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Drought, a major consequence of global environmental change, poses a serious 
threat to both natural and agricultural ecosystems. Root-associated fungi, particularly 
the widely distributed dark septate endophytes (DSE), are key components of the 
plant microbiome and can influence host plant performance in various ways. 
We conducted two manipulative experiments using two model DSE species from 
a semiarid habitat to investigate their effects on a non-mycorrhizal host plant 
(cabbage) under both normal and reduced water supply conditions. The positive 
effects of Periconia were limited—it not only increased root biomass but also 
reduced water potential and soil moisture under normal watering conditions. In 
contrast, Cadophora significantly increased shoot biomass (by up to 50%) and 
root biomass in one experiment. However, this was also associated with a decline 
in plant water potential, particularly at the cost of reduced plant water status, and 
their effects varied on the same host. Interestingly, autoclaved inoculum, also 
had positive effects on plant growth. Our findings highlight the potential role of 
symbiotic DSE fungi in mitigating drought stress and suggest their promise as 
biotechnological tools for addressing the increasing challenges posed by drought.
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1 Introduction

Climate change has multiple effects, with drought being a key factor that challenges natural 
biodiversity, agriculture, the economy, and society (Haile et al., 2020). Water deficit can affect 
plants in many ways, and drought tolerance can have morphological, physiological, and 
molecular biological backgrounds in plants (Basu et al., 2016; Gupta et al., 2020). Water 
availability is particularly crucial for crops such as cabbage, which have a high leaf area index, 
which leads to a relatively high transpiration rate and fast soil drying (Seidel et al., 2017). Given 
this trait, an adequate water supply is essential for cabbage, emphasizing the importance of 
appropriate irrigation management. The annual water demand of cabbage plants ranges from 
380 to 500 mm, depending on the climate and the length of the growing season, with irrigation 
frequency varying between every 3 and 12 days (Food and Agriculture Organization-a, n.d.). 
Cabbage is an excellent source of vitamins (C, K, and A), minerals, and dietary fiber (Kumar 
et al., 2020). Over the past 15 years, global cabbage production has steadily increased, even 
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though the area under cultivation has remained relatively stable, 
indicating an increase in production intensity (Food and Agriculture 
Organization-b, n.d.).

Plant-associated microbes are known to have a beneficial effect on 
the water status of the plants and can significantly enhance drought 
tolerance (Farooq et al., 2009; Ullah et al., 2019; Van Der Heijden 
et al., 1998). Microbiome-based and holobiont-centered approaches 
are increasingly recognized as important components of sustainable 
agriculture and green biotechnological solutions (Compant et  al., 
2019; Mitter et  al., 2019; Trivedi et  al., 2021). As a part of their 
microbiome, the majority of the terrestrial plants are colonized by 
different root-associated fungi (RAF), including mutualistic 
mycorrhizal fungi or root-colonizing endophytic fungi, the latter of 
which are less well understood (Porras-Alfaro and Bayman, 2011). 
Due to their positive effects, several commercial fungal products are 
used in agricultural practice; for example, arbuscular mycorrhizal 
fungal (AMF) inocula containing widely distributed AMF species of 
a wide host range are used to increase crop production and improve 
tolerance to abiotic and biotic stress factors (de Santana et al., 2014). 
Another frequent RAF group is the class 4 endophytes (Rodriguez 
et  al., 2009), the Dark Septate Endophytes (DSEs), which are 
widespread root colonizer fungi capable of associating with a wide 
range of hosts, including non-mycorrhizal plants (Jumpponen and 
Trappe, 1998; Mandyam and Jumpponen, 2005). DSE fungi are a 
common, diverse group belonging to several orders of the phylum 
Ascomycota, including Helotiales, Xylariales, and Pleosporales 
(Jumpponen and Trappe, 1998; Knapp et al., 2012; Newsham, 2011). 
These fungi are typically distinguished by melanized septate hyphae 
and microsclerotia within the plant root cells (Jumpponen and Trappe, 
1998). Despite their global presence and wide host range, their 
ecological function, physiology, and plant-fungal interactions remain 
poorly understood (Mayerhofer et al., 2013; Newsham, 2011).

The effect of DSE colonization on plant status can be negative, 
positive, or neutral (Jumpponen, 2001; Mandyam and Jumpponen, 
2005; Newsham, 2011). Reininger and Sieber (2012) demonstrated the 
negative effect of certain DSE strains on the biomass production of 
spruce (Picea sp.). Tellenbach et al. (2011) found a neutral or negative 
effect of the DSE inoculation on Norway spruce (Picea abies). 
Mahmoud and Narisawa (2013) showed the positive effect of DSE 
(Scolecobasidium humicola) inoculation on tomato (Solanum 
lycopersicum) in vitro when an organic nitrogen source was applied. 
In a greenhouse, Vergara et al. (2017) gained similar results. They 
tested the effect of DSE on tomatoes under different N sources. DSE 
inoculation had a positive effect on the aboveground biomass 
production of tomato under an organic N source (Vergara et al., 2017). 
Andrade-Linares et al. (2011) also found that the DSE inoculation had 
a positive effect on tomato shoot biomass production, fruit yield, and 
quality in young plants. The DSE inoculation of Chinese wolfberry 
(Lycium barbarum) showed similar results. The 5-week-old plants 
produced enhanced total biomass and chlorophyll values in a potting 
experiment (Zhang et al., 2012). Khastini et al. (2012) showed in an 
in  vitro experiment the reduction in Fusarium wilt (Fusarium 
oxysporum) disease and good growth of Chinese cabbage (Brassica 
rapa subsp. pekinensis) inoculated with DSE (Veronaeopsis simplex). 
The control of Fusarium wilt disease in melon (Cucumis melo) by DSE 
(Cadophora sp.) was demonstrated in a potting experiment (Khastini 
et al., 2014). Newsham (2011) demonstrated the commonly positive 
effect of DSE inoculation in a meta-analysis of controlled experimental 

studies. Based on these studies demonstrating the positive effect on 
plant growth and increased resistance against pathogens, DSE fungi 
can be used in agriculture and horticulture as inocula to improve the 
production quantity and pathogen or drought tolerance, likewise, 
mycorrhizal fungi.

DSE fungi are commonly present in abiotic-stressed areas like arid 
or semiarid ecosystems (Knapp et al., 2012; Mandyam et al., 2012). 
Thus, DSE colonization is likely crucial for host plants in these harsh 
environments. Two characteristic and common DSEs were found 
colonizing grass and non-grass hosts in semiarid sandy grasslands, 
Periconia macrospinosa and Cadophora, considered generalist root 
colonizers (Knapp et al., 2012). The complete genome of these two 
DSEs has been sequenced (Knapp et al., 2018), and these fungi have 
been used in different experiments, among them with horticultural 
crops (Yakti et al., 2018, 2019). DSE symbiosis could be particularly 
important for non-mycorrhizal crops, such as cabbage (Brassica sp.), 
where AMF inoculation cannot be applied. The Brassicaceae family 
encompasses several vegetable crops of nutritional importance, 
including cauliflower, broccoli, kale, and cabbage. The important 
model plant Arabidopsis thaliana also belongs to this family, with 
many experiments carried out in connection with DSE inoculation 
(Mandyam and Jumpponen, 2013, 2015).

The positive effects of DSE fungi on biotic and abiotic stress 
tolerance of plants and plant growth have been widely demonstrated. 
This raised the question of whether DSE fungi could be developed into 
beneficial inocula for mycorrhizal fungal preparations in agriculture 
and horticulture. In this study, we aimed to test the hypothesis that the 
individual inoculation with two different DSE fungi, Cadophora sp. 
and Periconia macrospinosa strains originating from a semi-arid 
habitat, and the coinoculation with these two, would affect a 
non-mycorrhizal plant under both normal and reduced water supply. 
We  used cabbage (Brassica oleracea var. capitata), an important 
non-mycorrhizal vegetable crop with high water demand; thus, any 
positive effect on its water status might have significant 
practical importance.

2 Materials and methods

2.1 DSE inoculum preparation

In our previous study of root endophytes, several DSE fungi were 
isolated and identified from a semiarid grassland area (Knapp et al., 
2012; Knapp et al., 2015). Among them, a collection of Cadophora sp. 
representatives (see Knapp et al., 2012) was frequently isolated from 
non-grass hosts in our sampling areas. Based on a pilot experiment 
with six different isolates [REF001, REF013, REF018, REF024, 
REF036, and REF044  in Knapp et al. (2012)], a Cadophora strain 
[Cado018 – REF018 in Knapp et al. (2012)] was chosen based on its 
growth in liquid medium and colonization of cabbage. The pilot 
experiment was conducted similarly to Experiment I for 8 weeks, with 
the roots exclusively screened microscopically (see below). As 
P. macrospinosa generally colonized the roots of grass species, we used 
the DSE2036 strain, the isolate with a fully sequenced genome (Knapp 
et al., 2018) and with previous experimental studies (Yakti et al., 2019). 
The selected strains were grown on modified Melin-Norkrans medium 
(MMN) (Marx, 1969) plates covered with cellophane for 6 days. 
Afterward, the mycelia of DSE strains were cut into small pieces and 
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placed into a 1.5 mL Eppendorf tube containing glucose-free MMN 
liquid medium and then vortexed three times for 10 min. These stock 
inocula were placed into 15 mL Falcon tubes filled with glucose-free 
MMN liquid medium and grown for 1 week with daily vortexing (for 
5 min each time). After 7 days, two 15 mL inocula were transferred 
into 1 L of glucose-free MMN liquid medium and grown for 10 days 
with daily shaking.

2.2 Experiment I

Cabbage (Brassica oleracea var. capitata, “Zeusz F1” – from ZKI 
Research Institute of Vegetable Production Ltd., Kecskemét, Hungary) 
seeds were placed into a plant tray filled with peat substrate (Pindstrup 
Plus Blue, Pindstrup); both seeds and the peat were commercial 
products and were handled in our laboratory with care, so 
we  essentially considered them free of root-colonizing and/or 
pathogenic fungi. Two-week-old seedlings were planted into 450 mL 
plastic pots (one seedling per pot) filled with a mixture of twice-
autoclaved sand and zeolite (2:1). In this experiment, DSE inoculum 
was prepared from the Cadophora strain. We  employed two 
treatments: inoculation with Cadophora strain vs. autoclaved 
Cadophora strain (considered mock control) and normal vs. reduced 
water levels. Half (N = 18) of the cabbage seedlings were inoculated 
with 25 mL of Cadophora inoculum, and 75 mL of sterilized tap water 
was added. The other half (N = 18) of cabbage seedlings were 
inoculated with 25 mL of autoclaved (twice) Cadophora inoculum and 
also watered with 75 mL of sterilized tap water. We  randomly 
separated the seedlings into two water treatment groups (N = 9 each) 
within the inoculation treatments. Plants were irrigated every 3 days 
with sterilized tap water. In the reduced water treatment, seedlings 
received 40 mL of tap water per irrigation, while in the normal 
treatment, seedlings received 80 mL per irrigation, which was 
determined in the pilot experiments to be the optimal water supply 
for cabbage in our experimental conditions. The pots were randomly 
rearranged three times a week. The plants were grown for 20 weeks at 
room temperature (21–24°C) in a plant-growing room with natural 
sunlight, after which they were harvested.

2.3 Experiment II

Similarly to Experiment I, cabbage (B. oleracea var. capitata, 
“Zeusz F1”  – from “Zöldségtermesztési Kutató Intézet” (ZKI), 
Kecskemét, Hungary) seeds were placed into a plant tray filled with 
peat substrate (Pindstrup Plus Blue, Pindstrup). The 2-week-old 
seedlings were planted into 450-mL plastic pots (one seedling per pot) 
filled with a mixture of twice autoclaved sand and zeolite (2:1). In this 
experiment, we  used DSE inocula from both Cadophora and 
P. macrospinosa strains. We employed two treatments: one was the 
inoculation, where we used Cadophora (C), P. macrospinosa (P), and 
Cadophora + P. macrospinosa (C + P), and autoclaved 
Cadophora + P. macrospinosa (aut. C + P) and the control (Control); 
the other treatment was the water with normal vs. reduced levels. 
We randomly selected 24 cabbage plants for the inoculation treatment 
for each of the five treatment groups. The first treatment group was 
inoculated with 25 mL of Cadophora inoculum, the second with 
25 mL of P. macrospinosa inoculum, the third with 15–15 mL of 

Cadophora and P. macrospinosa inocula, and the fourth with 15–15 mL 
of autoclaved Cadophora and P. macrospinosa inocula, all being 
watered with 75 mL of sterilized tap water. The fifth treatment group 
was treated with 100 mL of sterilized tap water. We  randomly 
separated the seedlings into two water treatment groups (N = 12 each) 
within the inoculation treatments. Plants were irrigated every 3 days 
with sterilized tap water. Seedlings in the reduced water treatment 
received 40 mL, while those in the normal water treatment received 
80 mL of tap water/irrigation (see Section 2.2). The plants were grown 
for 12 weeks at room temperature under natural light conditions. Due 
to the time of year when the experiment was conducted, additional 
artificial light with a plant growth-promoting LED was also applied. 
The pots were randomly rearranged every 3 weeks, and the plants 
were harvested after 12 weeks.

2.4 Measurements

In both experiments, the measurements were conducted following 
the same protocol. When harvesting the plants, the soil moisture 
content was measured with a soil moisture meter (Basetech BT-235PT, 
China). The leaf water potential was measured with the “Schulander” 
type pressure chamber (ARIMAD 3000, MRClab, Holon, Israel) using 
nitrogen gas immediately after harvesting. To check the presence of 
DSEs in pots inoculated with living fungi and to test the lack of DSEs 
in controls, randomly chosen segments (~100 cm in total) from the 
separated root system were stained using the ink-vinegar method 
(Vierheilig et al., 1998). The roots were kept at 90°C for 20 min in 10% 
KOH and washed three times with distilled water. The washed roots 
were treated with 5% acetic acid (Reanal, Hungary). Roots were 
stained in a 5% blue ink (Schaeffer, USA) acetic acid solution at 90°C 
for 8 min. The stained roots were washed in 5% acetic acid and then 
mounted in 90% lactic acid (Reanal, Hungary). The DSE colonization 
was checked with a light microscope (Nikon, Eclipse, E200, Japan). 
Based on our experiences, correcting the total root biomass by 
removing the root for DSE colonization checking was unnecessary, as 
removing this amount of root had no significant effect on the total 
root mass. Shoots and roots were separated and dried at 65°C for 
approximately 2 weeks until constant weight was achieved. 
Subsequently, the dry biomass of shoots and roots was measured.

2.5 Statistical analyses

In both experiments we had four variables describing the relevant 
characteristics of the host plant and its environment: “shoot dry mass” 
(hereafter: shoot), “root dry mass” (hereafter: root), “plant water 
potential” (hereafter: water), and “soil moisture” (hereafter: soil). As 
these variables were not independent, we  decided to first run 
multivariate linear models (mLMs), taking the non-independence 
into account. We chose Pillai’s Trace as a test statistic because it is 
generally considered robust with respect to model assumptions. After 
detecting significant effects in the multivariate linear models (mLMs), 
we run univariate linear models (LMs) for each individual trait (shoot 
dry mass, root dry mass, plant water potential, and soil moisture) to 
assess the effects of inoculation and water treatments.

Models were built similarly for both experiments. Shoot, root, 
water potential, and soil moisture were included as response 
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variables in the mLMs, while water and inoculation treatments, 
along with their interaction, were entered as fixed explanatory 
effects. In both mLMs, all single and interaction explanatory terms 
were significant (see 3.); therefore, we proceeded to run subsequent 
LMs for each response variable using the same fixed effect 
structure. Additionally, we aimed to assess the direct effects of our 
treatments on the shoot-to-root ratio. This variable could not 
be  included in the mLMs, as it is derived from two response 
variables already included in the model. As a result, we conducted 
separate LMs for the shoot-to-root ratio, following the same 
approach as for the other variables.

Model residuals were checked via Q-Q plots. Groups were 
compared by inspecting the presence or absence of overlap between 
85% confidence intervals (CIs). It has been shown that the absence of 
overlap between ca. 83–84% CIs is equivalent to p < 0.05 (Payton et al., 
2003); hence, 85% CIs can be used as reliable indicators of statistical 
difference (Horváth et al., 2023). Linear models were run in R 4.2.2 (R 
Core Team, 2022), and estimated marginal means and their confidence 
intervals (CIs) were extracted using the emmeans package 
(Lenth, 2019).

3 Results

3.1 Experiment I

There were no visible disease symptoms on the roots and shoots 
of the cabbage plants during the 20-week-long experiment. 
Characteristic structures for DSE colonization (melanized and 
hyaline septate hyphae, microsclerotia) were found in the roots. 
Moreover, extraradical hyphal structures could be detected in the 
roots of all plants inoculated with live Cadophora. No DSE 
colonization was detected in the roots of the plants inoculated with 
autoclaved Cadophora.

All effects in our mLM were highly significant (water: Pillai’s 
Trace1,31 = 0.85, p < 0.001; inoculation: Pillai’s Trace1,31 = 0.52, 
p < 0.001; water × inoculation: Pillai’s Trace1,31 = 0.45, p = 0.002). 
Shoot biomass was significantly affected by both water treatment and 
inoculation, with a marginally significant interaction also detected 
(Table 1). Reduced watering led to a decrease in shoot mass, while 
inoculation with living Cadophora increased it (Figure 1A). Under 
normal watering conditions, Cadophora inoculation increased shoot 
biomass by more than 20% (1.00 ± 0.13 g vs. 1.23 ± 0.24 g) and by 
more than 10% (0.66 ± 0.11 g vs. 0.76 ± 0.08 g) under reduced 
watering (Figure 1A). The interaction suggests that the positive effect 
of living Cadophora is especially evident under normal watering 
conditions (Figure 1A). Root biomass was affected only by water 

treatment (Table 1), with reduced watering resulting in lower root 
mass (Figure  1B). The shoot-to-root ratio was affected solely by 
inoculation (Table  1), with living Cadophora increasing the ratio 
(Figure  1C). Water potential was significantly affected by water 
treatment, inoculation, and their interaction (Table 1). Both reduced 
watering and inoculation with living Cadophora led to lower water 
potential (Figure 1D). The interaction showed that the combination 
of reduced watering and living Cadophora resulted in an extremely 
low water potential, while the other treatment combinations showed 
similar values (Figure 1D). Soil moisture was affected only by water 
treatment (Table 1), with reduced watering leading to decreased soil 
moisture (Figure 1E).

3.2 Experiment II

There were no visible disease symptoms in the roots and shoots of 
cabbage plants during the 12-week-long experiment. DSEs and their 
characteristic structures (melanized and hyaline septate hyphae, 
microsclerotia) were found in the roots. Moreover, extraradical hyphal 
structures could be detected in the roots of all plants of all treatment 
groups inoculated with living DSE. No DSE colonization was detected 
in the roots of the control plants, and the plants were inoculated with 
autoclaved DSE.

All effects in our mLM were highly significant (water: Pillai’s 
Trace1,102 = 0.75, p < 0.001; inoculation: Pillai’s Trace4,102 = 0.71, 
p < 0.001; water × inoculation: Pillai’s Trace4,102 = 0.38, p < 0.001). The 
shoot was affected by water treatment and inoculation (Table 2). 
Reduced watering decreased shoot biomass (Figure  2A). All 
inoculation types resulted in higher shoot biomass than the control, 
with Cadophora inoculation having a stronger effect than the rest 
(Figure  2A). Under normal watering, inoculation with living 
Cadophora increased shoot biomass by more than 30% compared to 
the control (0.54 ± 0.03 g vs. 0.72 ± 0.11 g) and by more than 50% 
under reduced watering (0.39 ± 0.06 g vs. 0.59 ± 0.05 g) (Figure 2A). 
Root biomass was also affected by both water treatment and 
inoculation (Table 2), with reduced watering resulting in decreased 
root biomass (Figure 2B). Inoculation with Cadophora and autoclaved 
DSE resulted in higher root biomass than the control, while 
inoculation with Periconia or Cadophora  + Periconia did not 
(Figure 2B). The shoot-to-root ratio was only affected by inoculation 
(Table 2): all inoculations increased the ratio, but the autoclaved DSE 
(Figure  2C). Water potential was affected by water treatment, 
inoculation, and their interaction (Table  2). Reduced watering 
resulted in lower water potential (Figure 2D). Cadophora inoculation 
decreased water potential compared to the control, while the other 
inoculations did not (Figure 2D). However, the interaction revealed 

TABLE 1 Results of the trait-by-trait linear models from the 20-week-long Experiment I, where we studied the effect of two treatments (inoculation 
with Cadophora strain vs. autoclaved Cadophora strain (considered as mock control) and with normal vs. reduced levels of water) on cabbage plants.

Effect Shoot Root Shoot: root ratio Water potential Soil

F(df1,df2) P F(df1,df2) P F(df1,df2) P F(df1,df2) P F(df1,df2) P

Water (W) 87.05 (1,31) <0.001 31.55 (1,31) <0.001 0.94 (1,31) 0.34 23.47 (1,31) <0.001 110.02 (1,31) <0.001

Inoculation (I) 16.96 (1,31) <0.001 0.19 (1,31) 0.67 6.75 (1,31) 0.014 9.72 (1,31) 0.004 0.72 (1,31) 0.40

W × I 3.69 (1,31) 0.064 0.01 (1,31) 0.92 0.62 (1,31) 0.43 17.62 (1,31) <0.001 0.32 (1,31) 0.57

Significant effects (p < 0.05) are in bold. Marginally significant effects (0.05 < p < 0.1) are italicized.
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a more complex picture. In the reduced watering treatment, 
inoculation with autoclaved DSE increased water potential compared 
to the control, while the other inoculations did not (although the 
Cadophora  + Periconia inoculation tended to Figure  2D). In the 
normal watering treatment, all inoculations decreased water potential 
compared to the control (Figure  2D). Soil was affected by water 
treatment, inoculation and their interaction (Table  2). Reduced 
watering resulted in lower soil moisture (Figure  2E). Periconia 

inoculation decreased soil moisture compared to the control, while 
Cadophora inoculation resulted in higher soil moisture than Periconia 
or autoclaved DSE inoculation (Figure 2E). Again, the interaction 
revealed a complex picture. In the reduced watering treatment, 
Cadophora inoculation resulted in higher soil moisture compared to 
the control, while the other inoculations did not (Figure 2E). Under 
normal watering, Periconia inoculation resulted in lower soil 
moisture than the other treatments (Figure 2E).

FIGURE 1

The combined effects of water and inoculation treatments from the 20-week-long Experiment I, where we studied the effect of two treatments 
(inoculation with Cadophora strain vs. autoclaved Cadophora strain (considered as mock control) and with normal vs. reduced levels of water) on 
cabbage plants. Means + 85% Confidence Intervals are shown, following Payton et al. (2003), to provide a clear graphical comparison of the 
experimental groups. ‘Aut.’ denotes autoclaved. Significant effects (see Table 1 for numerical details): (A) water treatment and inoculation treatment on 
shoot dry weight; (B) water treatment on root dry weight; (C) inoculation treatment on the shoot-to-root ratio, (D) water treatment, inoculation 
treatment and water × inoculation treatment interaction on water potential; (E) water treatment on soil moisture. Note that for water potential (D), 
higher values represent lower water potential.

https://doi.org/10.3389/fmicb.2025.1593265
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lukács et al. 10.3389/fmicb.2025.1593265

Frontiers in Microbiology 06 frontiersin.org

4 Discussion

In agriculture, especially under already dry conditions, massive 
investments into irrigation systems or other water management 
methods are needed (Zinkernagel et al., 2020). Successful anti-drought 
biological treatments that do not directly provide extra water are 
highly interesting. In this study, we  investigated whether root-
associated endophytic fungi originating from semiarid environments 
could enhance the growth performance of non-mycorrhizal vegetable 
crops under different water regimes. Our key findings are that DSE 
fungi were able to colonize cabbage and (i) enhanced both shoot and 
root growth, (ii) the two different DSE fungi had different effects, 
Cadophora being more beneficial for the plant than P. macrospinosa, 
(iii) the growth effects were typically positive but came at a cost of 
water status, corresponding with the increasing the shoot-to-root 
ratio, and (iv) autoclaved DSE also had positive effects, though with 
fewer costs.

Several studies have investigated the impact of DSE inoculation 
on plant development, biomass production, photosynthesis, and 
plant metabolism (Andrade-Linares et  al., 2011; Mahmoud and 
Narisawa, 2013; Newsham, 2011; Yakti et  al., 2018, 2019). Plant 
biomass is one of the most widely used indicators of plant growth. In 
our case, it was a key focus: shoot biomass is economically important 
in cabbage, while root biomass is important for plant performance, 
especially under water shortage. In our first experiment, live 
Cadophora performed better than autoclaved Cadophora in 
promoting shoot development. However, this result must 
be considered with caution because, as the second experiment also 
demonstrated in our system, autoclaved DSE could affect plant 
development in itself, and thus we  had only the protocol-based 
control for comparisons in the first experiment. In the second 
experiment, all inoculation types led to increased shoot development 
compared to the control, with live Cadophora outperforming the rest 
significantly. The fact that living Cadophora outperformed the mixed 
living Cadophora  + P. macrospinosa inoculation highlights the 
complexity and unpredictability of fungus–fungus interactions. Root 
development was enhanced by the presence of live Cadophora and 
the autoclaved DSE mix. These results suggest that both live and 
autoclaved DSE can improve cabbage growth. However, the effect is 
strongly dependent on the DSE species, positioning Cadophora as a 
promising candidate for cabbage cultivation. Of particular interest 
are the significant positive effects of autoclaved DSE on both shoot 
and root development. Although DSE colonization is not necessarily 
needed for a positive effect on inoculated plants (Newsham, 2011), 
our results warrant further investigation to (i) elucidate the 
mechanisms behind the comparable effects of living vs. autoclaved 

DSE and (ii) to explore the feasibility and potential costs and benefits 
of using autoclaved DSE as a biostimulant in agriculture.

Previous results suggested that P. macrospinosa inoculation was 
more effective with grasses than non-grass plants (Mandyam et al., 
2012). In contrast, Cadophora DSE strains have been isolated 
primarily from non-grass plants (Knapp et  al., 2012, 2018). This 
association with grass vs. non-grass hosts may explain why the effect 
was less pronounced for P. macrospinosa than for Cadophora in our 
cabbage experiments. Our results on species-specific DSE effects are 
congruent, e.g., with those achieved by Li et al. (2019), who reported 
that Paraphoma sp. and Cladosporium sp. strains enhanced the root 
weight of Glycirrhiza uralensis. However, Embellisia sp. and 
Cladosporium sp. strains had the most beneficial effects on Zea mays. 
Additionally, differences detected at different cabbage ages (12 vs. 
20 weeks) highlight the effects that manifest variably during plant 
development. For instance, the positive Cadophora effect on root 
development detected in 12-week-old cabbage, but not in 20-week-
old cabbage, shows that there might be an important effect in early 
developmental stages. In line with our results, Andrade-Linares et al. 
(2011) found that the shoot biomass of young tomato plants, 6 weeks 
after the inoculation, was affected positively by DSE inoculation, but 
these positive effects were not observed on 24-week-old tomato plants.

The specificity of the DSE effects on certain plant parts and/or 
organs is an important question. Nevertheless, previous results on the 
effects of DSE on the shoot-to-root ratio are variable. Newsham 
(2011) found, in a meta-analysis, that DSE generally did not influence 
the root-to-shoot ratio. According to Hou et al. (2021), the effect of 
DSE inoculation on the shoot-to-root ratio of Artemisia ordosica 
plants depends on environmental factors like soil moisture, nutrient 
content, pH, and plant and fungus species. They found that DSE 
could decrease the shoot-to-root ratio under increasing NaCl 
concentration. Both of our experiments revealed a significant effect 
of the inoculation on the shoot-to-root ratio. In Experiment I, living 
Cadophora increased the ratio compared to autoclaved Cadophora. 
In Experiment II, all inoculations increased the ratio compared to the 
control, but the autoclaved DSE mix showed the same trend; it was 
not significant. All inoculations with live DSE increased the ratio, 
while autoclaved DSE had a weak effect at best. These results are 
congruent with the results gained from analyzing shoot and root 
separately, showing that the main positive DSE effects are observable 
in shoot development, even in the case of Cadophora, which also 
increased root mass in 12-week-old cabbage. Experiment II suggests 
that the effect of autoclaved DSE is less plant-part specific than the 
effect of living DSE.

Some previous studies have also considered ecologically relevant 
interactions by examining DSE effects under various conditions. For 

TABLE 2 Results of the trait-by-trait linear models from the 12-week-long Experiment II, where we studied the effect of two treatments (inoculation, 
where we used Cadophora and Periconia. macrospinosa, Cadophora + P. macrospinosa, and autoclaved Cadophora + P. macrospinosa and the control; 
the other treatment was the water with normal vs. reduced levels) on the cabbage plant.

Effect Shoot Root Shoot-to-root 
ratio

Water potential Soil

F(df1, df2) P F(df1, df2) P F(df1, df2) P F(df1, df2) P F(df1, df2) P

Water (W) 114.31 (1,102) < 0.001 86.68 (1,102) < 0.001 0.16 (1,102) 0.68 25.26 (1,102) < 0.001 65.76 (1,102) < 0.001

Inoculation (I) 14.34 (4,102) < 0.001 9.87 (4,102) < 0.001 7.55 (4,102) < 0.001 3.02 (4,102) 0.02 2.88 (4,102) 0.03

W × I 0.96 (4,102) 0.43 0.27 (4,102) 0.90 1.42 (4,102) 0.23 5.83 (4,102) < 0.001 3.70 (4,102) 0.007

Significant effects (p < 0.05) are in bold. Marginally significant effects (0.05 < p < 0.1) are italicized.
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instance, Yakti et al. (2019) examined the effect of Cadophora and 
P. macrospinosa strains, the same DSE fungi used here, on tomato 
growth in the presence of organic and inorganic N and P sources. 
When organic nutrient resources were present, only the 
P. macrospinosa strain increased both the shoot and root weight of 
tomato plants, in contrast to the case when inorganic forms were 
provided, and both Cadophora and P. macrospinosa increased only 
shoot biomass. Mandyam and Jumpponen (2015) found that 

P. macrospinosa can promote growth in A. thaliana when organic 
nutrients are supplied, unlike untreated plants. Furthermore, a few 
pioneering studies have also investigated the effects of DSE under 
various water regimes. Some DSE strains isolated from wild rice 
(Oryza glumaepatula) could improve the growth of rice under 
drought stress (Santos et  al., 2017). The drought resistance of 
sorghum could be positively affected by Exophiala pisciphila isolate 
with better plant growth parameters, gas exchange, photosynthesis, 

FIGURE 2

The combined effects of water and inoculation treatments in the 12-week-long Experiment II, where we studied the effect of two treatments 
(inoculation, where we used Cadophora, Periconia macrospinosa, Cadophora + P. macrospinosa, and autoclaved Cadophora + P. macrospinosa, and 
the control; the other treatment was water with normal vs. reduced levels) on cabbage plants. Means + 85% Confidence Intervals are shown, following 
Payton et al. (2003), to provide a clear graphical comparison of the experimental groups. ‘C’ denotes Cadophora sp., ‘P’ denotes Periconia 
macrospinosa, ‘Aut.’ denotes autoclaved. Significant effects (see Table 2 for numerical details): (A) water treatment and inoculation treatment on shoot 
dry weight; (B) water treatment and inoculation treatment on root dry weight; (C) inoculation treatment on the shoot-to-root ratio, (D) water 
treatment, inoculation treatment and water × inoculation treatment interaction on water potential; (E) water treatment, inoculation treatment and 
water × inoculation treatment interaction on soil moisture. Note that for water potential (D), higher values represent lower water potential.
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secondary metabolites, and enzyme activities (Zhang et al., 2017). 
Our study found that there were limited ecologically relevant 
interactions between inoculation and water treatments, affecting 
plant growth. In Experiment I, the positive effect of living Cadophora 
over autoclaved Cadophora on the shoot development of 20-week-old 
cabbage was mainly present under a normal water regime. However, 
the interaction was only marginally significant (p = 0.064). In 
Experiment II, we  found no interaction effect on shoot or root 
development in 12-week-old cabbage. Our reduced water treatment 
had a strong overall effect on plant development by decreasing both 
shoot and root mass. It also decreased the plants’ water potential and 
soil moisture. Hence, the lack of interaction is not a result of an 
unsuccessful water treatment. In our system, the positive effects of 
DSE (living or autoclaved) on plant growth are present in both 
favorable and harsh water conditions.

Considering the various positive effects of DSE inoculation on 
plant growth, regardless of water treatment, it is important to ask 
whether these improvements came without associated costs. Potential 
costs regarding water usage (soil moisture) and water status (water 
potential) could be directly estimated in our experimental setup. 
Even though it is a fundamental question for both understanding 
fungus–plant symbiosis and for applying living or autoclaved DSE in 
agriculture for increasing yield, the effects of DSE inoculation on soil 
moisture remain poorly understood. This factor may also play a 
critical role in plant–plant competition, especially in natural 
ecosystems. The effect on plant water potential could be explained by 
the positive effect of DSE inoculation on the shoot-to-root ratio. The 
relative increase of the aboveground parts could lead to higher 
transpiration, while a concurrent decrease in root mass may limit 
water uptake. When a reduced water regime was applied in the 
Cadophora inoculation case, the soil’s water content was higher than 
in the control, suggesting complex interactions between the fungus, 
plant, and soil water dynamics.

In the case of arbuscular mycorrhizal fungi (AMF), several 
studies have investigated the effect of AMFs on water potential: 
significantly higher leaf water potential was measured in snapdragon 
plants inoculated by AMF (El-Nashar, 2017). Boutasknit et al. (2020) 
studied the effect of AMF inoculation and water deficit on carob: leaf 
water potential was markedly affected by water conditions as well, but 
AMF-colonized carob plants showed more rapid recovery after 
removal of the water stress. The first experiment revealed that the 
growth benefit provided by living Cadophora, mainly under good 
water conditions, compared to autoclaved Cadophora, came with a 
cost manifested in decreased water potential under reduced water 
conditions. Based on this, inoculation with living Cadophora instead 
of autoclaved Cadophora is beneficial under good water conditions 
but has an extra cost and results in reduced water potential under 
water shortage. On the other hand, Cadophora seems to help the soil 
retain water. In the second experiment’s normal water treatment, all 
inoculations decreased water potential compared to the control. 
Hence, under an optimal water regime, all inoculations resulted in 
growth benefits and a water status cost. The inoculations did not 
decrease water potential in the reduced water treatment of the second 
experiment. Further, inoculation with the autoclaved DSE mix 
increased it. Cadophora had the strongest water potential decreasing 
effect when the water regime was not considered. Taken together, all 
inoculations resulted in growth benefits, with water status costs 

under optimal water supply but without water status costs under 
water shortage. Autoclaved DSE mix also appears to be a promising 
candidate for supporting plant development under water shortage 
since it not only promotes growth but also maintains water potential, 
likely due to its smaller effect on the shoot-to-root ratio. These results 
are particularly relevant for cabbage cultivation, but for a fine-scale 
understanding of the exact cost–benefit balance at different stages of 
development and under different environmental settings, further 
research is needed. Inoculation had no effect on soil moisture in 
Experiment I, but it had a significant interaction effect with water 
treatment in Experiment II. Under water shortage, living Cadophora 
increased, while under normal water supply, P. macrospinosa 
decreased soil moisture. We are not aware of any previous results 
highlighting such environment-dependent DSE effects. By affecting 
not only the host plants’ performance but also the quality of their 
environment, DSE may have more complex effects on ecological 
processes than previously expected.

5 Conclusion

We found that inoculations with different DSE species, their 
combination, and autoclaved DSE all had positive effects on cabbage 
development, mostly irrespective of water treatment. The effect 
mainly manifested in shoot development, resulting in an increased 
shoot-root ratio; however, positive effects were also observed on root 
development. DSE costs manifested as a decreased water status of the 
host plant, with the effect being most relevant under normal water 
regimes but not under water shortages. This is highly promising for 
agricultural use and potential management use in natural ecosystems. 
Living Cadophora and the autoclaved Cadophora + P. macrospinosa 
mix are the best candidates among the inoculations tested. The 
positive effects of Cadophora on shoot and root development, 
particularly under limited water conditions, may be attributed to 
enhanced nutrient uptake, improved water retention in the soil, or 
other mechanisms that warrant further exploration. Although 
Cadophora inoculation led to a decrease in plant water potential, this 
effect was primarily observed under normal water conditions, where 
the increased shoot-to-root ratio likely mitigated the negative impact. 
The costs associated with reduced water potential may be outweighed 
by the overall growth benefits, particularly under drought conditions. 
The autoclaved DSE mix was beneficial for plant growth overall, 
increasing both shoot and root development, and it increased water 
potential under water shortage. The two DSE fungi, similar to 
previous experiments, showed significant differences in their effects, 
which underpin the functional diversity of these common plant-
associated fungi. Although the results are promising, they also 
highlight the need for optimizing any potential application of these 
fungi in agriculture. Given the promising results, these DSE 
inoculations could be explored as part of sustainable agricultural 
practices, particularly in drought-prone regions where water 
management is critical. However, further studies are needed to assess 
the cost-effectiveness and scalability of using these inoculants in 
commercial agriculture. Future research should prioritize large-scale 
screening efforts of diverse DSE species, including both living and 
autoclaved forms, across a wider range of host plants, particularly 
those important for agriculture. Additionally, studies should focus on 
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varying environmental conditions such as soil type, nutrient 
availability, and plant developmental stages to better understand the 
dynamics of plant-fungi mutualistic symbiosis.
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