
has been evaluated using the prototype MERS-CoV, strain HCoV-
EMC/2012, which is categorized in clade A (Goo et al., 2020). However, 
as mentioned above, clade A is currently not circulating in the human 
population. Nevertheless, the cross-neutralization activity of anti-
MERS-CoV mAbs against other MERS-CoV clades remained elusive. 

Moreover, it has been revealed that at the S proteins of at least two 
merbecoviruses, BtCoV/Ii/GD/2014–422 (BtCoV-422; a MERSr-CoV) 
(Tse et  al., 2023) and MjHKU4r-CoV (MjHKU4r-CoV; an 
HKU4r-CoV) (Chen et al., 2023), both detected in a bat and a pangolin 
respectively, can use human DPP4 for infection. These observations 
suggest that merbecoviruses capable of infecting humans exist in the 
wild and that the spillover of these viruses may pose a risk to the 
human population. Therefore, understanding the cross-neutralization 
ability of anti-MERS-CoV mAbs across different MERS-CoV clades 
and other merbecoviruses could provide valuable insights for the 
development of broad-spectrum therapeutics and countermeasures.

In this study, we evaluated the cross-neutralization ability of ten 
anti-MERS-CoV mAbs against a diverse panel of pseudoviruses 
representing the S proteins from major MERS-CoV clades (A, B, and 
C) and other DPP4-dependent merbecoviruses, including bat CoV 
BtCoV-422 and pangolin CoV MjHKU4r-CoV. We provide insight 
into the development of broad-spectrum therapeutics for global 
health preparedness against pre-emergent merbecoviruses that have 
the potential to cause diseases in humans in the future.

Results

Preparation of the pseudoviruses with the 
S proteins of three MERS-CoV strains and 
two merbecoviruses from a bat and a 
pangolin

To understand the evolutionary relationship among merbecoviruses, 
particularly those utilizing DPP4 as their viral receptor, we conducted a 
phylogenetic analysis using the complete merbecovirus genome 
sequences (Figure 1A). Following the classification scheme outlined in 
our previous study (Tolentino et al., 2024), we selected five coronaviruses 
from each DPP4-using merbecovirus group as representatives for 
infectivity and neutralization experiments. These includes three 
MERS-CoV strains: HCoV-EMC/2012 from clade A (A/EMC/2012) 
(van Boheemen et al., 2012), MERS-CoV/KOR/KNIH/002_05_2015 
from clade B (B/KNIH002) (Kim et al., 2015), and NRCE-HKU270 from 
clade C (C/HKU270) (Chu et al., 2014), as well as MERSr-CoV BtCoV-
422 (Tse et al., 2023) and HKU4r-CoV MjHKU4r-CoV (Chen et al., 
2023) (Figure  1A). We  prepared the lentivirus-based pseudoviruses 
bearing the S proteins of these five merbecoviruses. To test the possibility 
of using human DPP4 for infection, we used the human HOS cell line 
stably expressing human DPP4 and TMPRSS2 (HOS-hDPP4/TMPRSS2) 
(Barabona et al., 2024) as target cells for pseudovirus infection. As shown 
in Figure  1B, HOS-hDPP4/TMPRSS2 cells are susceptible to the 
pseudoviruses with the five merbecovirus S proteins, suggesting that 
these five merbecoviruses can use human DPP4 as its infection receptor.

Cross-reactivity of MERS-CoV S 
RBD-targeting mAbs against three 
MERS-CoV strains and two merbecoviruses 
from a bat and a pangolin

To investigate the sensitivity of these five merbecoviruses to anti-
MERS-CoV mAbs, we selected thirteen MERS-CoV S-targeting mAbs 
that were previously isolated or characterized including 2 mAbs 
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(REGN3048 and REGN3051), which are the ones in clinical trials for 
MERS and further in clinical use for SARS-CoV-2 infection (Pascal 
et al., 2015; de Wit et al., 2018; Gao et al., 2023) and other eleven mAbs 
selected according to the following four criteria: (1) epitopes are 

determined by structural analysis; (2) crystal structures of a fragment 
antigen-binding and a target antigen are available; (3) potent MERS-CoV 
clade A neutralization activity; and (4) well referred in several previous 
reports (Wang et al., 2018; Chen et al., 2017; Wang et al., 2015; Houser 

FIGURE 1

Phylogenetic analysis and infectivity of merbecoviruses having high usage of human DPP4. (A) Maximum likelihood-based tree of the merbecovirus 
complete genome sequences. The highlighted name with animal silhouettes represents the DPP4-using viruses used for experiment. Four 
representative betacoronaviruses were used as the outgroup. (B) Infectivity assay. HOS-human DPP4/TMPRSS2 cells were infected with pseudoviruses 
bearing each S. The amount of input virus was adjusted to match the amount of HIV-1 p24 capsid protein. Assays were performed in quadruplicate. 
The presented data are expressed as the average ± SD of relative light unit (RLU). Each dot indicates the result of an individual replicate.
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et al., 2016; Li et al., 2015; Agrawal et al., 2016; van Doremalen et al., 
2017; Ying et al., 2015; Niu et al., 2018; Jiang et al., 2014; Zhang et al., 
2018; Jang et al., 2022; Choi et al., 2020; Failayev et al., 2024; Zhou et al., 
2019; Wang C. et al., 2019). However, three out of the eleven mAb 
recombinants, MERS-27, 4C2 and REGN3048, were excluded from this 
study because their neutralization activity against A/EMC/2012 was lost 
after recombination. Therefore, we  used ten mAbs including eight 
RBD-targeting mAbs and two non-RBD-targeting mAbs in this study. 
The eight RBD-targeting mAbs without REGN3051, whose epitope was 
not detected, were categorized into four epitope groups based on their 
epitopes on RBD: group 1 (D12 and JC57-14), group 2 (m336, MCA1, 
and CDC2-C2), group  3 (MERS-4 V2), group  4 (KNIH90-F1) 
(Figure  2A) (Jang et  al., 2022; Han et  al., 2018). We  performed 
neutralization assays using these mAbs and pseudoviruses. As shown in 
Figure  2B and Table  1, seven out of the eight MERS-CoV S 
RBD-targeting mAbs efficiently neutralized all three MERS-CoV strains. 
However, m336 showed the most weakened neutralization against B/
KNIH002 compared to A/EMC/2012 (5.7-fold). In contrast to the three 
MERS-CoVs, bat CoV BtCoV-422 and pangolin CoV MjHKU4r-CoV, 
cannot be neutralized by any of the eight MERS-CoV S RBD-targeting 
mAbs tested (Figure 2B and Table 1). The homology assessment of the 
RBD amino acids to A/EMC/2012 showed that the similarity of B/
KNIH002 and C/HKU270 is >99%, while those of the other two 
merbecoviruses, BtCoV-422 (69.7%) and MjHKU4r-CoV (66.2%) were 
clearly low. These results suggest that the eight mAbs targeting 
MERS-CoV S RBD tested in this study can cross-react against 
MERS-CoV but not against merbecoviruses from bats and pangolins.

V530L substitution contributes to the 
resistance of MERS-CoV B/KNIH002 to an 
mAb, m336

We found that B/KNIH002 was highly resistant to m336 compared 
to the other RBD-targeting mAbs (Figure 2B). To determine the key 
amino acid residues of B/KNIH002 that are responsible for the 
immune resistance to m336, the amino acid sequences in the epitope 
regions of the RBDs of the three MERS-CoV strains were compared. 
As shown in Figures 3A,B/KNIH002 harbored a unique amino acid 
substitution at the position 530 of the S protein: B/KNIH002 harbored 
leucine (L), while A/EMC/2012 and C/HKU270 harbored valine (V) 
at this position (Figure 3A). Importantly, the residue at position 530 
is inside the epitopes that are targeted by mAbs from group 1 and 
adjoins the epitopes that are targeted by mAbs from group  2 
(Figure 3A) (Jang et al., 2022; Xu et al., 2019).

To assess the effect of the amino acid residue at position 530 of 
MERS-CoV S on the interaction with m336, we first used AlphaFold3 
to model the structure for analyzing the interface between m336 and 
RBD of B/KNIH002 (Figure 3B). The binding mode of the heavy 
chain (HC) of m336 and A/EMC/2012 S RBD in the crystal structure 
(PDB: 4XAK) shows that residue T100a of the m336 HC binds to 
residue W535 and residue V95 binds to R542 on the A/EMC/2012 
RBD through hydrogen bonds (Figure 3B). AlphaFold3 shows the 
similar structure of A/EMC/2012 RBD in the complex with m336 to 
the crystal structure (PDB: 4XAK) with RMSD 0.60 Å. On the other 
hand, m336 CDRH3 forms a bit different loop structures in 

FIGURE 2

Binding modes and cross-reactivity of MERS-CoV S RBD-targeting mAbs. (A) Types of MERS-CoV neutralizing antibodies targeting RBD. Antibodies are 
classified into three groups and shown as cartoon representation. The A/EMC/2012 RBD is colored in green and antibodies in gray. Group 1 antibodies 
include D12 (PDB ID: 4ZPT) and JC57-14 (PDB ID: 6C6Y). Group 2 antibodies include m336 (PDB ID: 4XAK), CDC2-C2 (PDB ID: 6C6Z) and MCA1 (PDB 
ID: 5GMQ), Group 3 antibody includes MERS-4 V2 (PDB ID: 5YY5), Group 4 antibody includes KNIH90-F1 (PDB ID: 4ZPT). (B) Neutralization breadth of 
RBD-targeting mAbs. The heatmap displays the fold change in 50% inhibitory concentration (IC50) values, divided by an IC50 against A/EMC/2012. The 
color scheme shows the IC50 fold change against 3 clades of MERS-CoVs in addition to BtCoV-422 and MjHKU4r-CoV as the intensity of the blue color 
in the heatmap. The darkest blue indicates either the fold change more than 6 or the mAb failed to reach IC50 at the highest concentration tested. The 
red indicates no neutralization (no NT).
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AlphaFold3 prediction as previous studies suggested that flexible 
regions are less accurate (Wee and Wei, 2024). However, the m336 
CDRH3 in the AlphaFold3 structure maintained the disulfide bond 
between C98 and C100c and binding to the key residue, R542, of the 
epitope on A/EMC/2012 RBD (Supplementary Figure S1). Therefore, 
we believe that AlphaFold3 can detect the key interaction between 
m336 and B/KNIH002 as well. When the B/KNIH002 RBD is 
modeled with m336 by AlphaFold3, it is observed that m336 HC 
approaches the mutated residue V530L on the B/KNIH002 RBD and 
is no longer bound to either W535 or R542 on the B/KNIH002 RBD 
(Figure 3B and Supplementary Figure S2). In detail, three remarkable 
alterations are observed in the local structure of B/KNIH002 RBD: 
line-symmetric rotation of W535 sidechain and R542 sidechain, and 
outward shift of E536 sidechain (Supplementary Figure S2). In 
addition, the loop region where W535 is located is slightly uplifted 
with the continuing β7 strand probably due to the longer side chain 
of leucine than that of valine (Supplementary Figure S2). This 
stretched epitope appears to have less impact on the interaction with 
two or more complementarity-determining regions (CDRs) of mAbs 
(Figures 2B and Supplementary Figure S3). Conversely, the steric 
change seems to be beyond the capability of mAbs binding to the 
most part of the epitope by a single CDR including m336 and 
CDC-C2 (Figure 2B and Supplementary Figure S3C).

Next, we  investigated the effect of the V530L substitution on 
pseudovirus phenotypes using two S pseudovirus derivatives, A/
EMC/2012 carrying V530L and B/KNIH002 carrying L530V. As 
shown in Figure 3C, the V530L substitution significantly decreased 
the pseudovirus infectivity of A/EMC/2012. Additionally, the L530V 

substitution also significantly decreased the pseudovirus infectivity of 
B/KNIH002 (Figure 3C). These results suggest that the effect of the 
amino acid residue at position 530 on pseudovirus infectivity is 
dependent on the S protein backbone.

We then assessed whether the amino acid residue positioned at 530 
is responsible for the sensitivity to m336 by neutralization assay. 
We found that the V530L substitution significantly increased the 50% 
inhibitory concentration (IC50) value of m336 against A/EMC/2012 (2.8-
fold) (Figure 3D and Table 2), suggesting that the V530L substitution 
confers resistance to m336-mediated neutralization. In sharp contrast, 
the L530V substitution in B/KNIH002 significantly (0.5-fold) decreased 
the IC50 value (Figure  3D and Table  2), suggesting that the L530V 
substitution renders B/KNIH002 more sensitive to m336. Altogether, 
these results suggest that residue L530 in B/KNIH002 is responsible for 
the resistance to m336-mediated neutralization. Notably, the V530L 
substitution was detected only in three strains of MERS-CoV clade B 
emerged during the outbreak in South Korea (Supplementary Table S1).

Different neutralization spectrum of the 
mAbs targeting NTD and S2

In addition to the mAbs targeting RBD, we tested neutralization 
ability of two non-RBD targeting mAbs against merbecoviruses: 
7D10 targets the NTD and G4 targets the S2 subunit of MERS-CoV 
S protein (Pallesen et al., 2017; Zhou et al., 2019) (Figure 4A). To 
explore the cross-reactivity of these mAbs, we  performed a 
neutralization assay with the pseudoviruses of the five 

TABLE 1 Raw IC50 values of neutralization assay against five merbecoviruses tested.

IC50 (50% inhibitory concentration, μg/ml)

Antibody D12 JC57-14 m336 MCA-1 CDC2-C2 MERS-4 V2 KNIH90-F1 REGN3051 G4 7D10

Virus

A/EMC/2012 0.087 0.039 0.19 0.037 0.060 0.16 0.031 0.020 5.9 50

0.077 0.023 0.20 0.031 0.050 0.28 0.037 0.012 6.4 50

0.041 0.047 0.041 0.11 0.013 0.20 0.041 0.0074 12 50

Average 0.068 0.037 0.14 0.059 0.041 0.21 0.037 0.013 8.1 50

B/KNIH002 0.25 0.090 1.2 0.082 0.17 0.20 0.036 0.013 3.3 2.8

0.18 0.043 1.2 0.060 0.30 0.76 0.057 0.013 6.3 2.4

0.14 0.060 0.14 0.15 0.041 0.38 0.076 0.018 14 17

Average 0.19 0.064 0.85 0.096 0.17 0.45 0.056 0.015 7.7 7.5

C/HKU270 0.095 0.066 0.52 0.084 0.12 0.41 0.062 0.054 5.2 >50

0.098 0.059 0.51 0.047 0.21 0.39 0.073 0.023 8.7 >50

0.061 0.039 0.064 0.071 0.039 0.23 0.046 0.021 14 >50

Average 0.085 0.055 0.36 0.067 0.12 0.34 0.060 0.033 9.3 >50

BtCoV422 >5.0 >5.0 >5.0 >5.0 >5.0 >25 >5.0 >25 2.8 6.1

>5.0 >5.0 >5.0 >5.0 >5.0 >25 >5.0 >25 4.3 35

>5.0 >5.0 >5.0 >5.0 >5.0 >25 >5.0 >25 25 27

Average >5.0 >5.0 >5.0 >5.0 >5.0 >25 >5.0 >25 11 23

MjHKU4r-CoV >5.0 >5.0 >5.0 >5.0 >5.0 >25 >5.0 >25 >25 >50

>5.0 >5.0 >5.0 >5.0 >5.0 >25 >5.0 >25 >25 >50

>5.0 >5.0 >5.0 >5.0 >5.0 >25 >5.0 >25 >25 >50

Average >5.0 >5.0 >5.0 >5.0 >5.0 >25 >5.0 >25 >25 >50
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FIGURE 3

V530L substitution of MERS-CoV B/KNIH002 escaping from neutralization by m336. (A) Epitopes of the RBD-targeting mAbs in the alignment of the RBD 
amino acids sequences of three MERS-CoV strains and two merbecoviruses. The amino acids 525–545 sequences is truncated to show the epitopes of 
mAbs marked in different colors. The yellow, blue, green and pink represent the epitopes of mAbs from Group 1, Group 2, Group 3 and Group 4, 
respectively. The amino acid at position 530, highlighted with a red color, differs among MERS-CoV strains: L is present in B/KNIH002, while V is present in 
A/EMC/2012 and C/HKU270. Binding sites of DPP4 are indicated by red asterisks. (B) Structural insights of the mutation in B/KNIH002 RBD bound by m336. 
The interaction regions in the complex structure of m336 and the A/EMC/2012 RBD (PDB: 4XAK) (left) and the region in the complex structure of m336 and 

(Continued)
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merbecoviruses. We found that 7D10 neutralized A/EMC/2012 and 
B/KNIH002 but failed to neutralize activity against C/HKU270. A 
previous study reported that the V26A substitution is located in the 
epitope of 7D10, and leads to resistance to neutralization by 7D10 
(Zhou et al., 2019). Consistently, we detected the V26A substitution 
in the S protein of C/HKU270 (Figure  4C). Altogether, these 
observations suggest that residue A26 is responsible to the resistance 
of C/HKU270 to 7D10 (Figure 4B).

In contrast to C/HKU270, B/KNIH002 exhibited a higher 
sensitivity to 7D10 compared to A/EMC/2012, with average IC50 
values of 7.48 μg/mL and 50.0 μg/mL, respectively. (Figure 4B and 
Table 1). Notably, 7D10 cross-neutralized the bat CoV BtCoV-422 
more efficiently than A/EMC/2012, with an average IC50 value of 
22.67 μg/mL. On the other hand, MjHKU4r-CoV cannot be cross-
neutralized by 7D10 (Figure 4B and Table 1). Corresponding to 
previous reports (Zhou et al., 2019; Zhang et al., 2022), our results 
showed that C/HKU270 obtained neutralization resistance by a 
single mutation of V26A on the NTD. In the N-terminal region of 
the NTD, there are two different amino acids between BtCoV-422 
and MjHKU4r-CoV at the second amino acid positions both sides 
from V26A. Zhou revealed that V24A induced complete loss of 
binding to 7D10, but S28A was less effective (Zhou et al., 2019). 
Based on this information, D24S seems to have more impact than 
D24P on the binding of 7D10  in hydrophobic circumstance 
surrounding D24, because neither a hydrophobic interaction nor 
a hydrogen bond can be  formed between S24 and Y117. 
Furthermore, the deletion of A29 and S28D contribute to the 
neutralization resistance of MjHKU4r-CoV against 7D10 due to 
steric changes.

In the case of G4 that targets the S2 subunit of S protein, the 
neutralizing ability of this antibody against three MERS-CoV strains 
was less potent compared to the eight RBD-targeting mAbs (Table 1). 
However, it was noted that G4 cross-neutralizes BtCoV-422 with 
higher neutralization potency than 7D10, with an average IC50 value 
of 10.69 μg/mL (Table 1). Although non-RBD mAbs tested potentially 
neutralized BtCoV-422, none of the mAbs tested in this study were 
able to cross-neutralize MjHKU4r-CoV (Table 1).

Discussion

In this study, we demonstrated the distinct cross-neutralization 
abilities of previously isolated anti-MERS-CoV mAbs, including eight 
RBD-targeting and two non-RBD-targeting mAbs, against 
pseudoviruses representing five DPP4-using merbecovirus groups 
(Figure 1): MERS-CoVs from the three major clades, and the MERS-
related bat CoV BtCoV-422 and the HKU4-related pangolin CoV 
MjHKU4r-CoV. Notably, the RBD-targeting mAb, m336, exhibited 
significantly reduced neutralization against B/KNIH002 compared to A/
EMC/2012, primarily due to the V530L substitution found in B/
KNIH002. Interestingly, this V530L substitution was detected exclusively 
in three South Korean strains from clade B (Supplementary Table S1). 
This observation strongly suggests that the V530L substitution emerged 
during the MERS outbreak in South Korea in 2015. However, the fact 
that the V530L substitution was not predominant in the South Korean 
outbreak suggests that this mutation was not beneficial for efficient 
spread of MERS-CoV. Moreover, the impact of this substitution on 
receptor binding and viral fitness remains undetermined. According to 
a previous study (Wang et al., 2013), V530 does not directly interacts 
with DPP4. While the infectivity of A/EMC/2012 V530L compared to 
A/EMC/2012 WT was decreased (Figure 3C), deep mutational scanning 
revealed that V530L lead to a slight increase of MERS-CoV binding to 
DPP4,1 potentially through an indirect interaction. This suggests that 
this mutation has an important role in efficient binding and may 
contribute to an increased viral fitness. However, due to the low number 
of isolated MERS-CoVs possessing V530L, it is uncertain if this 
mutation has a broad and significant effect on MERS-CoV evolution.

The epitope of m336 and other Group 2 mAbs are located at the 
region of the RBD close to an amino acid at position 530 overlapped 
with the epitopes of Group  1 mAbs and the DPP4 binding site 
(Figure 3A). Cross-clade neutralization analysis showed that two of the 
Group 2 mAbs possesses significant fold changes on the IC50 values of 
A/EMC/2012 and B/KNIH002. For instance, m336 showed the highest 
fold change of 5.7 and CDC2-C2 showed the second highest fold 
change of 4.1, while the fold changes of other Group 1 and Group 2 
mAbs were less than 3 folds (Figures 2B, 3A). Structural model reveals 
that V530L interacts with Group 1 and Group 2 epitopes interfering 
with the binding of a single CDR of m336 and CDC2-C2 (Figure 3B, 
Supplementary Figures S2, S3C), though Valine and Leucine are similar 
chemical properties of nonpolar, hydrophobic amino acids. This 
suggests either partial or total loss of bindings of m336 HC to the RBD 
including the high-affinity interaction by a hydrogen bond between 
V95 and R542, and R100e and D539 (Ying et al., 2015) resulting in the 

1 https://github.com/jbloomlab/MERS-PDF2180-RBD_DMS

the B/KNIH002 RBD estimated by AlphaFold3 (right) are shown. In the structures, gray represents the m336 heavy chain, green represents A/EMC/2012 
RBD, and pink represents B/KNIH002 RBD. Representative interactions between m336 and A/EMC/2012 RBD are shown as lines with yellow dots. 
(C) Pseudovirus infectivity. HOS-human DPP4/TMPRSS2 cells were infected with pseudoviruses bearing each S. The amount of input virus was adjusted to 
match the amount of HIV-1 p24 capsid protein. Assays were performed in quadruplicate. The presented data are expressed as the average ± SD of relative 
light unit (RLU). Each dot indicates the result of an individual replicate. Statistically significant differences (**p < 0.01; ***p < 0.001) versus parental S were 
determined by two-sided Student’s t-test. (D) Neutralization assay with m336 and MERS-CoV point mutants at position 530. A neutralization assay was 
performed using pseudoviruses with A/EMC/2012, B/KNIH002, A/EMC/2012 V530L and B/KNIH002 L530V S proteins, and the mAb, m336. Statistically 
significant differences (**p < 0.01; *p < 0.05) versus each parental S protein were determined by two-sided Wilcoxon signed-rank tests.

FIGURE 3 (Continued)

TABLE 2 Raw IC50 values of neutralization assay using m336 against the 
residue 530 derivatives.

Virus Average (standard deviation)

A/EMC/2012 0.010 (0.0012)

A/EMC/2012 V530L 0.030 (0.0060)

B/KNIH002 0.040 (0.010)

B/KNIH002 L530V 0.020 (0.0030)
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reduced neutralizing ability of m336 against B/KNIH002 (Figure 3B). 
Furthermore, since m336 was derived from a naïve human phage-
displayed antibody library, m336 possibly is more vulnerable to the 
mutation of B/KNIH002 obtained during outbreak compared to other 
Group 2 mAbs, CDC2-C2 and MCA1 which is derived from human 
survivors of MERS-CoV infection (Chen et al., 2017; Xu et al., 2019).

This study also highlights the broad but low-potency neutralization 
of non-RBD targeting mAbs. The anti-NTD mAb, 7D10, exhibits cross-
neutralization to the bat CoV BtCoV-422, but its neutralization efficiency 

is very weak against A/EMC/2012 and ineffective to C/HKU270 as well 
as MjHKU4r-CoV. Sequence analysis shows V26A substitution is a 
distinct mutation on 7D10 epitope of C/HKU270 among MERS-CoVs 
potentially attributing to humoral immune evasion (Figures  4B,C) 
(Zhou et  al., 2019). However, in the cases of BtCoV-422 and 
MjHKU4r-CoV, there are many differences of amino acids in the NTD 
(Figure 4C) and further study is required to explore the key residues 
contributing to the difference of susceptibility to 7D10 neutralization. 
Another tested non-RBD targeting mAb, G4, showed the widest 

FIGURE 4

Neutralization spectrum and epitopes of the anti NTD mAb and the anti-S2 mAb. (A) Binding modes of MERS-CoV neutralizing mAbs, 7D10 (PDB: 
6 J11) and G4 (PDB: 5WQM), targeting NTD and S2 subunit of A/EMC/2012 RBD. The RBD is colored in green and antibodies in gray. (B) Neutralization 
breadth of the non-RBD targeting mAbs. The heatmap displays the fold change in 50% inhibitory concentration (IC50) values, divided by an IC50 against 
A/EMC/2012. The color scheme shows the IC50 fold change against 3 clades of MERS-CoVs in addition to BtCoV-422 and MjHKU4r-CoV as the 
intensity of the blue color in the heatmap. The darkest blue indicates either the fold change more than 6 or the mAb failed to reach IC50 at the highest 
concentration tested. The red indicates no neutralization (no NT). (C) The epitopes of 7D10 and G4 in the alignment of the NTD and S2 amino acids 
sequences of three MERS-CoV strains together with BtCoV-422 and MjHKU4r-CoV. The NTD ranging amino acid 18 to amino acid 35 is shown the 
upper table with the epitope recognized by 7D10 marked in brown. The amino acid at position 26 of C/HKU270, highlighted with a red color, differs 
from A/EMC/2012 and B/KNIH002. The S2 subunit ranging amino acid 1,170 to amino acid 1,217 is shown the lower table with the epitope recognized 
by G4 marked in violet. The amino acid at position 1,176, 1,183–4 and 1,215 of MjHKU4r-CoV differ from MERS-CoVs and BtCoV-422.
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neutralization breadth, although the IC50 value was relatively higher than 
anti-RBD mAbs (Figure 4B and Table 1). These observations suggest that 
G4-like mAbs may be a candidate for broadly neutralizing mAb against 
a wide range of merbecoviruses. Recently, machine learning-based 
methods to improve mAb affinity has been developed (Hie et al., 2024). 
Therefore, improving the breadth and neutralizing activity by using 
machine learning-based methods may be a strategy for preparing mAbs 
that can be used for therapeutics of merbecovirus infection in the future.

To our knowledge, almost all neutralizing mAbs against 
MERS-CoV have been evaluated using HCoV-EMC/2012 (clade A) as 
a reference virus. However, clade A has no recent reports of circulation, 
and clade B is currently circulating in the human population. As 
shown in this study, all mAbs against MERS-CoV clade A do not 
necessarily cross-react against other MERS-CoV clades. Moreover, 
evaluation of the cross-reactivity of each neutralizing mAb would 
be important to consider the future risk caused by other merbecoviruses.

While clade B MERS-CoV is the only clade currently known to 
cause outbreaks in humans, clade C viruses are increasingly 
recognized as a potential zoonotic threat (Karani et  al., 2025). 
Individuals working closely with camels, such as herders, traders, and 
abattoir workers, experience frequent, high-risk exposures that may 
allow clade C viruses to cross the species barrier (Kamau et al., 2019). 
Although these infections may be asymptomatic or go undiagnosed 
due to limited surveillance, recent serologic data suggest human 
exposure does occur (Ogoti et al., 2024). These findings emphasize the 
need to monitor clade C viruses and the human populations in contact 
with them, especially in settings where human–camel interfaces are 
intensive, and biosecurity is limited.

Here we  showed the sensitivity of five merbecoviruses to ten 
neutralizing mAbs, but this study includes some limitation. First, since 
no antibody was available to detect the S proteins of the 
merbecoviruses tested in this study, the expression levels and virion 
incorporation efficiency of each S protein were not quantified. It is 
possible that some anti-MERS-CoV S antibodies may cross-react with 
other merbecovirus S proteins. However, there is no guarantee that 
this detection level is quantitative. It should also be noted that the 
results of this study are based on a lentivirus-based pseudovirus 
system. In addition to the multi-epitope antibody combination 
strategy, these results may be reevaluated using live viruses.

In summary, here we demonstrated the potency of RBD-targeting 
mAbs against MERS-CoV strains from different clades and the 
neutralizing breadth of non-RBD-targeting mAbs against other 
merbecoviruses. One of the advantages of therapeutic or prophylactic 
use of mAbs is the reduced adverse events caused by off-target bindings. 
Conversely, the disadvantage is neutralization evasion induced during 
virus spread, sometimes by a single substitution as observed in this study. 
Combining mAbs targeting different epitopes could be protective in 
zoonotic transmission and can prevent human-to-human transmission.

Materials and methods

Accession numbers

The gene sequences for S proteins used in this study were achieved 
from the GenBank. The accession numbers are JX869059 (MERS-CoV 
EMC/2012), KT029139 (MERS-CoV KNIH002), KJ477103.2 

(MERS-CoV HKU270), MG021452 (BtCoV/Ii/GD/2014–422) and 
OQ786862.1 (MjHKU4r-CoV).

Data acquisition and phylogenetic analysis

The genome sequences of all merbecoviruses were obtained as of 
August 30, 2024, from the NCBI Virus database2 using the search 
query: merbecovirus, taxid: 2509494. Only sequences classified as 
‘complete’ under the Nucleotide Completeness category were retrieved. 
Representative sequences from each group were selected for 
phylogenetic analysis based on the classification of merbecovirus 
groups as previously described (Tolentino et al., 2024). To account for 
the uneven representation of MERS-CoV sequences in the database, 
we selected two complete genomes for clade A, including the NCBI 
reference genome (HCoV-EMC/2012, accession: NC_019843.3), two 
complete genomes for clade C, and two complete genomes from each 
lineage of clade B. To expand the dataset for infectivity and 
neutralization studies, all available genome sequences linked to the 
2015 MERS-CoV outbreak in South Korea—the largest known 
outbreak outside the Arabian Peninsula (Korea Centers for Disease C, 
Prevention, 2015)—were included. Additionally, two bat coronavirus 
genomes identified as merbecoviruses (isolates PREDICT/PDF-2180 
and PnNL2018B, with accessions NC_034440.1 and OQ405399.1, 
respectively) were included, despite not being classified under the 
merbecovirus subgenus in the database. To root the merbecovirus 
phylogeny, we  incorporated four representative betacoronavirus 
genomes: Sarbecovirus (Wuhan-Hu-1, NC_045512.2), Nobecovirus 
(HKU9, EF065513.1), Hibecovirus (Hp-betacoronavirus/
Zhejiang2013, KF636752.1), and Embecovirus (HKU1, NC_006577.2).

To determine the evolutionary relationships of the selected 
sequences, maximum likelihood tree was constructed. Complete 
genome sequences were aligned through MAFFT v.7.520 (Katoh and 
Standley, 2013) using default settings. An in-house Python script was 
then employed to process the aligned sequences, replacing any 
characters outside of ‘ATGCN-’ with ‘N’. The cleaned sequences were 
subsequently analyzed in IQTree v.2.2.2.6 (Minh et al., 2020) using the 
general-time reversible (GTR) nucleotide substitution model. Node 
support was assessed using ultrafast bootstrap (Minh et al., 2013) 
performed over 1,000 iterations.

Plasmid construction

Oligonucleotides coding for the codon-optimized MERS-CoV S 
proteins of A/EMC/2012 (GenBank accession no. JX869059), B/
KNIH002 (GenBank accession no. KT029139), C/HKU270 (GenBank 
accession no. KJ477103.2); and the codon-optimized MERSr-CoV S 
proteins of BtCoV-422 (GenBank accession no. MG021452) and 
MjHKU4r-CoV (GenBank accession no. OQ786862.1) were 
synthesized by a gene synthesis service (Fasmac). The oligonucleotides 
for merbecovirus S proteins were amplified by polymerase chain 
reaction (PCR) using primers listed in Supplementary Table S2. The 
resulting PCR fragment was subcloned into the KpnI-NotI site of the 

2 https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
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pCAGGS vector (Niwa et al., 1991) using In-Fusion HD Cloning Kit 
(Takara, Cat# Z9650N). Plasmids expressing DPP4 was prepared in a 
previous study (Barabona et al., 2024).

The point mutations of V530L and L530V were induced into the 
pCAGGS-A/EMC/2012 and pCAGGS-B/KNIH002 by site-directed 
overlap extension PCR using primers listed in Supplementary Table S2, 
respectively. To construct the plasmids expressing anti-MERS-CoV 
monoclonal antibodies (mAbs) (m336, KNIH90-F1, MERS-4 V2, 
D12, CDC2-C2, JC57-14, MCA1, REGN3051, 7D10, G4), the 
sequences of the variable regions of these antibodies were obtained 
from PDB Database3 and were artificially synthesized (Fasmac). The 
obtained DNA fragments coding the variable regions of the heavy and 
light chains were cloned into the pCAGGS vector containing the 
sequences of the human immunoglobulin 1 and kappa constant region 
correspondingly [kindly provided by Dr. Hisashi Arase (Osaka 
University, Japan)]. Nucleotide sequences were determined by DNA 
sequencing services (Eurofins) and analyzed by Snapgene software 
v.7.2.1.4

Cell culture

LentiX-293 T cells (Takara, Cat# 632180) were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) (high glucose) (Wako, 
Cat# 044–29,765) containing 10% fetal bovine serum (Sigma-Aldrich, 
Cat# 172012-500ML), 100 U/mL penicillin, and 100 μg/mL 
streptomycin (Sigma-Aldrich, Cat# P4333-100ML). HOS-hDPP4/
TMPRSS2 cells were prepared in the previous study (Barabona et al., 
2024) and were maintained in high-glucose DMEM supplemented 
with the same components, along with 0.5 μg/mL puromycin 
(InvivoGen, Cat# ant-pr-1) and 1 mg/mL G418 (Nacalai Tesque, Cat# 
09380–86). All cell lines were authenticated and tested for 
mycoplasma contamination.

Pseudovirus preparation

Pseudovirus infection (Figures  2B, 3C) was performed as 
previously described (Suzuki et al., 2022; Motozono et al., 2021; 
Meng et al., 2022; Ferreira et al., 2021; Uriu et al., 2021). Briefly, 
lentivirus (HIV-1)-based, luciferase-expressing reporter viruses 
were pseudotyped with the merbecoviruses S. One prior day of 
transfection, the LentiX-293 T cells were seeded at a density of 
2 × 106 cells. The LentiX-293 T cells were cotransfected with 1 μg 
psPAX2-IN/HiBiT a packaging plasmid encoding the HiBiT-tag-
fused integrase (Ozono et al., 2021), 1 μg pWPI-Luc2 a reporter 
plasmid encoding a firefly luciferase gene (Ozono et al., 2020) and 
500 ng plasmids expressing representative merbecoviruses S using 
TransIT-293 transfection reagent (Mirus, Cat# MIR2704) according 
to the manufacturer’s protocol. Two days post-transfection, the 
culture supernatants were harvested and filtrated. The amount of 
produced pseudovirus particles was quantified by the HiBiT assay 
using Nano Glo HiBiT lytic detection system (Promega, Cat# 

3 https://www.rcsb.org

4 www.snapgene.com

N3040) as previously described (Ozono et al., 2020). In this system, 
HiBiT peptide is produced with HIV-1 integrase and forms NanoLuc 
luciferase with LgBiT, which is supplemented with substrates. In 
each pseudovirus particle, the detected HiBiT value is correlated 
with the amount of the pseudovirus capsid protein, HIV-1 p24 
protein (Ozono et al., 2020). Therefore, we calculated the amount of 
HIV-1 p24 capsid protein based on the HiBiT value measured, 
according to the previous paper (Ozono et al., 2020). To measure 
viral infectivity, the same amount of pseudovirus, adjusted to the 
same HIV-1 p24 capsid protein level was inoculated into 
HOS-hDPP4/TMPRSS2 cells. At 2 days postinfection, the infected 
cells were lysed with a Bright-Glo luciferase assay system (Promega, 
Cat# E2620), and the luminescent signal produced by firefly 
luciferase reaction was measured using a GloMax explorer 
multimode microplate reader 3,500 (Promega). The pseudoviruses 
were stored at −80°C until use.

Monoclonal antibody production and 
purification

m336, KNIH90-F1, MERS-4 V2, D12, CDC2-C2, JC57-14, 
MCA1, REGN3051, 7D10, G4 were prepared as previously described 
(Yamasoba et al., 2022; Yamasoba et al., 2022). Briefly, the pCAGGS 
vectors containing the sequences encoding the immunoglobulin 
heavy and light chains were cotransfected into LentiX-293 T cells 
using PEI MAX Transfection Reagent (Polysciences, Cat# 24765–1). 
At 48 h post transfection, the cell culture supernatants were harvested, 
and the antibodies were purified using NAb protein A plus spin kit 
(Thermo Fisher Scientific, Cat# 89948) according to the 
manufacturer’s protocol.

Neutralization assay

Neutralization assays were performed as previously described 
(Yamasoba et al., 2022). Briefly, the mAbs were diluted by 5-fold serial 
dilution (up to 15,625-fold) from the initial concentration: 5 μg/mL 
for m336, MCA1, CDC2-C2, and D12; 25 μg/mL for JC57-14, 
MERS-4 V2, KNIH90-F1, REGN3051, and G4; and 50 μg/mL for 
7D10. Then, the diluted mAbs were incubated with the merbecovirus 
S pseudoviruses (counting~150,000 relative light units/15 μL) at 37°C 
for 1 h. Pseudoviruses without antibodies were included as controls. 
Then, 20 μL mixture of a pseudovirus and a mAb was added to 
pre-seeded HOS-hDPP4/TMPRSS2 cells (10,000,000 cells/100 μL) in 
a 96-well white plate. At 2 days post infection, the infected cells were 
lysed with a Bright-Glo Luciferase Assay System (Promega, Cat# 
E2620), and the luminescent signal was measured using a GloMax 
explorer multimode microplate reader 3,500 (Promega). The assay of 
each antibody was performed in triplicate, and the 50% inhibitory 
concentration (IC50) was calculated using Prism 10 software v.10.4.0 
(GraphPad Software).

Protein structure model

The costructure of B/KNIH002 S RBD and the antibody m336 was 
predicted using AlphaFold3 (Abramson et al., 2024). Evaluation of the 
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models were performed using pLDDT scores, pTM scores and ipTM 
scores then the best model for the costructure was selected (Abramson 
et al., 2024). All protein structural analyses were performed using the 
PyMOL molecular graphics system v.3.0.0 (Schrödinger).

Epitope analysis

AppA server (Nguyen et al., 2019) is used to determine binding 
interface between antibody and RBDs in PDB files (PDB:4ZPT for 
D12, PDB:6C6Y for JC57-14, PDB:4XAK for m336, PDB:6C6Z for 
CDC-C2, PDB:5GMQ for MCA1, PDB:5YY5 for MERS-4 V2, 
PDB:7COE for KNIH90-F1, PDB:6 J11 for 7D10, 5WQM for G4). 
Mol* 3D Viewer is utilized for binding analysis (Sehnal et al., 2021). 
The epitopes are depicted in amino acid sequences of the five 
merbecoviruses aligned by by SnapGene software v6.2.50 (See Text 
footnote 4).
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