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The characteristics of heavy metals in soil aggregates represent critical factors 
influencing the uptake of heavy metals by crops. However, the mechanisms 
underlying the immobilization of Cd and Pb by soil aggregates of different particle 
sizes mediated by exopolysaccharide (EPS)-producing bacteria have remained 
poorly understood. In this study, a selective medium was employed to isolate and 
screen EPS-producing bacteria from the heavy metal-contaminated soil, with their 
mechanisms of Cd and Pb immobilization investigated through solution adsorption 
experiments. Pot experiments combined with high-throughput sequencing technology 
were conducted to examine the effects of these strains on heavy metal uptake 
by pakchoi and to elucidate the underlying microbiological mechanisms. Two 
high-EPS-yielding bacterial strains, Pseudomonas sp. H7 and Agrobacterium sp. 
Z22, were successfully isolated from heavy metal-contaminated farmland. These 
strains effectively facilitated the formation of Fe2Pb(PO4)2, CdCO3, and Pb2O3 
precipitates, thereby immobilizing Cd and Pb in aqueous solutions. Compared 
to the CK group, inoculation with Pseudomonas sp. H7 and Agrobacterium sp. 
Z22 reduced the Cd (30.7–81.8%) and Pb (8.1–57%) contents in the pakchoi 
tissues. Notably, Pseudomonas sp. H7 and Agrobacterium sp. Z22 enhanced EPS 
production and promoted the specific formation of CdCO3, PbCO3, Cd2(OH)2CO3, 
and 2PbCO3·Pb(OH)2 within microaggregates (< 250 μm), which significantly 
reducing Cd and Pb uptake by pakchoi. Microaggregates exhibited predominant 
accumulation of Cd and Pb were in organic matter-bound and residual states, 
whereas in macroaggregates (> 250 μm), these metals were primarily associated 
with Fe-Mn oxide-bound and residual states. Furthermore, inoculation with these 
strains altered the bacterial community composition, specifically increasing the 
relative abundance of Proteobacteria, Sphingomonadaceae, and Micrococcales 
in microaggregates, which further contributed to the reduction of Cd and Pb 
uptake by pakchoi. These findings provide both valuable bacterial resources and 
a soild theoretical foundation for developing safe vegetable production strategies 
in heavy metal-contaminated fields.
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1 Introduction

The extensive use of pesticides and fertilizers in agriculture, 
coupled with the improper discharge of industrial wastewater, has led 
to severe soil heavy metal pollution (Dong et al., 2024). Among the 
heavy metals, cadmium (Cd) and lead (Pb) exhibit particularly 
persistent and pose significant threats to soil ecosystems. In China, the 
overall exceedance rate of heavy metal pollution in agricultural soil is 
as high as 16%, with Cd and Pb exceedance rates reaching 7 and 1.5%, 
respectively (Xia et al., 2024; Yang et al., 2023). These metals in soil 
can be absorbed by plants and subsequently enter the human body 
through multiple pathways, thereby causing substantial health risks 
(Sonkar et al., 2024). To address this challenge, in situ passivation of 
heavy metals has emerged as the most feasible method for remediating 
contaminated soils (Zhou et al., 2023). Various passivating agents, 
including biochar, nanomaterials, apatite, straw, and microorganisms, 
have been extensively investigated for their remediation efficacy 
(Hong et al., 2022; Wu G. et al., 2024). Notably, microbial remediation 
agents are gaining prominence due to their rapid reproduction, 
multifunctional byproducts, low cost, and environmental friendliness, 
which collectively enhance their applicability for immobilizing heavy 
metals in contaminated soils (Taharia et al., 2024; Zhao et al., 2025).

Exopolysaccharides (EPS) are high-molecular-weight substances 
secreted by eukaryotic or prokaryotic microorganisms during their 
growth and metabolic processes. These biopolymers typically form a 
gelatinous layer or biofilm structure surrounding the cell surface, 
primarily composed of polysaccharides, proteins, and nucleic acids 
(Wang et al., 2024b). The interaction between EPS and heavy metals 
constitutes a critical mechanism for microorganisms remediation of 
heavy metal pollution, functioning primarily through biological 
adsorption and biotransformation (Li et al., 2024; Wang L. et al., 2024; 
Yue et al., 2024). EPS contain abundant functional groups including 
hydroxyl and carboxyl groups, which enable binding with heavy metal 
cations via ion exchange, complexation, precipitation, and other 
interfacial reactions, thereby effectively enhancing the adsorption 
capacity and retention efficiency of heavy metal ions (Priyadarshanee 
and Das, 2024). Notably, EPS-producing strains are predominantly 
derived from genera such as Rhizobium, Acetobacter, Streptococcus, 
Lactococcus, Lactobacillus, Pseudomonas, Bacillus, Sphingomonas, and 
Bifidobacterium (Effendi et al., 2023; Mathivanan et al., 2021; Tyagi 
et al., 2020). Given the escalating global prevalence of heavy metal 
pollution in soils, the strategic application of EPS-producing bacteria 
represents an emerging and promising approach for remediating Cd- 
and Pb-contaminated soils.

The accumulation of Cd and Pb in soil not only compromises soil 
quality but also modifies its physicochemical properties. The 
distribution and stability of soil aggregates with varying particle sizes 
are intrinsically associated with soil quality parameters and 
physicochemical characteristics (Shen et al., 2022). Metal enrichment 
in soil aggregates directly modulates the migration dynamics of Cd 
and Pb, ultimately determining their environmental footprint (Wang 
et al., 2021). Extensive studies have established that soil aggregate size 
significantly affects the distribution of heavy metals, with 
microaggregates exhibiting a greater capacity to enrich heavy metals 
compared to macroaggregates (Acosta et al., 2011; Cheng et al., 2020). 
A notable example involves the inoculation with EPS-secreting 
Pseudomonas putida GAP-P45, which increased soil aggregate stability 
by over 50% (Sandhya and Ali, 2015). EPS play a crucial role in the 

distribution of soil macroaggregates and microaggregates, thereby 
influencing the enrichment of heavy metals. Nevertheless, the precise 
impact of EPS-producing bacteria on soil aggregate size distribution 
and associated heavy metal content remains insufficiently 
characterized and requires further investigation. Additionally, pore 
water, which refers to groundwater within the pores of loose sediment 
particles, is a vital component of soil. The concentration of heavy 
metals in pore water reflects the overall pollution status of soil and the 
migration and transformation patterns of heavy metals (Pan et al., 
2021; Tang et  al., 2016). EPS are closely associated with the 
concentration of heavy metals in pore water, yet further studies are 
required to determine the specific impact of EPS-producing bacteria 
on heavy metal content in soil pore water.

Given that the effects of EPS-producing bacteria on the particle 
size distribution of rhizosphere soil aggregates and the speciation of 
Cd and Pb remained unclear, this study pursued the following 
objectives: (1) to isolate high-EPS-producing bacterial strains and 
elucidate their mechanisms for immobilizing Cd and Pb; (2) to 
evaluate the dose-dependent effects of EPS-producing bacteria on Cd 
bioaccumulation and Pb uptake efficiency in pakchoi tissues; and (3) 
to examine the causal relationships between EPS-producing bacteria 
colonization, soil aggregate size reorganization, and heavy metal 
immobilization mechanisms mediated by aggregate fractions. These 
findings provide both valuable bacterial resources for engineering 
novel microbial fertilizers and critical theoretical support for 
optimizing EPS-producing strains in field-scale remediation of heavy 
metal contaminated soils.

2 Materials and methods

2.1 Screening of EPS-producing bacteria

Two grams of soil samples (moist soil, 35°03′N, 112°61′E) 
collected from Jiyuan city, Henan Province, were added to a sterile 
50 mL shake flask and shaken to prepare a soil suspension. Soil 
properties: 1.37 mg kg−1 Cd, 97.6 mg kg−1 Pb, pH 7.42, 23.56 g kg−1 
organic matter, 0.64 g kg−1 available P, 1.45 g kg−1 exchangeable Ca and 
38.2 cmol(+) kg−1 cation-exchange capacity. A 0.1 mL aliquot of each 
gradient dilutions was spread onto a solid nitrogen-containing 
medium plate using a coating rod (Zhang H. et al., 2024). The plates 
were incubated at 30°C for 5 days. Colonies with distinct 
morphological characteristics were isolated and purified to complete 
the preliminary screening of EPS-producing bacteria. The bacterial 
culture in the logarithmic growth phase was mixed with sterilized 80% 
glycerol (80 mL pure glycerol + 20 mL sterile water) at a volume ratio 
of 1:1 and stored in a − 80°C freezer for preservation.

2.2 Biological characteristics of the strains

Fifty milliliters of LB medium supplemented with 5 mg L−1 Cd 
(Cd(NO3)2) and 10 mg L−1 Pb (Pb(NO3)2) was prepared. The growth 
container was 250 mL conical flask (50 mL culture solution). A 
bacterial suspension (OD600 = 1) was inoculated into the medium at a 
2% ratio and incubated in a shaker at 30°C and 180 rpm for 48 h. The 
concentrations of Cd and Pb in the supernatant were measured via 
inductively coupled plasma atomic emission spectrometry (ICP–AES, 
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ICPE-9820, Japan). The polysaccharide content in culture solution was 
determined using the sulfuric acid-anthrone colorimetric method 
(Wang et al., 2016). The strains were sequenced and identified via 16S 
rRNA analysis (Teng et al., 2019). Heavy metal resistance studies were 
conducted with Cd (50–500 mg L−1, in 50 mg L−1 increments) and Pb 
(1000–1800 mg L−1, in 100 mg L−1 increments) to determine the lethal 
concentration (LC₅₀, refers to the concentration of a chemical 
substance in the environment that causes the death or loss of metabolic 
activity in organisms). The effects of antibiotics on strain growth were 
also investigated (Subbaram et al., 2017). The determination of the 
ability of bacterial strains to secrete indole-3-acetic acid (IAA) was 
based on method of Jiang et al. (2008). The production of siderophores 
and 1-amino-1-cyclopropanecarboxylic acid (ACC) deaminase by the 
strains were determined according the approach proposed by 
Rajkumar et al. (2006) and Chretien et al. (2024).

2.3 Immobilization of cd and Pb by the 
strains

Pseudomonas sp. H7 and Agrobacterium sp. Z22 were inoculated 
into LB liquid medium supplemented with 5 mg L−1 Cd and 10 mg L−1 
Pb for a 9-day shake flask experiment. Foue concentrations of Cd2+ 
and Pb2+ (10, 20, 50, and 100 mg L−1) were tested. Three treatment 
groups were established: a control group (CK), an experimental group 
inoculated with Pseudomonas sp. H7 (H7), and an experimental group 
inoculated with Agrobacterium sp. Z22 (Z22). Samples were collected 
on days 1, 3, 5, 7, and 9. The total heavy metal content in the culture 
medium (H₁) was calculated as the product of the total culture volume 
and the initial heavy metal concentration. For the heavy metal content 
in the supernatant (H₂), the culture was centrifuged, and the 
supernatant was collected for analysis using ICP-AES; H₂ was then 
determined by multiplying the supernatant’s heavy metal 
concentration by the total culture volume. To quantify the intracellular 
heavy metal content (H₃), the pelleted bacterial cells were washed 
three times with 5 mL of 10 mmol L−1 EDTA-2Na solution, freeze-
dried, and weighed. The dried cells were digested with 3 mL HNO₃ 
and 1 mL HCl, and the heavy metal concentration in the digestate was 
measured via ICP-AES. The extracellular heavy metal content (H₄) 
was derived by subtracting H₂ and H₃ from H₁ (H₄ = H₁ − H₂ − H₃) 
(Han et al., 2020).

2.4 Mechanisms by which the strains 
immobilize cd and Pb in culture media

Cell pellets were collected and fixed in 15 mL of 2.5% 
glutaraldehyde at 30°C for 3 h. The pellets were then dehydrated using 
a gradient of absolute ethanol. After drying and gold coating, the 
samples were analyzed using scanning electron microscopy coupled 
with energy-dispersive X-ray spectroscopy (SEM-EDS) (Zhu et al., 
2016). Changes in surface functional groups were analyzed using 
Fourier-transform infrared spectroscopy (FTIR) (Chakravarty and 
Banerjee, 2012). X-ray diffraction (XRD) analysis was performed at a 
scanning speed of 2° min−1 and a scanning angle of 5–100° 
(Chakravarty and Banerjee, 2012). Changes in the chemical forms of 
elements before and after heavy metal stress were characterized using 
X-ray photoelectron spectroscopy (XPS) (Zhang et al., 2022).

2.5 Pot experiment of pakchoi

Soil samples (moist soil, 35°03′N, 112°61′E) were collected from 
farmland near a factory in Jiyuan City, Henan Province. Soil 
properties: 1.37 mg kg−1 Cd, 97.6 mg kg−1 Pb, pH 7.42, 23.56 g kg−1 
organic matter, 0.64 g kg−1 available P, 1.45 g kg−1 exchangeable Ca and 
38.2 cmol(+) kg−1 cation-exchange capacity. Each pot was filled with 
4 kg of soil sieved through a 2 mm mesh. Four treatment groups were 
established: a control group (CK), groups inoculated with strain 
Pseudomonas sp. H7 (H7) or Agrobacterium sp. Z22 (Z22), and a 
group inoculated with both strains (H7 + Z22). Pakchoi seeds were 
sown, and after germination, seedlings were thinned to five per pot. 
40 mL bacterial suspension (OD600 = 1.0, 1×108 CFU mL−1) was added 
to the rhizosphere soil. The control group was added with the same 
volume of sterile deionized water. The experiment lasted 50 days. Soil 
samples were collected at depths of 5–15 cm, and the heavy metal 
content and pH of soil pore water and leachate were measured on days 
0, 15, 30, and 50. Leachate was collected from the bottom of the pots, 
and pore water was extracted using a Rhizon MOM soil solution 
sampler (AgriEco Apptec (Shanghai) LLC, China). The pH of leachate 
and pore water was measured using a pH meter, and heavy metal 
concentrations were determined using ICP-AES. After washing the 
mature pakchoi, the edible parts were separated from the roots. The 
roots were soaked in 0.01 mmol L−1 EDTA-2Na solution for 10 min to 
remove the adsorbed heavy metals on the surface. After being washed 
with deionized water, the whole plant was dried at 80°C to a constant 
weight, and the biomass of each part was measured. After crushing, 
0.1 g of the sample was weighed into a polytetrafluoroethylene 
crucible. Mixed acid (HNO3-HCl-HClO-HF) was added at a ratio of 
4.5:1.5:2:2. The temperature was raised for digestion until nearly dry, 
and the volume was made up to 5 mL. The contents of Cd and Pb were 
determined by ICP-AES. The vitamin C content of pakchoi was 
determined by 2,4-dinitrobenzhydra (DNP) method (Koo et  al., 
2024). The soluble protein content was determined by coomassie 
brilliant blue method (Masih et al., 2002).

2.6 Separation of soil aggregates of 
different particle sizes

The water stability of soil aggregates was evaluated using a wet 
sieving method (Cheng et al., 2023). Microaggregates (<250 μm) and 
macroaggregates (>250 μm) were collected using a soil aggregate 
analyzer, and their dry weights were measured. EPS in soil aggregates 
were extracted using a cation exchange resin (CER) (Vardharajula and 
Shaik, 2014), and polysaccharide content was determined using the 
sulfate-anthrone method (Wang et  al., 2016). Two grams of soil 
aggregates were mixed with 5 mL of deionized water, and the pH of 
the supernatant was measured using a pH meter. Organic matter 
content was determined using the potassium dichromate oxidation 
method (Wang et al., 2024a).

2.7 Determination of the contents of heavy 
metals in the soil aggregates

Five grams of soil aggregates were mixed with 25 mL of extraction 
solution (1.967 g diethylenetriamine pentaacetic acid, 13.3 mL 
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triethanolamine (TEA), 1.11 g anhydrous calcium chloride, and 
950 mL water, pH 7.3). The supernatant was digested with 3 mL nitric 
acid and 1 mL hydrochloric acid and determined Cd and Pb 
concentrations by ICP-AES. Tessier’s sequential extraction method 
was used to determine the contents of exchangeable Cd/Pb (EX-Cd/
Pb), carbonate-bound Cd/Pb (CB-Cd/Pb), Fe-Mn oxide-bound Cd/
Pb (Fe-Mn-Cd/Pb), organic matter-bound Cd/Pb (OMB-Cd/Pb), and 
residual Cd/Pb (RES-Cd/Pb) in rhizosphere soil (Tessier et al., 1979). 
The Cd and Pb contents in these extractions was also determined by 
ICP-AES.

2.8 Electron microscopy characterization 
of soil aggregates

The morphology of soil aggregates was analyzed using a 
JSM-7900F scanning electron microscope. The interaction between 
metal ions and EPS was investigated using an Aqualog fluorescence 
spectrophotometer to measure the 3D-EEM spectra of EPS (Peng 
et al., 2016).

2.9 Determination of bacterial community 
in soil aggregates

Bacterial community analysis was performed on soil from fresh 
large aggregates (control group: CK-B; experimental groups: H7-B, 
Z22-B, H7 + Z22-B) and microaggregates (control group: CK-S; 
experimental groups: H7-S, Z22-S, H7 + Z22-S). Microbial DNA was 
extracted from soil aggregates using the E. Z. N. A.® soil DNA Kit 
(Omega Bio-tek, Norcross, GA, United  States) according to 
manufacturer’s protocols. The V3-V4 region of the 16S rRNA gene was 
amplified using primers 338F (5′- ACTCCTACGGGAGGCAGCAG-3′) 
and 806R (5’-GGACTACHVGGGTWTCTAAT-3′). All samples were 
mixed with PCR products, and then subjected to electrophoresis on a 
2% agarose gel. The gel was cut using AxyPrepDNA Gel Recovery Kit 
(AXYGEN Company) to recover the PCR products. These products 
were then quantified using the QuantiFluor™ -ST Blue Fluorescent 
Quantitative System (Promega Company). Subsequently, samples were 
mixed in proportion based on their sequencing requirements, followed 
by library construction, and finally sequenced at higher levels (Liang 
et al., 2022). Sequencing results were analyzed on the Meiji Biotech 
website.1

2.10 Data analysis

Data were analyzed using Excel 2019 and SPSS 26.0. 
Mathematically processed results are presented in the form of 
M ± SE. Before performing Tukey’s multiple comparison test, Levene’s 
test was applied to assess the homogeneity of variances across 
treatment groups (significance level α = 0.05). Origin 2024 and Excel 
software were used for image processing. Advantage software was used 
for XPS data analysis and Matlab 2019a software was used for 3D 

1 http://www.majorbio.com

fluorescence spectroscopy analysis. PCA analysis (Principal 
Component Analysis, R language 3.3.1) was used for the differences 
among samples of multiple sets of data. UPGMA (Unweighted 
Pairing-Group Method with Arithmetic Mean, Qiime 2020.2.0) is a 
clustering analysis method used to solve classification problems. 
LEfSe2 is based on the taxonomy of the samples according to the 
different conditions of grouped linear discriminant analysis (LDA).

3 Results

3.1 Isolation and identification of 
polysaccharide-producing bacteria

Eight bacterial strains were selected based on their ability to 
adsorb heavy metals and produce EPS. The Cd removal rates of these 
strains ranged from 64.87 to 86.29%, while the Pb removal rates 
ranged from 56.66 to 86.84% in solutions containing 5 mg L−1 Cd and 
10 mg L−1 Pb (Supplementary Figure S1). The EPS production of these 
strains varied between 147.63 and 267.48 mg L−1, with strains H7 and 
Z22 exhibiting EPS contents of 183.71 mg L−1 and 267.48 mg L−1, 
respectively (Figure 1). Consequently, strains H7 and Z22 were chosen 
as the target strains for further investigation. Based on phylogenetic 
analysis, strain H7 was identified as Pseudomonas sp. (PP784325), 
while strain Z22 was identified as Agrobacterium sp. (PP784326) 
(Supplementary Figure S2). The lethal concentrations (LC50) of Cd 
and Pb for strain H7 were determined to be  400 mg L−1 and 
1700 mg L−1, respectively, whereas the LC values for strain Z22 were 
300 mg L−1 and 1,600 mg L−1, respectively (Supplementary Table S1).

3.2 Adsorption of heavy metals by 
polysaccharide-producing bacteria

By the seventh day of the experiment, strains H7 and Z22 
significantly (p < 0.05) reduced the Cd concentrations in the solution 
by 68.2 and 53.6%, respectively, compared to the control (CK) group 
(Supplementary Figure S3a). Similarly, the Pb concentrations were 
significantly (p < 0.05) reduced by 74.6 and 49.8%, respectively 
(Supplementary Figure S3b). At low heavy metal concentrations 
(10 mg L−1 and 20 mg L−1), both strains primarily reduced heavy 
metals through intracellular enrichment (Supplementary Figures S3c,d). 
However, when exposed to higher concentrations of heavy metals 
(50 mg L−1 and 100 mg L−1), extracellular adsorption by strains H7 and 
Z22 became more prominent than intracellular enrichment 
(Supplementary Figures S3e,f).

3.3 Immobilization of cd and Pb by 
polysaccharide-producing bacteria in 
solution

Under conditions without heavy metal stress, the surfaces of 
strains H7 and Z22 appeared smooth (Figures 1a,b). However, in the 

2 http://galaxy.biobakery.org/
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presence of Cd and Pb, their surfaces became rough, with visible 
precipitates forming (Figures 1c,d). FTIR analysis revealed shifts in 
the peaks near 3,288 cm−1 (O-H, N-H), 1,659 cm−1 (C-H), and 
1,067 cm−1 (C=O) in the cell walls of strains H7 and Z22 after Cd and 
Pb adsorption, compared to cells without heavy metal exposure 
(Figure 1e). Specifically, the absorption peaks of C-H and C=O groups 
in strains H7 and Z22 shifted by 35 cm−1 and 6 cm−1, respectively, with 
strain H7 exhibiting more pronounced shifts than strain Z22 
(Figure 1e). These results suggest that O-H, N-H, C-H, and C=O 

groups were involved in the immobilization of Cd and Pb. 
Furthermore, XRD analysis detected the presence of Fe₂Pb(PO₄)₂, 
CdCO₃, and Pb₂O₃ on the cell walls of strains H7 and Z22 under Cd 
and Pb stress (Figure 1f). Additionally, XPS analysis identified new 
peaks for Cd3d₃/₂, Cd3d₅/₂ (CdS), and metallic Cd in the Cd3d 
spectrum, as well as peaks for Pb4f₅/₂ and Pb4f₇/₂ (Pb₃O₄ and 
2PbCO₃·Pb(OH)₂) in the Pb4f spectrum (Supplementary Figure S4). 
These findings indicate that strains H7 and Z22 facilitated the 
formation of precipitates such as CdS and Pb₃O₄.

FIGURE 1

Mechanisms of immobilization of Cd and Pb by strains H7 and Z22. (a) SEM image of strain H7; (b) SEM image of strain Z22; (c) SEM image of strain 
Z22 + Cd, Pb; (d) SEM image of strain Z22 + Cd, Pb; (e) FTIR images of strains H7 and Z22; (f) XRD images of strains H7 and Z22.
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3.4 Effects of strains on the growth and cd 
and Pb contents of pakchoi

Compared to the CK group, the inoculation with H7, Z22, and 
H7 + Z22 significantly (p < 0.05) increased the dry weight of the 
edible parts (56.1–81.8%) and roots (8.1–55.4%) of pakchoi 
(Figure 2a). Inoculation also led to a reduction in Cd (30.7–68%) 
and Pb (31.1–57%) content in the edible parts, as well as Cd (27.9–
47.2%) and Pb (39.8–57.7%) content in the roots of pakchoi 
(Figure  2b). In the absence of inoculation, the soluble protein 
content in the edible parts of pakchoi was 7.63 mg g−1. After 
inoculation with H7, Z22, and H7 + Z22, the soluble protein 
content significantly (p < 0.05) increased by 22.4, 12.6, and 32%, 
respectively (Figure 2c), while the vitamin C content increased by 
29.6, 12.5, and 38.2%, respectively (Figure  2d). These results 
demonstrate that inoculation with polysaccharide-producing 
bacteria not only enhanced the growth of pakchoi but also improved 
its nutritional quality.

3.5 Heavy metal content and pH in soil 
pore water and leachate

As the cultivation period progressed, the Cd and Pb content in 
the pore water of the H7, Z22, and H7 + Z22 treatment groups were 
significantly lower than those in the CK group (Figures  3a,b), 
indicating that strains H7 and Z22 effectively immobilized heavy 
metals and reduced their bioavailability. The pH of the pore water 
in the control group remained stable, whereas in the H7, Z22, and 
H7 + Z22 groups, it initially decreased from 7.68 to 7.02 and then 
increased to 8.12 (Figure 3c). Similarly, the Cd and Pb content in 
the soil leachate of the treatment groups were significantly lower 
than those in the CK group over time (Figures 3d,e). The pH of the 
soil leachate in the CK group showed no significant change, while 
in the treatment groups, it decreased from 7.54 to 6.76 and then 
increased to 7.79 (Figure  3f). These findings suggest that 
polysaccharide-producing bacteria influenced the pH dynamics of 
the soil leachate, thereby enhancing heavy metal immobilization in 
the soil.

3.6 Particle size distribution and 
polysaccharide content of soil aggregates

Inoculation with strains H7 and Z22 significantly (p < 0.05) 
increased the proportion of macroaggregates while reducing the 
proportion of microaggregates compared to the control 
(Supplementary Figure S5a). In the H7 + Z22 group, the 
polysaccharide content in macroaggregates increased from 
2.7 mg kg−1 to 9.8 mg kg−1, and in microaggregates, it increased from 
2.8 mg kg−1 to 12.3 mg kg−1 (Supplementary Figure S5b). 
Additionally, inoculation with strains H7 and Z22 significantly 
increased the pH of soil aggregates across different particle sizes but 
had no significant effect on organic matter content 
(Supplementary Figures S5c,d). Overall, these results indicate that 
inoculation with strains H7 and Z22 enhanced the polysaccharide 
content and heavy metal retention capacity of soil aggregates.

3.7 Different forms of cd and Pb in soil 
aggregates

In the CK group, the DTPA-extractable Cd content in 
macroaggregates was 0.047 mg kg−1, while in microaggregates, it was 
0.044 mg kg−1. Inoculation with strains H7 and Z22 significantly 
reduced the DTPA-Cd content in both macro- and microaggregates 
(Supplementary Figure S6a). Similarly, the DTPA-Pb content in soil 
aggregates was also reduced following inoculation with strains H7 
and Z22 (Supplementary Figure S6b), indicating that microaggregates 
exhibit a greater capacity for immobilizing Cd and Pb. Over time, the 
EX-Cd content decreased significantly in the H7- and Z22-inoculated 
groups, while the Fe-Mn-Cd and RS-Cd contents increased. In the 
H7 + Z22 treatment, the proportion of Fe-Mn-Cd increased from 
18.3 to 29.4%, and the proportion of RS-Cd increased from 21.3 to 
29.1% (Supplementary Figure S6c). These results suggest that strains 
H7 and Z22 facilitated the transformation of bioavailable Cd in 
macroaggregates into Fe-Mn oxide-bound and residual forms. 
Additionally, in microaggregates, the proportion of OM-Cd increased 
from 18.6 to 27.1%, and the proportion of RS-Cd increased from 23.3 
to 31.3% in the H7 + Z22 treatment (Supplementary Figure S6c), 
indicating that strains H7 and Z22 promoted the conversion of 
bioavailable Cd into organic matter-bound and residual forms. 
Similar trends were observed for Pb, with strains H7 and Z22 
inducing the transformation of bioavailable Pb in macroaggregates 
into Fe-Mn oxide-bound and residual forms, and in 
microaggregates into organic matter-bound and residual forms 
(Supplementary Figure S6d). In microaggregates, the percentage of 
C-C fitting peaks decreased, while the percentages of C-O-C, C=O, 
and HCO₃− fitting peaks increased. Additionally, precipitates such as 
CdCO₃, PbCO₃, Cd₂(OH)₂CO₃, and 2PbCO₃•Pb(OH)₂ were 
detected, indicating that C-O-C, C=O, and HCO₃− groups were 
involved in the immobilization of heavy metals in microaggregates 
(Figure 4; Supplementary Figure S7). Compared to the control, soil 
macroaggregates inoculated with H7 and Z22 exhibited denser 
particle aggregates with smoother surfaces, while microaggregates 
became looser with rougher surfaces and larger specific surface areas, 
providing more adsorption sites. This suggests that microaggregates 
have a stronger capacity for adsorbing Cd and Pb (Figure 5). Previous 
studies have demonstrated that three-dimensional fluorescence 
intensity is closely associated with EPS content (Ma et al., 2018; Rigby 
and Smith, 2020). The fluorescence intensity of microaggregates in 
the H7 and Z22 treatments was significantly higher than that of 
macroaggregates, indicating a greater EPS content in microaggregates 
(Figure 5).

3.8 Bacterial community diversity in 
rhizosphere soil aggregates

The UPGMA algorithm revealed that in macroaggregates, the 
CK group and the H7 and Z22 inoculation groups clustered on the 
same branch, whereas in microaggregates, they formed distinct 
clusters (Figure 6a). Principal component analysis (PCA) further 
supported these findings, showing that the H7 and Z22 inoculation 
groups were closer to the CK group in macroaggregates but more 
distant in microaggregates (Figure 6b). Inoculation with strains H7 
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and Z22 increased the relative abundance of Proteobacteria, 
Acidobacteriota, and Actinobacterota in microaggregates while 
reducing the relative abundance of Chloroflexi and Myxococcota 
(Figure 6c). At the genus level, the dominant taxa included RB41, 
Bacillus, Sphingomonas, Gaiella, MND1, and Nocardioides. Following 
treatment with H7 and Z22, the relative abundance of Sphingomonas, 
Gaiella, and Nocardioides in microaggregates increased significantly 
(Figure  6d). In microaggregates, the key bacterial groups in the 
H7 + Z22 treatment included f_Planococcaceae,g_Arthrobacter, o_
Rhodobacterales, f_Beijerinckiaceae, g_Microvirga, and g_Paracoccus 
(Figure  7). Compared to macroaggregates, microaggregates 
exhibited a greater number of significantly different bacterial 
populations after inoculation with H7 and Z22, indicating a more 
pronounced impact of these strains on bacterial community 
composition in microaggregates. Previous studies have reported that 
Sphingomonas possesses the ability to degrade various heavy metals 
and promote plant growth (Bin, 2011; Krishnan et  al., 2016; 
Tangaromsuk et  al., 2002). Additionally, Saccharimonadales 
abundance has been linked to polysaccharide content and exhibits 
synergistic effects with nitrogen cycling-related genes (Wang 
et al., 2022).

4 Discussion

In this study, two bacterial strains exhibiting high EPS production 
capacity and demonstrating Cd and Pb immobilization ability, 
Pseudomonas sp. H7 and Agrobacterium sp. Z22, were isolated from 
the heavy metal-contaminated farmland. Through integrated solution 
adsorption assays and pot experiments, we demonstrated that strains 
H7 and Z22 effectively immobilized Cd and Pb while significantly 
inhibiting their uptake by pakchoi through three synergistic 
mechanisms: (1) cell wall adsorption, (2) EPS-mediated chelation, and 
(3) modulation of soil aggregate structure combined with bacterial 
community reconfiguration. Microbial immobilization and 
remediation technologies for heavy metals hold significant promise in 
addressing soil heavy metal pollution (Jiang et al., 2022). The primary 
mechanisms underlying microbial heavy metal immobilization 
encompass: (1) secretion of biofilms, polysaccharides, and other 
substances to chelate heavy metals (Zeng et al., 2020); (2) induction 
of heavy metal phosphate and carbonate precipitation, reducing their 
mobility (Huang H. et  al., 2024); (3) cell wall adsorption and 
intracellular enrichment of heavy metals (Zhang Y. et al., 2024); and 
(4) redox reactions (Tan et al., 2020). In this study, strains H7 and Z22 

FIGURE 2

EffectS of polysaccharide-producing bacteria on the growth and Cd and Pb content of pakchoi. (a): Dry weight of pakchoi; (b): Cd and Pb contents in 
pakchoi; (c): Soluble protein content in pakchoi; (d): Vitamin C content of pakchoi. The values are the mean and standard deviation (n = 3), and one-
way analysis of variance is used. Different lowercase letters indicate statistically significant differences (p < 0.05).
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induced the formation of Fe₂Pb(PO₄)₂, CdCO₃, and Pb₂O₃ precipitates 
to immobilize Cd and Pb. Additionally, these strains increased the EPS 
content in the soil and enhanced the capacity of microaggregates to 
immobilize Cd and Pb. Mohanraj et  al. (2021) isolated an 
EPS-producing endophytic actinomycete, Actinobacterial sp., from 
heavy metal-contaminated soil, which effectively reduced total Cd and 
Pb levels. Similarly, the EPS-producing strain Pseudoalteromonas sp. 
decreased Pb content in the edible parts and roots of Chinese cabbage 
grown in Pb-contaminated soil (Cao et al., 2023). The novel findings 

of this study are as follows: (1) Strains H7 and Z22 immobilized Cd 
and Pb through cell wall adsorption, EPS secretion for chelation, and 
the induction of Fe₂Pb(PO₄)₂, CdCO₃, and Pb₂O₃ precipitate 
formation. (2) Strains H7 and Z22 increased EPS content in 
microaggregates, enhancing their capacity to immobilize Cd and Pb 
while reducing Cd and Pb uptake in pakchoi.

In this study, the EPS content of strains H7 and Z22 under Cd and 
Pb stress was 183.71 mg L−1 and 267.48 mg L−1, respectively, and they 
reduced Cd (53.6–68.2%) and Pb (49.8–74.6%) concentrations in 

FIGURE 3

ffects of polysaccharides-producing bacteria on heavy metal content and pH in soil pore water and leached water. (a) Cd concentration in pore water; 
(b) Pb concentration in pore water; (c) pH of pore water; (d) Cd concentration in leachate water; (b) Pb concentration in leachate water; (c) pH of 
leachate water. The values are presented as the means and standard deviations (n = 3). Different lowercase letters indicate statistically significant 
differences (p < 0.05).
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solution. The significant reduction in Cd/Pb mobility and subsequent 
uptake by pakchoi mediated by strains H7 and Z22 can be attributed 
to the metal-binding properties of their secreted EPS. As a critical 
component of bacterial biofilms, EPS contains abundant functional 
groups (e.g., carboxyl, hydroxyl, and phosphoryl groups) that exhibit 
high affinity for divalent metal ions through ion exchange, surface 
complexation, and electrostatic interactions (Li Y. et al., 2020). Xia 
et  al. (2020) reported that EPS possess large surface areas and 
numerous negatively charged functional groups, indicating their 
excellent capacity to adsorb Hg2+. In this study, XRD analysis revealed 
that strains H7 and Z22 generated Fe₂Pb(PO₄)₂, CdCO₃, and Pb₂O₃ 
precipitates under Cd and Pb stress. These findings suggest that 
negatively charged groups in EPS undergo ion exchange reactions 
with heavy metal cations and form insoluble compounds, thereby 
immobilizing Cd and Pb (Li Q. et al., 2020; Wang et al., 2020). Notably, 
the dual function of EPS—direct chemical fixation and indirect 
physical encapsulation—provides a more robust strategy for 
rhizosphere metal sequestration compared to single-
mechanism bioagents.

After soils were inoculated with strains H7 and Z22, the EPSs 
alkalized the soil pore water and reduced the concentrations of Cd 
and Pb in the pore water. The observed reduction in Cd and Pb 
concentrations within rhizosphere leachate and pore water, coupled 
with elevated pH upon inoculation with strains H7 and Z22, 

suggested a pH-mediated geochemical regulation mechanism 
underpinning their metal immobilization efficacy (Si et al., 2024). 
EPS-producing bacteria often secrete alkaline metabolites (e.g., 
ammonia, carbonate ions) during EPS synthesis and nitrogen 
metabolism, which could neutralize soil acidity and shift metal 
speciation toward less mobile forms (Cai et al., 2024). The dual effect 
of pH elevation and EPS secretion creates a self-reinforcing 
immobilization loop. Our data further reveal that pH modulation 
synergistically amplified the adsorption capacity of EPS: higher pH 
increases deprotonation of carboxyl and phosphoryl groups in EPS, 
strengthening their electrostatic attraction to cationic Cd and Pb 
(Zhang et al., 2015). Compared to conventional pH-amending agents 
(e.g., lime), microbial pH regulation offers spatial–temporal precision 
by targeting root-proximal zones without inducing excessive 
alkalinity that harms soil microbiota (Wu et al., 2025). Nevertheless, 
the sustainability of this pH shift under field conditions—where 
rainfall leaching and organic acid exudation may counteract 
alkalization—requires verification.

In this study, inoculation with strains H7 and Z22 increased 
EPS content in soil aggregates, particularly in microaggregates 
(<250 μm). 3D-EEM results further confirmed that EPS content in 
microaggregates exceeded than in macroaggregates. The superior 
heavy metal immobilization capacity of microaggregates stems 
from their unique physical structure, chemical composition, and 

FIGURE 4

Analysis of C 1 s and O 1 s spectra for macroaggregates and microaggregates.
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biological attributes (Huang X. et  al., 2024). Compared to 
macroaggregates, microaggregates have larger specific surface areas, 
higher organic matter content, greater concentrations of clay 
minerals and iron-manganese oxides, more active microbial 
communities, and more stable structures (Hu et al., 2023; Huang 
X. et  al., 2024; Wu B. et  al., 2024). These synergistic properties 
collectively establish microaggregates as key players in soil heavy 
metal remediation (Wen et al., 2022). The primary mechanisms of 
heavy metal adsorption by soil aggregates include: (1) reaction of 
heavy metal ions with anions in soil aggregates to form precipitates 
(Zhou et  al., 2020); (2) interaction of heavy metal ions with 
functional groups (e.g., carboxyl, hydroxyl) in organic compounds 
to form complexes; and (3) redox reactions between metal oxides 
in soil aggregates and heavy metal cations, leading to precipitation. 
In this study, inoculation with strains H7 and Z22 increased the 
number of carboxyl and hydroxyl functional groups in 
microaggregates, facilitating the formation of complexes with heavy 
metal ions. Additionally, more Cd(OH)₂, CdOHCl, Pb₂O₃, and 
Pb(OH)₂ precipitates were observed in microaggregates. Strains H7 
and Z22 also induced the transformation of bioavailable heavy 
metals into Fe-Mn oxide-bound and residual forms in 
macroaggregates, likely due to the enrichment of iron and 
manganese oxides in these aggregates. Soil aggregates provide a 
spatially heterogeneous microenvironment for microorganisms and 
their activities (Lv et al., 2023). The composition and structure of 
microbial communities vary across aggregates of different sizes. In 

this study, inoculation with strains H7 and Z22 increased the 
relative abundance of Proteobacteria, Acidobacteriota, and 
Actinobacterota in microaggregates. Among these, Proteobacteria 
not only exhibit strong habitat adaptability but also have the 
potential to improve soils contaminated with heavy metals 
(Emenike et al., 2023; Gong et al., 2023). Li et al. (2022) found that 
the abundance of Sphingomonas was positively correlated with Cd, 
Pb, and As concentrations in soil. The high linear discriminant 
analysis (LDA) values of Sphingomonas in microaggregates suggest 
that polysaccharide-producing bacteria increased its abundance to 
reduce Cd and Pb levels in microaggregates. Thus, strains H7 and 
Z22 play a crucial role in the remediation of heavy metals in soil 
aggregates, reducing heavy metal uptake by vegetables and 
minimizing their impact on human health.

5 Conclusion

Two EPS-producing bacteria, Pseudomonas sp. H7 and 
Agrobacterium sp. Z22, were isolated from heavy metal-contaminated 
soil and had the ability to immobilize Cd and Pb. These strains 
reduced rhizosphere bioavailable Cd and Pb through direct 
adsorption, enhanced microaggregate formation, and reshaped 
bacterial community structure, collectively lowering heavy metal 
uptake in pakchoi, thereby offering novel microbial candidates for 
bioremediating contaminated farmland. This provided new candidate 

FIGURE 5

Scanning electron microscope and 3D-EEM images of soil aggregates with macroaggregates and microaggregates.
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FIGURE 6

Analysis of bacterial community composition in rhizosphere soil aggregates. (a) UPGMA algorithm constructs tree analysis; (b) PCA analysis; (c) The 
relative abundance of phylum level sequences in bacterial communities; (d) The relative abundance of genus level sequences in bacterial communities.

FIGURE 7

Analysis of LEfse multi-level species hierarchical tree and LDA discriminant bar chart for eight processing groups. Nodes of different colors represent 
microbial groups that are significantly enriched in the corresponding groups and have a significant impact on the differences between groups. The 
pale yellow nodes represent microbial groups that show no significant differences in different groups or have no significant effect on differences 
between groups. The bar chart shows the LDA values of different differentially identified species, visually presenting the extent of the influence of the 
characteristic species identified among different groups on the differential effect.
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strain resources for microbial remediation of heavy metal-
contaminated farmland. Meanwhile, by blocking the migration of 
heavy metals to edible parts, it has direct application value in ensuring 
the safety of leafy vegetable agricultural products. The EPS secreted by 
H7 and Z22 improved soil aggregate stability, enhancing water/
nutrient retention, while restructured rhizobacterial communities 
favored colonization by plant growth-promoting rhizobacteria, 
suggesting synergistic remediation-agricultural improvement 
potential. However, the current research is a pot experiment. Factors 
such as soil heterogeneity, climate fluctuations, and competition from 
indigenous microorganisms in the field environment may affect the 
actual remediation efficacy of the strains, which requires further 
verification. Moreover, the causal link between EPS-mediated metal 
immobilization and microbial community dynamics remains 
unresolved, demanding integrated metagenomic/metabolomic 
analyses to decipher functional genes and metabolic pathways.
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