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Background: Contamination of food by antimicrobial-resistant pathogens poses 
significant risk to consumers and environment, potentially leading to foodborne 
illnesses, silent colonization, and dissemination of antibiotic-resistant bacteria 
across geographic borders.

Methods: This study analyzed 32 retail meat samples (12 chicken, 10 beef, and 
10 pork) from conventional (CN) and antibiotic-free (AF) production systems 
in Brazil, assessing WHO bacterial priority pathogens through whole genome 
sequencing and microbiological methods.

Results: Five broad-spectrum cephalosporin-resistant Escherichia coli strains 
were isolated from AF chicken meat, including four extended-spectrum β-
lactamase (ESβL) producers belonging to sequence types (STs) ST117, ST443, 
ST1559 and ST3258, and one pAmpC producer carrying the blaCMY-2 gene 
and belonging to ST57. On the other hand, four E. coli strains resistant to 3rd 
generation cephalosporins were identified in CN chicken meat, being three 
ESβL producers of ST38, ST2179 and ST2040, and one pAmpC producer 
belonging to ST350. Genes conferring resistance to hazardous heavy metals, 
disinfectants, and pesticides were identified, whereas virulent potential of E. coli 
ST350 and ST2040 was predicted. Noteworthy, E. coli ST38 was genomically 
related to lineages previously identified in poultry (North America) and polluted 
environments (Europe), supporting an intercontinental dissemination within a 
One Health framework.

Conclusion: Our findings reinforce the need for continuous surveillance of 
WHO critical priority pathogens in the chicken meat supply chain from different 
production systems.
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1 Introduction

Critical antimicrobial-resistant (AMR) bacteria exert hazardous 
effects on the environment or humans via contamination, causing 
serious economic losses and endangering human and environmental 
health (Antimicrobial Resistance Collaborators, 2022). Multisectoral 
aspects, including the overuse and misuse of antimicrobials in human 
and animal healthcare, agriculture, and livestock, have significantly 
contributed to the rapid emergence and spread of multidrug-resistant 
(MDR) bacterial strains (Aslam et al., 2021). Indeed, MDR bacteria 
have increasingly been documented beyond the confines of human 
hospital walls, adding an additional layer of complexity to this issue 
(Aslam et  al., 2021; McEwen and Collignon, 2018). Given the 
interconnected nature of this problem, multidisciplinary approaches 
under the auspices of One Health have been encouraged to strengthen 
surveillance and mitigate the dissemination of these clinically 
important pathogens (Jesudason, 2023).

The 2021–2025 Action Plan on antimicrobial resistance by the 
Food and Agriculture Organization of the United Nations (FAO) has 
highlighted five key strategic priorities aimed at addressing this issue 
within the food and agriculture sectors, including: (i) promoting 
practices to prevent infections and mitigate the spread of antimicrobial 
resistance; and (ii) ensuring the prudent use of antimicrobials to 
preserve their efficacy. Among these priorities, surveillance is the basis 
for understanding the dynamics of antibiotic resistance in food, 
enabling the detection of emerging threats, and guiding targeted 
interventions to mitigate the spread of resistant microorganisms (Keck 
et al., 2023).

Particularly concerning is the widespread dissemination of third-
generation cephalosporin-resistant Escherichia coli producing 
extended-spectrum (ESβLs) and/or plasmid-mediated AmpC 
(pAmpC) β-lactamases, rendering them clinically ineffective (Kaper 
et al., 2004; Foster-Nyarko and Pallen, 2022; Fuga et al., 2022). Due to 
its high mortality rates, healthcare burden, prevalence of resistance, 
and other significant impacts on public health, this sort of E. coli 
strains have been classified as a critical priority pathogen by the World 
Health Organization (2024). Therefore, contamination of food by 
critical priority E. coli represents serious a public health concern due 
to its potential transmission to humans through the food supply chain 
(Ramos et al., 2020; Alegría et al., 2020; Mughini-Gras et al., 2019). In 
this regard, chicken meat is a food highly susceptible to contamination 
by various microorganisms throughout the food chain, leading to its 
spoilage and risk to human health and the environment.

Currently, the production of antibiotic-free chicken meat has been 
encouraged as a response to growing concerns about AMR and the 
potential human health risks associated with the consumption of meat 
products containing antimicrobial residues (Haque et  al., 2020; 
Mohammadi et al., 2023). AMR surveillance on antibiotic-free (AF) 
meat has been proposed to evaluate the effectiveness of antimicrobial 
stewardship practices in reducing the dissemination of antimicrobial-
resistant bacteria in the food supply chain (Farooq et  al., 2022). 
Although some studies have demonstrated that AF meat may present 
lower levels of antimicrobial residues compared to conventionally 
raised meat (Sarkar et al., 2023), it can still harbor bacteria of clinical 
interest, including critical priority E. coli strains (Rawat et al., 2024).

Since animal-derived foods can be  contaminated with a wide 
variety of hazardous bacteria, such as E. coli, the identification and 
genetic context of pathogenicity and antibiotic resistance is very 

important for prevention against their widespread, especially MDR 
strains. In this study, as part of the Grand Challenges Explorations: 
New Approaches to Characterize the Global Burden of Antimicrobial 
Resistance Program, we report the occurrence of global clones of 
WHO critical priority E. coli in both conventional (CN) and AF retail 
meat, in Brazil, one of the world’s leading meat producers and 
exporters, and a significant player in the global meat industry (Klein 
and Vidal, 2022).

2 Materials and methods

2.1 Sample collection

Between August and February 2019–2020, 32 different samples of 
chicken, bovine and swine meat sold in supermarkets located at all 
regions of São Paulo, the most populous city in Latin America, were 
aseptically collected. The meat samples were obtained from CN or AF 
production systems, and include retail chicken (n = 12), beef (n = 10) 
and pork meat (n = 10) (Supplementary Table S1). The storage 
methods of meat samples, both fresh (FS) and frozen (FZ), were 
also assessed.

2.2 Isolation of broad-spectrum 
cephalosporin resistant Escherichia coli 
from conventional and antibiotic-free 
labeled commercial meat

Samples were purchased and immediately stored in thermic boxes 
and processed within 4 h. Microbiological analyses were carried out 
according to the Food and Drug Administration (FDA) protocol with 
modifications (U.S. Food and Drug Administration, 2021). In brief, 
100 g of each sample were rinsed with 225 mL of Buffered Peptone 
Water (BPW) in sterile plastic bags (Whirl-Pak; Nasco, WI), and 
homogenized by hand-massage for 15 min. Subsequently, 25 mL was 
transferred to 25 mL of MacConkey broth flasks and cultured 
overnight at 37 ̊C. Then, 10 μL aliquot were transferred to MacConkey 
agar plates supplemented with ceftriaxone (2 μg/mL), as previously 
recommended for screening of potential ESβL-producing E. coli 
(Jacob et al., 2020).

After overnight incubation at 37°C, presumptive E. coli typical 
colonies were subculture into eosin methylene blue (EMB) agar and 
further confirmed by matrix-assisted laser desorption ionization–time 
of flight mass spectrometry (MALDI-TOF MS) analysis (Singhal 
et al., 2015).

2.3 Antimicrobial susceptibility testing and 
confirmation of extended Spectrum 
β-lactamases (ESβL) phenotype

Antimicrobial susceptibility profiles were accessed by disc 
diffusion method and results interpreted according to the Clinical and 
Laboratory Standards Institute (2024) breakpoints. A panel of 14 
antimicrobials was tested, including amoxicillin/clavulanic acid 
(AMC), ceftriaxone (CRO), ceftazidime (CAZ), cefotaxime (CTX), 
cefoxitin (CFO), cefepime (CPM), ertapenem (ETP), imipenem 

https://doi.org/10.3389/fmicb.2025.1593887
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Fuga et al. 10.3389/fmicb.2025.1593887

Frontiers in Microbiology 03 frontiersin.org

(IMP), meropenem (MER), nalidixic acid (NAL), ciprofloxacin (CIP), 
aztreonam (ATM), gentamicin (GEN), and amikacin (AMI). 
Additionally, double disc synergy test (DDST) was used to detect ESβL 
production (Jarlier et al., 1998; Drieux et al., 2008). Isolates classified 
as non-susceptible to at least one agent in three or more antimicrobial 
categories were defined as MDR, according to the criteria established 
by Magiorakos et al. (2012).

2.4 Genome sequencing

Of the 14 strains recovered from the collected meat samples, nine 
E. coli isolates from chicken meat, representing both CN and AF 
systems, were selected for whole genome sequencing mainly based on 
their ESβL phenotype, as determined by the DDST test, with 
additional consideration of their MDR profiles (Table 1).

Total DNA of E. coli strains was extracted using a PureLink quick 
gel extraction kit (Life Technologies, CA), and subsequently utilized 
for constructing a Nextera DNA Flex Library Prep (Illumina Inc., San 
Diego, CA). Genomic sequencing was performed using the NextSeq 
platform (Illumina, San Diego, CA).

2.5 Bioinformatics analysis

The paired-end reads were quality checked and trimmed (PHRED 
quality score <20) using TrimGalore v.0.6.71 and assembled by 
Unicycler v.0.5.02. For the E. coli strain FCC4, we conducted both 
trimming and de novo assembly of sequences using CLC Genomics 
Workbench v.12.0.3 (Qiagen, Hilden, Germany). Complete genome 
annotation was carried out using NCBI Prokaryotic Genome 
Annotation Pipeline v.3.23.

Public databases for molecular typing and microbial genome 
diversity  – PubMLST4 and Enterobase5 was used to determine 
sequence type of E. coli strains. To evaluate antimicrobial resistance 
genes, we employed the Resfinder v.4.4.2 tool available through the 
Center for Genomic Epidemiology (CGE) pipeline6, with 
default settings.

ABRicate v0.9.87 was used to predict virulence genes 
(VirulenceFinder v.2.0), plasmids (PlasmidFinder v.2.1), fimbriae 
(FimTyper v.1.0), and serotype (SerotypeFinder v.2.0) profiles through 
the CGE database. The Virulence Factor Database  - VFDB8 was 
additionally employed for predicting the virulome. Heavy metal 
(HM), herbicide (glyphosate), and disinfectants (QACs) resistance 
genes were also identified using ABRicate through a database 
constructed from NCBI and BacMet29. Cutoff values of ≥90% identity 
and ≥ 80% coverage were used. Phylogroup stratification was 

1 https://github.com/FelixKrueger/TrimGalore

2 https://github.com/rrwick/Unicycler

3 http://www.ncbi.nlm.nih.gov/genome/annotation_prok/

4 https://pubmlst.org/

5 https://enterobase.warwick.ac.uk

6 https://www.genomicepidemiology.org

7 https://github.com/tseemann/abricate

8 https://github.com/haruosuz/vfdb

9 http://bacmet.biomedicine.gu.se/

performed using ClermonTypingv.1.4.010. The Mlplasmids v2.1.011 was 
used to predict plasmid and chromosome-derived sequences.

2.6 Phylogenetic analysis

For phylogenetic purposes, we downloaded all genome assemblies 
with data for country, year of collection and source of isolation for 
each of the STs from the Escherichia/Shigella database in Enterobase 
(see text footnote 5). For each ST, the average nucleotide identity 
(ANI) between E. coli strains and the downloaded dataset was 
obtained using FastANI v1.3212, and the 30 genomes with highest ANI 
were select for phylogenetic analysis. ST3258 had only 18 genome 

10 http://clermontyping.iame-research.center

11 https://sarredondo.shinyapps.io/mlplasmids/

12 https://github.com/ParBLiSS/FastANI

TABLE 1 Characteristics of sequenced hazardous Escherichia coli strains 
isolated from antibiotic-free (AF) and conventional (CN) chicken meat.

Strain Source Storage ST Resistome

F1B AF Frozen ST443 blaCTX-M-2, blaTEM-106, tet(A), 

aac(3)-VIa, ant(3″)-Ia, 

qnrB19, sul1

FCC3 CN Frozen ST350 blaCMY-2, ant(3″)-Ia, aac(3)-

VIa, gyrA-S83L, gyrA-

D87G, parC-S80I, sul1, 

sul2

FBP3 CN Frozen ST38 blaCTX-M-2, cmlA1, catA1, 

tet(B), ant(3″)-Ia, aadA2, 

aph(6)-Id, aph(3″)-Ib, 

dfrA7, dfrA15, gyrA-S83L, 

gyrA-D87G, parC-S80I, 

sul1, sul2

FCC4 CN Fresh ST2179 blaCTX-M-8, blaTEM-1B, tet(A), 

aph(6)-Id, aph(3″)-Ib, 

gyrA-S83L, gyrA-D87N, 

parC-S80I, sul2

FBC4 CN Fresh ST2040 blaCTX-M-55, blaTEM, aac(3)-

VIa, ant(3″)-Ia, fosA3, sul1

FCC8 AF Frozen ST3258 blaCTX-M-55, blaTEM-141, tet(B), 

aac(3)-IV, ant(3″)-Ia, 

aph(3″)-Ib, aph(3′)-Ia, 

aph(4′)-Ia, aph(6)-Id, 

fosA3, sul2

FCC10 AF Frozen ST15579 blaCTX-M-8, tet(B), aac(3)-

VIa, ant(3″)-Ia, aph(3″)-Ib, 

aph(6)-Id, sul1, sul2

FSE11 AF Frozen ST57 blaCMY-2, tet(A), ant(3″)-Ia, 

dfrA1, sul1

FSW11 AF Frozen ST117 blaCTX-M-55, blaTEM-141, fosA3, 

gyrA-S83L, gyrA-D87N, 

parC-E84K
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assemblies available, so all genomes were used. CSI Phylogeny v1.413 
was used with default settings to generate maximum-likelihood trees 
based on SNP alignment. As reference genomes, chromosome 
sequences of E. coli ST38 strain 144 (accession number NZ_
CP023364.1), ST57 strain NCTC10444 (NZ_LR134092.1), ST117 
strain 14EC020 (NZ_CP024138.1), ST350 strain NCTC9112 (NZ_
LR134079.1), ST443 strain 2014C-3307 (NZ_CP027368.1), and 
ST2179 strain BR03-DEC (NZ_CP035321.1) were used. On the other 
hand, for ST2040 and ST3258, which had no complete genome 
assemblies available on Enterobase, we used as reference genomes the 
chromosome sequences of ST191 (closely related to ST2040) strain 
1,500 (NZ_CP040269.1) and ST117 (closely related to ST3258) strain 
14EC020 (NZ_CP024138.1). Finally, for FCC10, we used the closely 
related ST641 strain 1916D18 (NZ_CP046000.1). All reference 
genomes were chosen based on Enterobase search results. All genome 
assemblies used on phylogenetic analysis were screened for resistance 
genes and plasmid replicons using ABRicate v1.0.1 (see text footnote 
7) with ResFinder and PlasmidFinder databases. iTOL v614 was used 
to root the trees at midpoint and to annotate the trees with Enterobase 
and ABRicate data.

3 Results

A total of 14 E. coli isolates were recovered from 32 collected meat 
samples, mostly from chicken (12/14), including from both CN and 
AF production systems, followed by swine (2/14) samples obtained 
from CN alone (Supplementary Table S1). No E. coli strains were 
isolated from beef. Based on the sources of the meat samples, a higher 
frequency of E. coli isolates was obtained from chicken breast filet. A 
greater number of resistant E. coli strains were isolated from AF 
compared to the CN meat (6/9, and 6/23, respectively). Regardless of 
the storage method of meat samples, antimicrobial-resistant E. coli 
was mainly detected in FZ meat (6/8).

Antimicrobial susceptibility testing of the 14 E. coli isolates is 
shown in Figure 1. The highest resistance frequency was found for 
ceftriaxone and cefotaxime (100% of the tested strains), followed by 
cefepime, nalidixic acid and gentamicin (50%). The seven E. coli 
strains (F1B, FCC3, FBP3, FBC4, FCC10, FSE11, and FCC2) were 
classified as MDR according to the code previously established by 
Magiorakos et al. (2012). The MDR strains were more prevalent in 
chicken meat from antibiotic-free production systems (4/6) compared 
to conventional systems (3/8) (Figure 1). Among the tested strains, 
these nine strain, F1B, FCC3, FBP3, FCC4, FBC4, FCC8, FCC10, 
FSE11, and FSW11, were selected for whole genome sequencing based 
on their susceptibility profile and ESβL phenotype (Figure  1). 
We chose only chicken meat strains because they represented most of 
the isolates and allowed for a more consistent comparison between 
antibiotic-free and conventional production systems within the same 
meat type.

Initial analysis of the sequenced strains was performed using an 
in silico MLST approach that revealed completely distinct sequence 

13 https://cge.food.dtu.dk/services/CSIPhylogeny/

14 https://itol.embl.de

types (STs) among all strains (ST38, ST57, ST117, ST350, ST443, 
ST15579, ST2179, ST2040, and ST3258).

Overall, 63 antimicrobial resistance genes (ARGs) conferring 
resistance to eight antimicrobials categories, including β-lactams, 
phenicols, tetracyclines, aminoglycosides, fosfomycin, 
trimethoprim, quinolones, and sulfonamides were identified based 
on the WGS analysis (Figure 2A). Each genome of the nine strains 
harbored between three and 12 ARGs. The ß-lactam resistance 
genes blaCMY-2 or blaCTX-M (blaCTX-M-2, blaCTX-M-8, or blaCTX-M-55 
variants) were detected in all sequenced E. coli strains, regardless 
of whether from CN or AF production systems (Table 1). Among 
these, the blaCTX-M-55 gene variant was the most frequently found in 
E. coli strains, being identified in three strains (FBC4/CN, FCC8/
AF, and FSEW11/AF).

Resistance to fluoroquinolones was mainly associated with 
chromosomal mutations on gyrA [S83L, D87N, and D87G] and parC 
[S80I and E84K] genes. Only the F1B/AF E. coli strain presented gene 
associated with plasmid mobilization (qnrB19).

The sequenced strains showed a broad resistome related to heavy 
metals, herbicide, and disinfectants resistance genes, ranging between 
28 and 39 resistance genes in each strain (Figure 2B). Overall, all of 
them carried resistance genes to heavy metal (arsenic: arsB, arsC, and 
arsR genes), herbicide (glyphosate: phnCDEFGHIJKLMNOP genes), 
and disinfectants (acrE, acrF, emrD, emrK, mdtE, mdtF, mdtK, mdtN, 
and tolC genes).

Our results also identify 12 distinct plasmid replicon types among 
the 9 genomes analyzed, including IncFIA, IncFIB, IncFIC, IncFII, 
IncI1-I, IncN, IncY, IncB/O/K/Z, IncX1, IncX4, p0111, and Col 
(Figure 2A). The most prevalent plasmid replicons were Col (88.9%, 
8/9) and IncFIB (77.8%, 7/9). Interestingly, the E. coli strains harboring 
the highest number of resistance genes, FBP3/ST38/CN (12 ARGs) 
and FCC8/ST3258/AF (11 ARGs), commonly exhibited the plasmids 
IncFIB, IncFIC, and Col. Additionally, FCC8 strain also possessed 
IncFII and IncN plasmids. Although the short-read methodology 
employed did not allow for the circularization of plasmids, using the 
mlplasmid tool, we detected plasmid-derived sequences carrying the 
blaCTX-M-type or blaCMY-2 genes in F1B, FCC3, FBP3, and FSE11 strains. 
As a limitation, the study did not include plasmid 
electrophoretic analysis.

In total, 171 virulence genes representing different virulence 
pathogenicity mechanisms (adherence, bacteriocins, iron uptake, 
toxins, invasion, secretion systems, protectins/serum resistance, and 
other factors) were identified (Figure 3). The E. coli FBC4/ST2040 and 
FCC3/ST350 strains, from CN production system, harbored a higher 
number of virulence genes (124 and 120, respectively), followed by 
the FCC4/ST2179 (119 genes) and FBP3/ST38 (110 genes) strains. 
Despite this, those isolates from AF meat, FCC8/ST3258 and FSW11/
ST117, also presented a broad virulome (104 and 100, respectively). 
All sequenced strains presented genes involved in processes of 
adherence (fimBCDEFGHI, ecpAR, cgsABCDEFG, and yehBCD 
genes), iron uptake (entABCDEFS, fepABCDEG, and fes genes), 
invasion (ibeBC genes), secretion system (espL1 gene), proctin/ 
serum resistance (ompT gene), among others (nlpI, and terC genes). 
Detailed genomic information of virulome is shown in 
Supplementary Table S1.

Fimbriae and serotyping analysis, accessed by FimTyper  and 
SerotypeFinder, respectively, showed that all strains were distinct, 
although strains FCC3/CN, FCC8/AF and FSW11/AF presented the 
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same H antigen (H4) (Supplementary Table S1). The most frequent 
Clermont phylogroup was B1 type (3/9), followed by E type (2/9) 
(Supplementary Table S1).

The phylogenetic analysis was conducted based on sequence 
typing (ST), so only one isolate from our study (FBP3) was included 
in the analysis of the pandemic clone ST38, together with other related 
isolates. Notably, the FBP3/CN/FZ strain was closely related to 
chicken meat isolates from Brazil in 2019, and to poultry isolates from 
USA in 2007, with SNP differences ranging from 128 to 142, 
respectively (Figure 4; Supplementary Table S1). All Brazilian strains 
carried blaCTX-M-2, sul1, sul2, aph(3″)-Ib, aph(6)-Id and drfA17 genes. 
The ST117 FSW11 (AF/FZ) strain showed close phylogenetic 
relatedness to other CTX-M-55-producing E. coli isolates from Brazil 
(2019), specifically those derived from swine meat (15 SNP 
differences) and poultry (17 SNP differences) (Figure  5; 
Supplementary Table S1). Additionally, the FBP3 and FSW11 strains 
were genomically linked (995–1843 SNPs) to the ST38 and ST117 
lineages previously identified in environmental contamination in 
Europe (Figures 4, 5; Supplementary Table S1). From a plasmidome 
perspective, all ST117 strains carried the IncFIB, IncFIC, IncFII, and 
IncN plasmid groups (Figure 5). The presence of these plasmids in all 
strains suggests a high risk of antibiotic resistance spread, as these 
plasmid groups are known for efficient horizontal gene transfer and 

carriage of resistance genes (Liu et al., 2024; Felix et al., 2024; Yu 
et al., 2024).

In general, the F1B, FCC8, FBC4, FSE11 strains were nested 
within a food (avian), poultry and/or livestock clade 
(Supplementary Figure S1). On the other hand, the phylogenetic 
analysis of FCC4, FCC3, and FCC10 strains identified a clade 
comprising isolates from diverse sources, including avian food 
products, poultry, livestock, humans, and/or wild animals 
(Supplementary Figures S1B3,B5,B6). Furthermore, it was observed 
that some strains (FBP3, FCC4, and FBC4) share similar antibiotic 
resistance and plasmid content with their closest phylogenetic 
relatives, indicating the possible influence of horizontal gene transfer 
and environmental factors.

4 Discussion

Bidirectional transmission of antibiotic resistance is likely between 
humans, the food chain, and the environment. In this regard, 
industrial chicken farms represent an ideal environment for the spread 
of AMR bacteria, since the overuse of antimicrobials contributes to 
the selection of antibiotic-resistant bacteria in the gastrointestinal 
microbiota of animals, whereas the consumption of contaminated 

FIGURE 1

Heatmap showing the antimicrobial resistance profile of 14 Escherichia coli strains recovered from conventional and antibiotic-free retail meat in 
Brazil. Boxes highlighted in red indicate the antimicrobials for which the strains displayed resistance, while boxes in purple indicate susceptibility 
profiles. Aqua green color denotes antibiotic-free production systems, and dark green represents conventional systems.
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animal-source food, or environmental exposure can lead to the 
transmission of antimicrobial-resistant bacteria to humans and 
non-human hosts. In fact, antimicrobial resistance is regularly 
manifested in human clinical settings through food chain, with 
additional environmental spillovers.

This study prioritized the isolation and specific characterization 
of prevalent critical pathogens, following the FAO Action Plan and 
WHO’s global research guidelines on antimicrobial resistance (Keck 

et al., 2023; Bertagnolio et al., 2024). Therefore, as a limitation of this 
study, bacterial load was not measured before overnight enrichment, 
and virulence gene expression was not quantified. We  report the 
occurrence of international clones of ESβL/pAmpC-positive E. coli 
isolated from both CN and AF retail meat sold at supermarkets across 
all regions of São Paulo, the most populous city in Latin America with 
over 11 million inhabitants (IBGE, 2025). This metropolitan area 
represents a diverse consumer population and a significant market for 

FIGURE 2

ESβL/pAmpC-producing Escherichia coli isolated from retail meat, considering the types of production (antibiotic-free or conventional) and storage 
(cold or frozen) system. (A) Antibiotic resistance, mutations and plasmidome diversity. (B) Metals, biocides and pesticide resistance. Highlighted boxes 
indicate the presence, while gray boxes indicate the absence of resistance determinants (to antimicrobials, metals, biocides, and pesticides), mutations, 
or plasmid incompatibility groups.
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FIGURE 3

Comparative panel of virulence genes detected among antibiotic-free and conventional ESβL/pAmpC-producing Escherichia coli strains. The virulome 
scenario involves genes related to adherence, bacteriocins, iron uptake, toxins, invasion, secretion systems, protectins/serum resistance, and other 
factors of pathogenicity. Blue boxes represent the presence of virulence genes, while white boxes indicate their absence. Aqua green color denotes 
antibiotic-free production systems, and dark green represents conventional systems.
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retail meat, making it a relevant setting for studying antimicrobial-
resistant pathogens in food.

The dissemination of genes encoding ESβL in meat requires closer 
attention, particularly due to its association with the successful 
expansion of international high-risk clones (Fuga et al., 2022; Soncini 
et al., 2022). In this report, we highlight the occurrence of CTX-M-
producing E. coli strains belonging to diverse lineages, including ST38, 

ST57, ST117, ST350, ST443, ST15579, ST2179, ST2040, and ST3258. 
While CTX-M-producing clones belonging to ST350 have already 
been widely reported in chicken samples from southwest China (Li 
et al., 2022), our phylogeographical analysis further confirmed the 
presence of ST350 clone in poultry samples from the USA, as well as 
its clonal relationship with the E. coli FCC3 strain identified in our 
study. Strikingly, E. coli ST350 has been reported since 1979 (accession 

FIGURE 4

Phylogenomic analysis of FBP3 Escherichia coli strain belonging to ST38. In A, maximum-likelihood phylogenetic tree illustrating of 31 Escherichia coli 
ST38. Comparison of resistomes, isolation sources, and countries of origin of the strains. In B, zooming into the subtree comprising the clade A. The 
figure was generated with iTOL version 5.6.1 (https://itol.embl.de).
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number AASASW000000000.1), highlighting a long-standing 
circulation and persistence.

The E. coli ST3258 present in organic broiler farm has been 
detected in Netherlands (van Hoek et al., 2018) and ST2040 and 
has been mainly reported to harboring the blaCMY-2 gene 
(Castellanos et al., 2017; Che et al., 2023). The other STs (ST57, 
ST443, and ST2179) have been reported in Brazil associated with 
blaCTX-M-type or blaCMY-2 genes, being recovered from different hosts 

and sources (Fuga et al., 2022; Leigue et al., 2015; Palmeira et al., 
2018; Dos Anjos Adur et al., 2022). To our knowledge, this is the 
first report of an E. coli ST15579 strain. The presence of closely 
related ST15579-FCC10, ST2179-FCC4, and ST350-FCC3 strains 
across avian, livestock, human, and/or wild animal hosts 
underscores potential transmission pathways at the human-
animal-environment interface, emphasizing the importance of a 
One Health approach to antimicrobial resistance surveillance.

FIGURE 5

Phylogenomic analysis of FSW11 Escherichia coli strain belonging to ST117. In A, maximum-likelihood phylogenomic tree of 31 E. coli ST117. 
Comparison of resistomes, isolation sources, and countries of origin of the strains. In B, zooming into the subtree comprising the clade A. The figure 
was generated with iTOL version 5.6.1 (https://itol.embl.de).
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Worryingly, we identified the presence of high-risk lineages ST38 
and ST117 in chicken meat. These E. coli clones have been increasingly 
identified in various sources including food, animals, humans, and the 
environment, emphasizing their high versatility at the One Health 
interface (Fuga et al., 2022; Soncini et al., 2022; Berg et al., 2017; Mo 
et al., 2023). Critically, these strains were recovered from chicken meat 
of AF production systems, which might suggest contamination during 
the food chain process or storage. In this regard, the AF meat 
production has been proposed to minimize the use of antimicrobials 
as prophylactic agents and growth promoters (World Health 
Organization, 2017; Food and Agriculture Organization of the United 
Nations, 2019; Tang et al., 2019; Murray et al., 2021). Indeed, there is 
global pressure to reduce the use of antimicrobials in chicken and 
swine production, as it raises concerns about the development of 
antimicrobial resistance (AMR) and its potential impact on public 
health (World Health Organization, 2017; Food and Agriculture 
Organization of the United Nations, 2019).

In the last years, the pandemic antimicrobial-resistant E. coli clone 
ST38 has been reported as a common environmental bacterial 
contaminant disseminated through hospital sewage in Norway, 
municipal wastewater in Croatia, wastewater treatment plants and 
rivers in China and Tunisia, hospital and community wastewater in 
Czech Republic, surface waters and sewage in Ireland, estuaries in 
Lebanon, and river water in Algeria (Grevskott et al., 2024; Puljko 
et al., 2024; Li et al., 2023; Davidova-Gerzova et al., 2023; Hooban 
et al., 2021; Hassen et al., 2021; Diab et al., 2018; Seni et al., 2018; 
Tafoukt et al., 2017; Oikarainen et al., 2019); serving, indeed, as an 
environmental sentinel for AMR. Strikingly, E. coli ST38, have been 
found to intersect variably across the human-animal-environment 
interface in Switzerland and Brazil (Fuga et al., 2022; Müller et al., 
2016). On the other hand, E. coli ST117, one of the extended-spectrum 
β-lactamase (ESβL)-producing clone that we isolated in this study, has 
been previously found in chicken meat in Spain, imported Brazilian 
poultry meat, and human extraintestinal disease, presenting a risk to 
humans ingesting poultry products (Martínez-Álvarez et al., 2025; 
Saidenberg et al., 2024; da Silva et al., 2022; Casella et al., 2018).

Remarkably, our study revealed a higher number of antimicrobial-
resistant E. coli strains recovered from meat sourced from AF 
farming systems.

The presence of antibiotic-resistant bacteria in antibiotic-free 
meat may seem contradictory and does not always mean antibiotics 
were used in poultry production (Davis et al., 2018; Rawat et al., 2024). 
In this regard, several factors could explain this phenomenon, 
including: (i) imported chicks or feed additives containing antibiotic-
resistant bacteria; (ii) horizontal transmission of antibiotic-resistant 
bacteria from other animals, farm workers, or contaminated surfaces; 
(iii) soil, water, and/or feed contaminated with resistant bacteria, from 
neighboring farms or past practices (as resistant bacteria are known 
to persist in the environment and can colonize animals raised without 
antibiotics); and, (iv) unintentional cross-contamination during 
processing or transport (Adegbeye et al., 2024; Coppola et al., 2022; 
Tian et al., 2021; Sun et al., 2024; Thanner et al., 2016; Argudín et al., 
2017; Park et al., 2017; De Cesare et al., 2022; Millman et al., 2013). In 
slaughterhouses that process animals from multiple sources, cross-
contamination can occur if facilities are not properly cleaned, where 
tools, conveyor belts for poultry processing plant, and handlers can 
spread bacteria from one carcass to another (Warriner et al., 2002; 
Bergšpica et al., 2020; Park et al., 2017; De Cesare et al., 2022). While 

poor hygiene, inadequate disinfection, or substandard biosecurity 
practices on antibiotic-free farms can allow resistant bacteria to thrive 
or spread, resistance genes can persist in microbial communities for 
extended periods (Jaleta et al., 2024; Johnsen et al., 2009).

On the other hand, the meaning of antibiotic-free products can 
cause some confusion, mainly because there is no official or international 
accepted definition of what it is and how to classify different types of 
antibiotic-free products. Additionally, complications come with 
anticoccidials for prevention of coccidiosis in poultry, since in some 
countries they are classified as antimicrobials and as such they must 
be withdrawn from antibiotic-free production. In some countries, labels 
on retail poultry have been a source of misunderstanding to the 
consumer. Meat from chickens raised with sub-therapeutic doses of 
antibiotics may still contain labels claiming, “all natural” or “free range,” 
which imply a healthier product even though both statements are silent 
on antibiotics use. For retail poultry meat, the label “organic” [defined 
and certified by the United States Department of Agriculture (USDA)], 
implies not using antibiotics or hormones in poultry livestock after the 
first 24 h of life. Thus, injecting antibiotics into eggs or administering 
antibiotics to one-day-old chicks are practices that are often performed 
and do not violate the USDA organic standard (Sanchez et al., 2020). 
Moreover, various forms of “no antibiotic” labels have been used, such 
as raised without antibiotics (RWA), no antibiotics administered, no 
added antibiotics, or raised antibiotic free, which describe meat from 
chicken that has not been administered antibiotics during production. 
However, the “no antibiotics ever (NAE)” label seem to be  slightly 
stricter than the others, as it also restricts the antibiotic use in the egg 
(Sanchez et al., 2020; Singer et al., 2019). Most likely, the antibiotic-free 
label should guarantee that the meat being sold does not carry detectable 
levels of antibiotics.

In brief, retail poultry products have been known sources of 
antibiotic-resistant E. coli, and although consumers have a range of 
choices for poultry meat, including conventional, organic, and 
antibiotic-free designations, which are used to indicate differences in 
quality and safety, the frequency of contamination with antibiotic-
resistant E. coli in food sold in these categories is unknown.

Although a limitation of our study is that we did not determine the 
source of contamination of commercialized chicken meat, there is no 
doubt that the occurrence of ESβL-producing E. coli in food sold for 
human consumption should not occur. In this respect, the food chain 
has globally been recognized as a reservoir and critical pathway for the 
development and dissemination of AMR, involving farming, processing, 
transportation, distribution, storage, retail and consumption (Founou 
et  al., 2021; Choy et  al., 2024; De Cesare et  al., 2022); whereas the 
dissemination of blaCTX-M-type ESβL genes in human health is one of the 
main problems related to broad-spectrum cephalosporin resistance, 
particularly when associated with the spread of successful pandemic 
clones (Chong et  al., 2018). Therefore, the presence of CTX-M-
producing E. coli in retail chicken poses risk to human health, and 
studies investigating human acquisition through food consumption are 
necessary. Although it has been suggested that the consumption of 
chicken meat could be related to the acquisition of ESβL-producing 
E. coli and urinary tract infections, in most cases, human infections with 
ESβL-/pAmpC-producing E. coli are preceded by asymptomatic 
carriage (Manges et al., 2007; Isendahl et al., 2019; Plaza-Rodríguez 
et al., 2021; Dantas et al., 2025).

Further studies must also be directed to understand the evolutionary 
changes of CTX-M-positive E. coli in poultry meat, evaluate 
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biofilm-forming capacity on the food chain, investigate interactions with 
food microbiota, develop quantitative microbial risk assessment models 
to estimate the risk of human and animal exposure, and expand 
surveillance. On the other hand, to assess the presumptive food safety and 
microbiological quality of foods, in addition to estimating bacterial 
numbers (i.e., total coliform and E. coli counts) as indicators of unfavorable 
hygienic conditions and fecal contamination in food, the absence of 
WHO critical priority Enterobacterales (resistant to broad-spectrum 
cephalosporins and/or carbapenems) in chicken meat should be used as 
a microbiological standard. On the other hand, the occurrence of 
CTX-M-positive E. coli in food has significant environmental and public 
health implications, including: (i) potential for horizontal gene transfer; 
(ii) long-term persistence in food waste; (iii) colonization of companion 
animals and/or humans, via contaminated food, creating new reservoirs 
for AMR; and, (iv) risk of community-acquired infections, especially 
among immunocompromised individuals.

Finally, widespread dissemination of ESβL (CTX-M)-positive 
E. coli has been favored by globalization of food trade, and this could 
be  contributing to the successful dissemination of international 
clones, reaching parts of the world where they were not previously 
present (Dhanji et al., 2010; Kawamura et al., 2014; Egervärn et al., 
2014; Nahar et al., 2018; Kim et al., 2018; Eibach et al., 2018; Campos 
et al., 2018; Kelbert et al., 2025). Given the global dynamics of ESβL 
transmission, a multisectoral and multidisciplinary approach is critical 
to the success of the global action plan on AMR.

Tetracyclines, β-lactams (penicillins), aminoglycosides, quinolone 
and sulfonamides are among the most widely used classes of 
antimicrobials in food-producing animals worldwide (Centner, 2016; 
Caneschi et al., 2023). Interestingly, in this study, all E. coli strains carried 
genes conferring resistance to β-lactams, and the majority (8/9, 88.9%) 
exhibited one or more genes conferring resistance to aminoglycosides 
and sulfonamides. Additionally, several strains also harbored 
mechanisms conferring resistance to tetracycline and quinolones. In line 
with our findings, some studies have indicated that there is no significant 
disparity between meat from AF and CN production system related to 
AMR genes (Ferri et al., 2023; Farooq et al., 2022; Rawat et al., 2024).

The plasmids IncFIB and Col were the most frequently found in the 
strains analyzed, suggesting a high risk of antibiotic resistance spread, 
as these plasmid groups are known for efficient horizontal gene transfer 
and carriage of resistance genes (Liu et al., 2024; Felix et al., 2024).

Regarding the virulome, its context has been studied among 
lineages belonging to specific phylogroups of E. coli (Beghain et al., 
2018). In this study, the FBC4 strain, belonging to phylogroup A* 
(with potential mutation), was the one that presented the largest set of 
virulence genes. Despite this, strains of phylogroup A are normally 
associated with commensal lineages (Mosquito et al., 2015).

Another interesting point is the presence of critical-priority E. coli 
in FZ meat. The ability of these bacteria to survive in low-temperature 
stress has already been demonstrated (Parvin et  al., 2020), 
underscoring the significance of processors adopting and adhering to 
good slaughtering and processing practices.

5 Conclusion

In summary, we  report the detection of global WHO critical 
priority clones of CTX-M-type/pAmpC-producing E. coli in 
commercially available FS and FZ chicken meat from both AF and CV 

production systems in Brazil, which is considered a major global 
chicken meat exporter. We highlight that meat could serve as potential 
reservoirs and vectors of medically important antimicrobial-resistant 
bacteria, posing a significant threat to consumers. Merely discontinuing 
the use of antimicrobials in food-producing animals without addressing 
other factors may not fully resolve the issue of AMR in the meat 
industry and food safety. Our findings raise questions about the efficacy 
of current agricultural practices, antimicrobial usage in animal 
husbandry, and potential routes of contamination during meat 
processing and distribution. Addressing these issues is crucial and 
requires collaborative efforts among stakeholders in the food industry, 
veterinary and medical sectors, and governmental agencies to 
implement strategies aimed at reducing the prevalence of these critical-
priority bacteria in meat. Hence, it is imperative to adopt multi-faceted 
approaches across the meat production chain, including better farm 
practices and biosecurity, responsible use of antimicrobials, strict 
hygiene practices, proper storage and transportation, effective regulatory 
measures, and education – supplemented by continuous surveillance of 
AMR in these products, to effectively mitigate contamination routes.
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SUPPLEMENTARY FIGURE S1

Phylogenetic analysis. In A1–A7, maximum-likelihood phylogenetic tree 
of F1B (ST443), FCC8 (ST3258), FCC4 (ST2179), FBC4 (ST2040), FCC3 
(ST350), FCC10 (ST15579), and FSE11 (ST57) Escherichia coli strains. 
Comparison of resistomes, isolation sources, and countries of origin of 
the strains. In B1–B7, zooming into the subtree comprising sequenced 
strains of Escherichia coli in this study. The figure was generated with 
iTOL version 5.6.1 (https://itol.embl.de).

SUPPLEMENTARY TABLE S1

Epidemiological characteristics, genetic repertoire, and SNP matrix of ESβL/
pAmpC-producing Escherichia coli isolated from conventional and 
antibiotic-free retail meat in Brazil.
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