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While soil microorganisms underpin terrestrial ecosystem functioning, how their 
functional potential adapts across environmental gradients remains poorly understood, 
particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach 
across China’s six major terrestrial ecosystems (41 topsoil samples, 0–20 cm depth), 
we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) 
harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) 
compared to resource-rich ecosystems. We provide a systematic catalog of key 
functional genes governing biogeochemical cycles in these soils, identifying: 6 
core CAZyme genes essential for soil organic carbon (SOC) decomposition and 
biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic 
clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters. 
These functional gene abundances exhibit distinct, geography-driven clustering 
patterns, strongly correlated with eight environmental drivers (latitude, NDVI, pH, 
EC, SOC, TN, C:N ratio, and MAP). This work provides a predictive framework 
and actionable genetic targets (e.g., specific CAZyme, N/S cycling genes) for 
potentially manipulating soil microbiomes to enhance ecosystem resilience and 
biogeochemical functions under stress.
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1 Introduction

Terrestrial ecosystems ensure satisfactory quality on air, water and nutrition for humans 
as well as other organisms to thrive (Hu et al., 2024). Biogeochemical cycling of elements such 
as carbon (C), nitrogen (N), and sulfur (S) influence the dynamic equilibrium and availability 
of compounds’ turnover in the terrestrial biosphere. Soil is the largest pool of organic matter 
on earth, storing ~1,500 giga-tonnes (Gt) C, mass equal to the carbon present in the 
atmosphere (~750 Gt C) and as vegetation (~560 Gt C) combined (Crowther et al., 2019). 
Minor changes in the global soil C pool results to significant changes in carbon dioxide (CO2) 
concentration in the atmosphere affecting C-cycle, and thus, contributing to climate change 
(Luo et al., 2019). Soil C pool is conceptually divided into two fractions: (i) soil organic carbon 
(SOC) and (ii) soil inorganic carbon (SIC), with the former considered more active than the 
latter. Nitrogen (N) is essential for all living organisms, crucial for the biosynthesis of key 
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cellular components such as proteins and nucleic acids (Kuypers et al., 
2018; Nelson et al., 2016). The role of sulfur (S) and N in cell nutrition 
appears very similar. Both elements are utilized by living organisms 
(i.e., plants and plant-like microorganisms) to form proteins and other 
macromolecules (Evans, 2012; Schiff and Fankhauser, 1981; Wallace 
and Edmonds, 2011). As two of the main limiting nutrients in 
terrestrial ecosystems, N and S affect microbial mineralization of SOC 
by directly regulating the growth of plants and microorganisms 
altering their structure and function (Gao et al., 2024; Kopittke et al., 
2017; Xu et al., 2021). Generally, C, N, and S cycling in terrestrial 
ecosystems could be affected remarkably by multiple global change 
factors (GCFs), such as N deposition, temperature, and precipitation 
regimes (frequency/intensity) (Chen et al., 2016; García et al., 2013; 
Grau-Andrés et al., 2021; Wu et al., 2022; Yue et al., 2017; Zeglin et al., 
2013). Nevertheless, the impact of multiple GCFs on soil C, N, and S 
cycling, particularly between distinct ecological regions, is not yet 
fully understood. This is largely due to the non-standardized 
approaches in research methods and experimental scales. Accordingly, 
one of the most fundamental, yet challenging, issues is to describe and 
predict the cycling processes of C, N, and S (as well as other elements) 
across the world’s terrestrial ecosystems.

Microorganisms predominate in all natural environments playing 
vital roles in all biogeochemical cycles due to their diverse speciation, 
their wide distribution, and different metabolic patterns (Santos-
Júnior et  al., 2020; Sokol et  al., 2022). For microbial ecologists, 
however, it remains a significant challenge to establish detailed 
connections between the soil microbiome and the processes of SOC 
decomposition and biosynthesis, as well as with both the N and S 
cycles. For the last two decades, investigation of biogeochemical 
element cycling vis-à-vis microbial activity mainly relied on 
sequencing of functional genes and Geochip technologies. These 
techniques, however, rely on primers and probes, respectively, which 
have inherent limitations such as specificity-related biases and low 
coverage. These issues make it challenging to comprehensively 
interpret the dynamics of SOC, N, and S. Recent advances in 
metagenomic techniques though, provide with unprecedented 
opportunities to investigate microbial functional compositions in 
depth, utilizing short-read next-generation sequencing data, 
benefiting from the ability to rapidly quantify thousands of notably 
transmissible resistances genes in a single sample (Hendriksen et al., 
2019). Likewise, the new technological breakthroughs can provide 
additional information regarding the presence of soil microbial 
species, pathogens, and virulence genes, whose data can be readily 
analyzed should novel genes of interest be  identified. Admittedly 
however, short reads metagenomics provide limited information 
regarding the genes’ host or the genetic environment. Previously, 
metagenomic techniques were used to reveal the microbial 
communities involved in the cycling of C (as SOC), N and S in 
multiple ecosystems (Anantharaman et  al., 2018; Dai et  al., 2021; 
Murakami et al., 2022; Santos-Júnior et al., 2020; Song et al., 2022), 
including river, mountains, and oceans. Metagenomic techniques are 
mostly used to reveal the characteristics of soil C, N, and S cycles in 
engineered ecosystems (i.e., farmlands) or other similar environments 
heavily affected by anthropogenic activity (Bender et al., 2023; Hu 
et al., 2022; Liu J. J. et al., 2023; Su et al., 2017). Thus far, little is known 
about the characteristics of soil C, N, and S cycles and their 
geographical distribution patterns in ecosystems less disturbed by 
human activity, such as in deserts, forests, and grasslands (Coleine 

et al., 2024; Cui et al., 2024; Liu H. Y. et al., 2023). Similar studies on 
soil C, N, and S cycling in more conventional/engineered ecosystems 
assisted in comprehensive understanding of the microbial functions; 
this highlighted the usefulness of the approach—therefore, it is key to 
repeat such type of studies on those more “virgin” ecosystems.

China is one of the richest countries in the world in terms of 
terrestrial ecosystem types with a wide variety of geographical terrains. 
For example, the Qinghai–Tibet Plateau (Ji et al., 2020), Loess Plateau 
(Yang et al., 2022; Zhong et al., 2022), and Hexi Corridor (Jiao et al., 
2022), all of which are typical eco-regions, each constituting an 
ecotone. In general, an ecotone refers to the transition area at the 
interface of two rather different ecosystems; an ecotone has poor 
stability, weak ability to resist or recover from disturbance, and is 
prone to degradation. In China, ecotone areas are mainly split to (i) 
the agro-pasture ecotone, (ii) the forest-grass ecotone, and the (iii) 
agro-forestry ecotone (Liu et al., 2015; Sun et al., 2019; Wang et al., 
2019). In a recent study, we employed next-generation sequencing 
(Illumina MiSeq PE300 platform) (Ren et al., 2022) to investigate the 
biogeographic patterns of topsoil (0–20 cm) microbiomes across six 
distinct Chinese eco-regions, based on an extensive field survey. The 
research encompassed taxonomic characterization and examined the 
divergent drivers of β-diversity in both bacterial and eukaryotic 
communities (Duan et al., 2025). Yet, understanding of the variety and 
prevalence of functional traits associated with soil microbiomes across 
China’s typical eco-regions, including type, abundance, spatial 
patterns, functional genes and key environmental drivers, is still 
lacking. To fill that knowledge gap, the present study aims to address 
these uncertainties by performing metagenomics in a large-scale soil 
survey. Due to great environmental heterogeneity, we tried to test the 
hypothesis whether, the six distinct Chinese eco-regions would result 
in different soil microbial genes and soil organic carbon (SOC), 
nitrogen (N), and sulfur (S) metabolic pathways.

2 Materials and methods

2.1 Study area and soil sampling

For the hereby work, six representative eco-regions of China were 
sampled for study, specifically: (i) the karst area of southwestern China 
(KS), (ii) the agro-pastoral ecotone of southwestern China (AS), (iii) 
the Qinghai–Tibet Plateau (QT), (iv) the Loess Plateau (LP), the (v) 
forest-grassland ecotone (FG), and the (vi) deserts of Hexi Corridors 
(HC) (Supplementary Figure S1). The selected areas have a mean 
annual temperature spanning from −22.9°C to 28.6°C, a mean annual 
precipitation of 44.9–1815 mm, and an elevation that ranges from 
27 m to 8,305 m a.s.l. The region exhibits distinct climatic and 
vegetation zones from east to west, shaped by climatic conditions and 
soil characteristics: subtropical monsoon climate (primarily 
encompassing KS and parts of AS) and plateau mountain climate 
(spanning parts of AS and QT) dominate eastern areas. KS and AS 
feature expansive yellow-brown, red, and cinnamon soils, supporting 
subtropical evergreen-deciduous broad-leaved forests and alpine 
meadows. QT’s black felty soils and chernozem foster alpine 
grasslands. Transitioning westward, temperate continental monsoon 
climate (LP, FG, HC) emerges. LP’s brown calcic, aeolian sandy, and 
loessal soils sustain temperate grasslands, sandy semi-shrub 
grasslands, and warm temperate deciduous broad-leaved forests. FG’s 
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boggy/meadow soils and dark-brown/aeolian sandy soils host similar 
warm temperate deciduous broad-leaved forests. The westernmost 
Calcic-Orthic Aridosols in HC create desert grassland ecosystems 
(Duan et al., 2025).

Soil sampling took place from June to July 2019 and during July 
2020. Based on the mean annual precipitation gradient, a total of 
n = 41 locations (6 locations for KS, and likewise 6 for AS, 9 for QT, 5 
for LP, 6 for FG, and 9 for HC) were chosen at intervals of 
approximately 100–110 km along four transects 
(Supplementary Figure S1). All samples collected from the minimally 
disturbed natural soils were collected during the peak of the growing 
season. At each location, surface litter was removed within a 10 × 10 m 
plot, then along the plot’s diagonal line five 1 × 1 m quadrats were 
established. From each quadrat, along that diagonal line, three 
replicate soil samples (0–20 cm depth) were obtained and 
homogenized to provide a single composite soil sample per plot. All 
composite soil samples were individually packed in sterilized 
polyethylene bags, and taken rapidly to the lab using portable 
refrigerators. Each composite soil sample was then split into two 
subsamples: one that was stored at 4°C for later biochemical analysis, 
the other was stored at −80°C prior DNA extraction and molecular 
analysis. All relevant variables and location information of our study’s 
soil samples are detailed in Supplementary Table S1.

2.2 Data collection—climatic factors and 
soil physicochemical properties

The MAP (mean annual precipitation), MAT (mean annual 
temperature), and NDVI (normalized difference vegetation index) 
data for the wider experimental area were obtained from the Chinese 
Meteorological Database.1 Soil pH was measured using an 
E20-FiveEasy pH meter (Mettler Toledo, Giessen, Germany). EC 
(electrical conductivity), an indicator of the soluble salt content of soil, 
was measured using an electric conductometer. Both soil parameters 
were measured using a soil-water suspension (5:1, v/v mixture of 
deionized water and fresh soil) after the samples were subjected to 
shaking for 30 min. Both the content of SOC (soil organic carbon) and 
TN (soil total nitrogen) were quantified using a carbon-hydrogen-
nitrogen elemental analyzer (2400 II CHN Elemental Analyzer, Perkin 
Elmer, Boston, MA, United States). Climatic factors and soil properties 
datasets are summarized in Supplementary Table S1.

2.3 Molecular analysis—DNA extraction, 
library construction, and metagenomic 
sequencing

Total genomic DNA was extracted from each soil sample using the 
E.Z.N.A.® Soil DNA Kit (Omega Bio-Tek, Norcross, GA, 
United  States) following the manufacturer’s instructions. The 
concentration and purity of the extracted DNA was determined using 
TBS-380 and NanoDrop2000 spectrophotometers. DNA extract 
quality was checked on 1% agarose gel.

1  http://data.cma.cn/

The DNA extracts were fragmented to an average size of about 
400 bp, using the Covaris M220 (Gene Company Limited, China). 
For the paired-end library construction, NEXTFLEX Rapid 
DNA-Seq (Bio Scientific, Austin, TX, United  States) was used. 
Adapters containing the full complement of sequencing primer 
hybridization sites were ligated to the blunt-end of each fragment. 
Next, the paired-end sequencing was carried out on an Illumina 
HiSeq Xten system (Illumina Inc., San Diego, CA, United States) 
at the Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) 
by using HiSeq X Reagent Kits and following the manufacturer’s 
instructions.2

2.4 Sequencing data processing, assembly, 
and annotation

The generated data from sequencing were analyzed on the free 
Majorbio Cloud Platform online3 (Ren et  al., 2022). Briefly, the 
paired-end Illumina reads were trimmed of their adaptors, and any 
low-quality reads (i.e., having a length <50 bp, or a quality value <20, 
or N bases) were removed by the fastp (v 0.20.0) tool4 (Chen et al., 
2018). The resulting high-quality read pairs from the same sample 
were then assembled into contigs by using MEGAHIT (v1.1.2) 
software5 (Li et al., 2015) with kmer values ranging from 47 to 97 
(step = 10). Contigs having a length ≥300 bp were selected for gene 
prediction and functional annotation.

An open reading frame (ORF) for each contig was predicted by 
MetaGene6 (Noguchi et al., 2006). Those predicted ORFs with a length 
≥100 bp were retrieved and translated into amino acid sequences 
using the NCBI translation table. Next, a non-redundant gene catalog 
was constructed using CD-HIT (v4.6.1)7 (Fu et al., 2012) based on a 
minimal 90% sequence identity and 90% coverage. To calculate the 
abundance of genes at a 95% identity threshold, the obtained high-
quality reads were aligned to non-redundant gene catalogs via a SOAP 
aligner (v 2.21)8 (Li et al., 2008). For their taxonomic identification, 
Diamond (v0.8.35)9 (Buchfink et al., 2015) was used with an e-value 
<1 × 10−5 and the alignments searched against the NCBI microbial NR 
database. The predicted gene fragments were searched against 
KEGG,10 NCycDB (Tu et  al., 2019) and SCycDB (Yu et  al., 2021) 
reference databases using Diamond (e-value <1 × 10−5) for functional 
annotation. Hmmscan11 was used to search against the Carbohydrate-
Active Enzymes (CAZy) database12 (e-value cutoff = <1 × 10−5).

2  www.illumina.com

3  www.majorbio.com

4  https://github.com/OpenGene/fastp

5  https://github.com/voutcn/megahit

6  https://metagene.nig.ac.jp/metagene/metagene.html

7  http://www.bioinformatics.org/cd-hit/

8  https://github.com/ShujiaHuang/SOAPaligner

9  https://github.com/bbuchfink/diamond

10  https://www.genome.jp/kegg/

11  http://hmmer.org/

12  http://www.cazy.org/
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To minimize the effects of sequencing depth on statistical analysis, 
the calculation method of species and gene abundance is Reads Per 
Kilobase Million (RPKM) (Ye et al., 2024):

	

×
=

×∑

6

1

10i
i n

i j

RRPKM
L R

where Ri represents the abundance value of Genei in a given 
sample, i.e., the number of Reads compared to Genei in that sample; 
Li means the nucleotide length of Genei; and 

∑
1

n

jR
 represents the sum 

of reads corresponding to all genes in that sample.

2.5 Statistical analysis

Microsoft Excel 2019 and R (v 3.2.1) were used for statistical data 
analyses. The differences in Chao1 index for the α-diversity of 
taxonomic (species) and functional traits [KOs (KEGG Orthology) 
and CAZyme-encoding genes] across the six eco-regions were 
performed by using the nonparametric Kruskal–Wallis test and the 
post-hoc pairwise Wilcoxon rank-sum test, with p-values adjusted 
through the Benjamini–Hochberg method. The α-diversity13 estimates 
were calculated using the diversity function of the “vegan” package14 
in the R computing platform (v 3.2.1)15 (Oksanen, 2017). Kruskal–
Wallis test and Wilcoxon rank-sum test were performed through 
functions “kruskal.test” and “wilcox.test” in package “stats” in R (v 
3.2.1). To identify taxa and metabolic pathways as biomarkers, the 
linear discriminant analysis (LDA) effect size (LEfSe) algorithm (LDA 
>2.5, p < 0.05) (Segata et al., 2011) was applied. The abundance (i.e., 
RPKM, reads per kilobase per million mapped reads) of all microbial 
groups (bacteria, archaea, viruses, and eukaryota) at phylum level was 
visualized in histogram plot (s). RPKM abundances of differentially 
abundant (DA) KEGG pathways, normalized by z-score across all data 
sets, visualized using heatmap, and the sample-based dendrogram was 
performed using Euclidean distance metric in package “pheatmap”16 
in R (v 3.2.1). Principal co-ordinates analysis (PCoA) of taxonomic 
traits (species) and functional traits (KOs, KEGG Orthology database), 
based on their Bray–Curtis (BC) distances, was carried out using the 
“vegan” package (see text footnote 14) in R (v 3.2.1) (Oksanen, 2017). 
The differences of taxonomic traits (species) and functional traits 
among six eco-regions were tested using permutational multivariate 
analysis of variance (PERMANOVA) with 9,999 permutations. 
Distance-based redundancy analysis (db-RDA) was implemented to 
explore the effects of environmental factors on the SOC’s 
decomposition and biosynthesis, N cycling, and S cycling across six 
eco-regions using the Bray–Curtis dissimilarities distance matrix. The 
individual effects of each explanatory variable on response variables 
from db-RDA were estimated using the hierarchical partitioning 

13  http://www.mothur.org/wiki/Calculators

14  https://CRAN.R-project.org/package=vegan

15  www.r-project.org

16  https://CRAN.r-project.org/package=pheatmap

method (“rdacca.hp” function from rdacca.hp. package) (Lai 
et al., 2022).

3 Results

3.1 Microbiome genes from the topsoil of 
Chinese eco-regions

Topsoil samples were collected from n = 41 locations, covering six 
distinct geographical regions (Supplementary Figure S1 and 
Supplementary Table S1). 579.3 gigabases (Gb) of paired-end sequence 
data were generated averaging 93.6 million paired reads per sample. 
De novo assembly of sequencing data yielded a non-redundant gene 
catalog for all 41 locations. The total length of this non-redundant 
assembly was 24.6 Gb (means contig N50 length of 543 bp), from 
which 54.7 million partial genes >100 bp were predicted. After 
removing redundancy by clustering the genes by identity (>90%), and 
by shortening gene coverage (>90%), a total of 25.4 million 
non-redundant genes were deposited in the metagenomic libraries. 
Bacterial genes were the most predominant among all species 
comprising 97.69% of all sequences, followed by 2.22% for archaea, 
0.07% for eukaryota, and only 0.02% for viruses (Figure  1a and 
Supplementary Table S2). Our results showed that the number of 
genes sequenced had their lowest abundance in the Hexi Corridor 
deserts (region HC) (1632676). Regarding the five other eco-regions, 
gene abundance ranged as FG, LP, QT, AS, and KS from lowest to 
highest, respectively. The low abundance at the desert ecosystem could 
be attributed to the harsh conditions present, characterized by extreme 
drought, extreme temperature variation (e.g., great thermal difference 
between day and night), and low soil fertility (Coleine et al., 2024; 
D’Odorico et al., 2013; Duan et al., 2022).

The Chao1 index values for taxonomic (species) and functional 
(KOs, KEGG Orthology) traits for all microbial groups from the 
trialed eco-regions are shown in Figures  1b,c respectively. For 
taxonomic traits, the Chao1 richness of the entire soil microbiome 
ranged from 12383.95 (at AS group) to 13569.53 (at HC group) with 
an overall mean (±SD) and median of 12961.03 ± 551.81 and 
12938.09, respectively (Supplementary Tables S3, S5). For functional 
traits, whole microbiome’s Chao1 richness based on the KOs ranged 
from 6540.04 (at LP group) to 7505.37 (at HC group) having an overall 
mean of 6875.65 ± 476.89 and a median of 6771.20 across the six 
regions (Supplementary Tables S4, S6). Significant differences on soil 
microbiome’s Chao1 indices (species or KOs) between the selected 
region samples (Supplementary Tables S5, S6). Overall, the Chao1 
index for the α-diversity of taxonomic and functional traits at HC and 
FG was higher than that from other regions. Interestingly, although 
soil microbial abundance and diversity in desert ecosystems are 
generally lower than that in less stressful environments, Chao1 
richness of taxonomic traits (species) and their functional traits (KOs) 
in the HC region exceeded that from the other five regions (KS, AS, 
QT, LP, and FG) (Figures 1b,c).

Principal coordinates analysis (PCoA) revealed significant 
differences at the β-diversity of both taxonomic (species) 
(PERMANOVA, R2 = 0.415, p = 0.001; Figure 1d) and functional traits 
(KOs) (PERMANOVA, R2 = 0.432, p = 0.001; Figure  1e) between 
different regions. Evidently, whether taxonomic or functional, the 
microbiome traits from the five regions (KS, AS, QT, LP, and FG) were 
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geographically separated along the first principal coordinate from 
those traits of HC. Overall, the β-diversity of taxonomic and functional 
traits at HC was obviously different from other regions (Figures 1d,e). 
Again, these pronounced differences are mainly attributed to the 
unique conditions of the desert habitat (D’Odorico et al., 2013; Hu 
et al., 2019).

Taxonomic analysis identified a total of 105 phyla of soil 
microorganisms, specifically: 82 for bacteria, 12 for archaea, 10 for 
eukaryota, plus 1 virus (Figure 2a and Supplementary Table S7). Most 
of the metagenomes were dominated by Actinobacteria (18.01–
62.09%) and Proteobacteria (14.66–50.31%), followed by Acidobacteria 
(0.61–13.10%). In addition, Chloroflexi (1.37–8.01%), Firmicutes 
(1.19–3.78%), Bacteria_unclassified (0.96–5.42%), Gemmatimonadetes 
(0.65–5.49%), Cyanobacteria (0.89–21.54%), Planctomycetes (0.72–
2.54%), Euryarchaeota (0.19–27.94%), Verrucomicrobia (0.23–3.85%), 
Bacteroidetes (0.47–6.38%), Thaumarchaeota (0.05–3.90%), 
Candidatus_Rokubacteria (0.05–3.45%), Candidatus_Tectomicrobia 
(0.14–2.36%), Nitrospirae (0.15–1.70%), and Deinococcus-Thermus 
(0.22–1.51%), together accounted for ca. 98% of all metagenomic 

sequences derived from the topsoil samples (Supplementary Table S7). 
Overall, these bacterial phyla exhibit no site-specificity across China 
and are considered common in terrestrial ecosystems on a global scale 
(Delgado-Baquerizo et al., 2018).

The RPKM abundance data were screened for the KEGG pathways 
enriched in the six eco-regions, observation based on the linear 
discriminant analysis (LDA) effect size (LEfSe) method (LDA >2.5, 
p < 0.05). Collectively, 76 KEGG pathways (18.5% of total) were 
enriched in the six regions, with 4, 27, 34, 4, 7, and 0 pathways 
enriched in LP, KS, HC, FG, AS, and QT regions, respectively 
(Figure 2b and Supplementary Table S8). These 76 KEGG pathways 
could be classified into 23 classes that are mainly associated with seven 
biological processes (Figure  2c and Supplementary Table S8): 
carbohydrate metabolism amino acid metabolism xenobiotics 
biodegradation and metabolism, energy metabolism, metabolism of 
cofactors and vitamins, replication and repair lipid metabolism 
(Figure 2c and Supplementary Table S8). The RPKM-normalized read 
counts notably differed (more than five-fold) across the six regions, 
being 7.29 × 106, 6.27 × 106, 1.22 × 107, 8.63 × 106, 6.44 × 106, and 

FIGURE 1

Overview of taxonomic and functional traits of soil microorganisms in six eco-regions across China. (a) Taxonomic classification of the 10,669,587 
non-redundant genes across all regions. (b,c) Show the Chao1 index for the α-diversity of taxonomic (species) and functional traits (KOs, KEGG 
Orthology) for each region, respectively (the differences in Chao1 index across the six eco-regions were performed by using the nonparametric 
Kruskal–Wallis test and the post-hoc pairwise Wilcoxon rank-sum test, with p-values adjusted through the Benjamini–Hochberg method; *p < 0.05; 
**0.01 < p < 0.05; ***0.001 < p < 0.01; ****p < 0.001). The PCoA based on Bray–Curtis distances was plotted to display the β-diversity of taxonomic 
traits (species) (d) and functional traits (KOs, KEGG Orthology) (e) across all 41 sampling sites. The R2 and p-values were calculated using PERMANOVA 
(9,999 permutations) and are indicated in each plot. The differences in PCoA1/PCoA2 across the six eco-regions were performed by using the 
nonparametric Kruskal–Wallis test and the post-hoc pairwise Wilcoxon rank-sum test, with p-values adjusted through the Benjamini–Hochberg 
method. KS, karst area of southwest China; AS, agro-pastoral ecotone of southwest China; QT, Qinghai–Tibet Plateau; LP, Loess Plateau; FG, forest-
grassland ecotone; HC, deserts of the Hexi Corridor.
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6.37 × 106 in LP, KS, HC, FG, AS, and QT, respectively 
(Supplementary Table S8). Additionally, the hereby results reveal that 
different eco-regions may form different functional metabolic niches. 
The heatmap analysis reveals that the three KS, AS, and QT regions in 
southern China are clustered together; likewise, the HC, LP, and FG 
in northern China are clustered together (Figure  2c and 
Supplementary Table S8).

3.2 Profile of the functional genes 
associated with C, N, and S cycling

To identify the functional genes involved in C, N, and S cycling, 
the obtained soil metagenomic reads were annotated using the 
databases of CAZy (Cantarel et al., 2008), KEGG (Kanehisa et al., 
2008), NCycDB (Tu et al., 2019) and SCycDB (Yu et al., 2021).

For carbohydrate metabolism, the 41 soil samples contained six 
critical CAZyme-encoding genes involved in SOC decomposition 
and biosynthesis (Figure  3; Supplementary Figure S2 and 
Supplementary Table S9). The genes had uneven distribution among 
the samples. Specifically, as gene and location in brackets: glycoside 
hydrolases (GHs), glycosyl transferases (GTs), polysaccharide lyases 
(PLs), carbohydrate esterases (CEs), auxiliary activities (AAs), and 
carbohydrate-binding modules (CBMs). This differentiation generally 
reflects the microbial substrate affinity, and as a proxy, the 
decomposition and biosynthesis potential of each community against 
SOC (Kanehisa and Goto, 2000). Evidently, the genes encoding the 
GHs (organic carbon decomposition) and GTs (organic carbon 
biosynthesis) enzymes were the most abundant in all samples across 
the six regions (Figure  3; Supplementary Figure S2), followed by 
those coding for CEs and AAs, and last but not least for CBMs and 
PLs. In addition, there has been considerable variation in the 

FIGURE 2

Taxonomic composition and functional gene potential of the 41 sampling sites in six eco-regions across China. (a) Relative abundance of the major 
taxonomic groups at the phylum level. Cases of a relative abundance, <1% were subsumed into “others.” (b) KEGG pathways significantly enriched in 
the six regions using the linear discriminant analysis (LDA) effect size (LEfSe) method (LDA >2.5, p < 0.05). (c) RPKM abundances of differentially 
abundant (DA) KEGG pathways, normalized by z-score across all data sets. UPGMA clustering of groups (top) was based on Pearson correlations. KS: 
karst area of southwest China. AS, agro-pastoral ecotone of southwest China; QT, Qinghai–Tibet Plateau; LP, Loess Plateau; FG, forest-grassland 
ecotone; HC, deserts of the Hexi Corridor.
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abundance of genes participating in SOC decomposition and 
biosynthesis across all 41 samples (ranging from 61267.39 to 
77190.28) (Figure  3; Supplementary Figure S2 and 
Supplementary Table S9).

For nitrogen (N) metabolism, biogeochemical N cycling between 
inventories is often attributed to the six common N-transformation 
processes: nitrogen fixation, nitrification, denitrification, nitrate 
reduction, nitrogen transport/nitrate assimilation, and organic nitrogen 
metabolism (Kelly et al., 2021; Kuypers et al., 2018) (see the N-cycling 
model in Figure 4 and Table 1). Hereby, 62 gene families responsible 
for N cycling were detected from all samples across the six regions; 
these gene families could be categorized into 7 individual pathways 
(Figure 4 and Table 1; Supplementary Tables S10, S11). (1) Nitrogen 
fixation: 3 key gene families (nifD, nifH, and nifK) encoding the 
nitrogenase complex were identified in all regional groups (KS, AS, 
QT, LP, FG, and HC samples), nifW gene family was not present in 
either the KS or AS group. The highest and lowest abundance of gene 
families involved in nitrogen fixation were found in HC (95.52) and 
AS groups (11.68) respectively; the former nearly 9 times greater than 
the latter. Overall, the abundance of these four gene families was 
measurable yet consistently low across all 41 soil sites; (2) Nitrification: 
7 key gene families (amoB_A, amoB_B, amoC_A, amoC_B, nxrB, and 
hao) encoding ammonia monooxygenase were identified in all six 
regions. amoA_A gene and nxrA gene families were identified in KS, 
AS, and QT. The gene families involved in nitrification were most 
abundant in the QT group (40.86), the least for HC (10.98) with the 
former 3.72 times higher than the latter. Among them, amoB_A and 
hao were the two most abundant gene families participating in the 
nitrification process; (3) Denitrification: 15 marker gene families 
(nirK, nosZ, napA, nirS, norB, narG, narH, narZ, norC, narJ, narI, 
napC, napB, and narV) encoding key enzymes for denitrification were 
identified in all six regions. One gene family narW was only identified 
in KS and AS. These gene families attained their highest abundance in 
the QT group (2217.52), being lowest in the HC (1529.79) with the 

former 1.45 times higher than the latter. The three most abundant 
gene families involved in the denitrification process were nirK, nosZ, 
and napA; (4) Nitrate reduction: 5 key functional gene families (nirB, 
nirD, nrfC, nrfA, and nrfD) encoding key enzymes for DNRA were 
identified in all six regions. One gene family nrfB was not present in 
HC. The highest abundance of these gene families involved in the 
DNRA pathway was found in the LP group (1674.78) and the lowest 
in the FG group (1283.15), with the former 1.07 times higher than the 
latter. Among them, nirB was the gene family present in greatest 
abundance. Meanwhile, 6 marker gene families (nasA, NR, nirA, narB, 
narC, and nasB) encoding key enzymes for ANRA pathway were 
detected in all six regions, with nasA and NR being the most abundant 
Furthermore, the highest abundance of gene families participating in 
the ANRA pathway occurred in the KS group (3789.56) and the lowest 
in FG (2883.24), the former was 1.31 times higher than the latter; (5) 
Nitrogen transport: 4 marker gene families (NRT, nrtA, nrtB, and nrtC) 
encoding key enzymes for nitrogen transport/nitrate assimilation 
were identified in all six regions. These gene families were found to 
be the most and least abundant in the KS (699.27) and HC (324.96) 
groups, respectively, the former being 2.15 times higher than the 
latter; (6) Organic nitrogen metabolism: 17 marker gene families (glnA, 
gs_K00264, gs_K00265, gs_K00266, gs_K00284, nmo, asnB, gdh_
K00260, gdh_K00261, gdh_K00262, gdh_K15371, glsA, ureA, ureB, 
ureC, ansB and nao) encoding key enzymes for organic nitrogen 
metabolism were identified in all six regions. The highest abundance 
of these gene families was found in the LP group (18472.78) and the 
lowest in the HC group (14146.65); the former was 1.31 times higher 
than the latter. Of these, glnA and gs_K00266 were the two most 
abundant genes involved in the organic nitrogen metabolism process. 
Thus, the significant differences in the total gene abundances of N 
metabolism among the different eco-regions were summarized, the 
list findings indicate that the soil microbiome of LP is the environment 
with the highest gene abundance for N metabolism (26120.01), 
followed by that of QT (25974.50), KS (25623.967), and AS (24699.21), 

FIGURE 3

The RPKM abundance of functional trait genes relevant to SOC (soil organic carbon) decomposition and biosynthesis across the 41 sampled soil 
microbiomes in six eco-regions across China. GHs, glycoside hydrolases; GTs, glycosyltransferases; PLs, polysaccharide lyases; CEs, carbohydrate 
esterases; AAs, auxiliary activities; CBMs, carbohydrate-binding modules; KS, karst area of southwest China; AS, agro-pastoral ecotone of southwest 
China; QT, Qinghai–Tibet Plateau; LP, Loess Plateau; FG, forest-grassland ecotone; HC, deserts of the Hexi Corridor.
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with FG (22462.91) and HC (20375.07) having the lowest abundance 
(Figure 4 and Supplementary Table S10).

For sulfur (S) metabolism, biogeochemical cycling of S 
between inventories is often attributed to three distinct sulfate-
transforming processes (Figure 5 and Table 2): sulfur assimilation, 

anaerobic sulfate respiration, and sulfide oxidation (Llorens-Marès 
et al., 2015) (see the S-cycling model in Figure 5). In this study, 
from all soil samples across the six regions, a total of 15 gene 
families responsible for S cycling were detected. These gene 
families could be  categorized into six individual pathways 

FIGURE 4

The N cycle and the RPKM abundance of functional trait genes related to N cycling in six eco-regions across China. DNRA, dissimilatory nitrate 
reduction to ammonia; ANRA, assimilatory nitrate reduction; KS, karst area of southwest China; AS, agro-pastoral ecotone of southwest China; QT, 
Qinghai–Tibet Plateau; LP, Loess Plateau; FG, forest-grassland ecotone; HC, deserts of the Hexi Corridor.
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according to SCycDB (Yu et  al., 2021) (Figure  5 and Table  2; 
Supplementary Tables S12, S13). (1) Sulfur reduction: 5 marker 
genes (sudA, ttrB, sudB, hydG, and sreB) encoding key enzymes 
participating in the Sulfur reduction pathway were identified in 
all six eco-regions. One gene family psrC with low abundance was 
not present in QT and FG. The highest abundance of these genes 
was found in the KS group (837.24) and the lowest in the HC 
group (614.17). Of these, sudA was the most abundant gene 
family associated with the S reduction pathway, 6.07 times of the 
total abundance of other genes in this pathway. (2) Sulfur 
oxidation: 1 marker gene family (soeB) encoding for key enzymes 
related to sulfite oxidation was identified in all six regions. 
Overall, the abundance of the gene family was measurable yet 
consistently low across all 41 sites. (3) Sulfur disproportionation: 
1 marker gene family (phsB) with low abundance across all 41 
sites. (4) SOX systems: 1 marker gene family (soxC) encoding for 
key enzymes related to thiosulfate oxidation was identified in all 
six regions. The highest and lowest abundance of these was found 
in the LP (108.81) and AS group (85.55) group respectively, the 
former being 1.27 times higher than the latter. (5) Dissimilatory 
sulfur reduction and oxidation: 2 marker gene families (dsrO and 
dsrL) with low abundance across all 41 soil sites. (6) Assimilatory 
sulfate reduction: 4 marker gene families (cysC, cysH, cysJ, and sir) 
encoding for key enzymes participating in the sulfate reduction 
were identified in all six eco-regions. The highest abundance of 
these genes was found in the LP group (736.94) and the lowest in 
the AS group (569.23). Of these, cysC was the most abundant 
gene family, 1.7 times more abundant than sir and cycH, 3.06 
times more abundant than cycJ. Altogether, significant differences 
in the total abundances of genes related to S metabolism among 
different regions were detected. Specifically, the LP (1587.46) and 
KS (1506.16) regional groups have the highest gene abundance 
for S metabolism, followed by QT (1496.76) and AS (1429.73), 
with FG (1420.98) and HC (1341.04) having the lowest abundance 
(Figure 5 and Supplementary Tables S12, S13).

3.3 Effect of environmental factors on the 
microbial genes involved in the C, N, and S 
cycling

To understand the relationship between the microbial abundance 
of the functional genes involved in C, N, and S cycling, across the six 
eco-regions in China, when subjected to various environmental 
factors, distance-based redundancy analysis (db-RDA) was used 
(Figure 6). The db-RDA showed that the first two axes accounted for 
70.19% of the variability of the microbial genes composition involved 
in the C cycling, whereas db-RDA1 (the x-axis) and db-RDA2 (the 
y-axis) accounted for 57.67 and 13.52% of the variation, respectively 
(Figure 6a). For N cycling, the db-RDA showed that the first two axes 
accounted for 81.16% of the variability of the microbial genes 
composition, whereas db-RDA1 (the x-axis) and db-RDA2 (the 
y-axis) accounted for 65.97 and 15.19% of the variation, respectively 
(Figure 6b). As for the S cycling, the db-RDA showed that the first two 
axes accounted for 79.05% of the variability of the microbial genes 
composition, whereas db-RDA1 (the x-axis) and db-RDA2 (the 
y-axis) accounted for 53.33 and 25.72% of the variation, respectively 
(Figure 6c). It was interesting that latitude and seven soil properties 
(including pH, NDVI, MAP, SOC, TN, C:N ratio, and EC) were 
significantly correlated with the first two axes (p < 0.01) (Figure 6 and 
Supplementary Table S14) of the C, N, and S cycling, and these 
environmental factors explained 82.21, 79.13 and 81.45% (Figure 6d 
and Supplementary Table S14) of the variations in microbial genes 
composition involved in the C, N, and S cycling, respectively.

4 Discussion

In our study, desert (HC) and karst (KS) ecosystems harbored 
the most abundant distinctive KEGG pathways compared to other 
regions (Figure 2b and Supplementary Table S8). This phenomenon 
could be  primarily related to the adaptation strategies of 

TABLE 1  Microbial nitrogen cycle processes in this study.

Name Description References

N fixation The conversion of N2 to biologically available ammonia (NH4
+) is carried out by the nitrogenase complex

Kelly et al. (2021) and Scott and Ludwig 

(2004)

Nitrification
Microbial enzymes (ammonia monooxygenase) catalyze the process whereby ammonia (NH3) is oxidized 

to nitrite (NO2
−) and subsequently to nitrate (NO3

−)

Casciotti et al. (2011), Tian et al. (2020), 

and van Kessel et al. (2015)

Denitrification
The conversion of NO3

− to N2 proceeds via four intermediate steps (NO3
− → NO2

− → NO → N2O → N2), 

producing several nitrogenous compounds with notable roles as air polluting gases (N2O and NO)

Skiba (2008), Tian et al. (2020), and van 

Kessel et al. (2015)

Nitrate reduction

The reduction of NO3
− to NH4

+ ultimately leads to the incorporation of N into microbial biomass. 

Dissimilatory nitrate reduction to ammonia (DNRA) is an anaerobic process in which NO3
− serves as an 

electron acceptor to oxidize and release energy from organic carbon. It is mediated by nitrate reductases 

that form NO2
− and nitrite reductases that convert NO2

− to NH4
+. DNRA is a novel biological pathway of 

N-cycling, and the shortest, in terrestrial ecosystems where NO3
− is reduced to NH4

+ in soils. Compared 

with the DNRA, ANRA (assimilatory nitrate reduction) pathway is an energetically costly process that 

depends on different families of nitrate and nitrite reductases

Friedl et al. (2018), Kelly et al. (2021), 

and Pandey et al. (2020)

N transport
The nrtABCD gene cluster encodes an ATP-binding cassette (ABC)-type transporter capable of importing 

NO3
− or NO2

− from the extracellular environment
Kelly et al. (2021)

Organic N 

metabolism
Conversion of NH4

+ to glutamate, glutamine, and urea
Galloway et al. (2008) and Kelly et al. 

(2021)
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microorganisms habiting ecosystems subjected to extreme 
environments, namely high functional diversity and redundancy 
(Dong et al., 2024; Louca et al., 2018; Shu and Huang, 2022). Desert 
is an ecosystem considered of low-productivity, low-biomass, and 
polyextreme [(hyper) arid and (hyper) oligotrophic conditions with 
phenomena of strong ultraviolet radiation and evapotranspiration] 
(Coleine et al., 2024; Duan et al., 2022; Ramond et al., 2022). The 
karst ecosystem is also a typical oligotrophic environment due to 
presence of bare rocks on the surface and a thin or almost absent soil 
surface layer creating limiting conditions for plant growth. Moreover, 
karst ecosystems are mainly formed in temperate tropical regions 
where high temperatures accelerate soil nutrient loss and humus 
organic fertility is insufficient (Wang et  al., 2020). Generally, 
microbes with contrasting life-history strategies exhibited different 
functional traits (Chen et  al., 2021). A classical classification of 
microbial life history is the copiotroph-oligotroph dichotomy (Chen 
et al., 2021). A high nutrient (copiotrophic) strategy can be associated 
with greater abundance of genes related to cell division and cell cycle, 
while a low nutrient (oligotrophic) strategy could have a greater 
abundance of genes related to carbohydrate metabolism and 
virulence, disease and defense (Song et al., 2017). Our results are in 
line with a former study showing that oligotrophs may be capable of 
utilizing a broad range of carbon substrates (Figures  2b,c and 
Supplementary Table S8). For example, a series of KEGG pathways 
associated with carbohydrate metabolism (e.g., butanoate 

metabolism, amino sugar and nucleotide sugar metabolism, fructose 
and mannose metabolism, and galactose metabolism) were more 
abundant in the KS and HC regions (Figures  2b,c and 
Supplementary Table S8). These KEGG pathways are associated with 
microbes having an extraordinary ability to acquire a variety of 
nutrients and energy from infertile soils. Oligotrophic 
microorganisms had greater gene abundances associated with 
metabolic functions suggesting that metabolic versatility is an 
essential trait of oligotrophic microbial communities (Liao et al., 
2023; Zheng et al., 2024). The metabolic versatility likely reflects an 
important adaptive strategy of oligotrophs in coping with resource 
scarcity (Chen et al., 2021). Moreover, soil microorganisms habiting 
oligotrophic ecosystems become progressively enriched with genes 
associated with stress-tolerant processes enabling oligotrophs to 
maintain genome integrity by preventing radiation-induced DNA 
damage in bare soils, e.g., DNA damage repair, cation transport, 
sporulation, and osmolyte biosynthesis (Coleine et al., 2024; Goberna 
et al., 2014; Malik et al., 2020). Our results showed that 5 KEGG 
pathways associated with replication and repair (Base excision repair, 
DNA replication, homologous recombination, mismatch repair, and 
nucleotide excision repair) were enriched in the HC region 
(Figures  2b,c and Supplementary Table S8). Thus, such harsh 
conditions encourage microbes in environments such as the HC or 
KS regions to evolve more diverse metabolic pathways to thrive in 
such “demanding” soil habitats.

FIGURE 5

The S cycle and the RPKM abundance of functional trait genes related to S cycling in the six eco-regions across China. KS, karst area of southwest 
China; AS, agro-pastoral ecotone of southwest China; QT, Qinghai–Tibet Plateau, LP, Loess Plateau; FG, forest-grassland ecotone; HC, deserts of the 
Hexi Corridor.
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Nitrogen (N) is considered to be a critical limiting factor in the 
productivity of deserts, second only to water availability, due to the 
extreme lack of nitrogen fertilizers and the high C:N ratio of plant 
litter inputs (Hu et al., 2017; Ramond et al., 2022). The accumulation 
of N in desert soil is mainly stored through biological N2 fixation 
(Belnap, 2002). In natural soils, biological N2 fixation is carried out 
primarily by Klebsiella pneumonia. Its N2 fixation ability can only 
be  expressed under anoxic/anaerobic conditions with molecular 
nitrogen as the only carbon source (Hsu and Buckley, 2009). In our 
study, the HC region had the highest abundance of genes responsible 
for encoding enzymes of N2 fixation across all eco-regions assessed 
(Figure 4 and Supplementary Table S10). From the above it becomes 
clear that our results are consistent with an innovative large-scale 
survey in distinct terrestrial ecosystems which showed that grasslands 
have a strong N2 fixation capacity and are overwhelmingly superior to 
deserts (Hu et al., 2024). Nitrous oxide (N2O) is a potent greenhouse 
gas with more than 1/4 of N2O in atmosphere having an origin from 
soils, with nitrification and denitrification be the two predominant 
processes producing N2O (Tian et al., 2020). The sequential aerobic 
oxidation of NH3 to NO3

− by nitrification followed by the anoxic/
anaerobic reduction of NO3

− to N2O via denitrification (Burgin et al., 
2011; Knowles, 1982). In our study, the gene abundances for 
nitrification for each of the regions trialed were all much smaller than 
those for denitrification (Figure 4 and Supplementary Table S10). This 
implies that denitrification, rather than nitrification, dominates N2O 
formation from terrestrial ecosystem. However, it remains unclear 
which specific process between concurrent nitrification and 
denitrification dominates the N2O emission globally. Moreover, the 
nitrification gene abundances for denitrification from the HC region 
is much lower than that from the other five regions (Figure 4 and 
Supplementary Table S10). Based on biogeochemical theory or 
calculation of the Gibbs energy, oxygen reduction by nitrifiers is 
thermodynamically favored over NO3

−reduction by denitrifiers. 
Previous studies showed that in drylands, scarce rainfall may rarely 

allow for the development of the wet anoxic soil conditions that are 
required for denitrification (Han et al., 2024; Krichels et al., 2023). 
Finally, the abundance of genes for nitrogen transport and organic N 
metabolism in the HC region were found also lower than those from 
the other five regions (Figure 4 and Supplementary Table S10). This 
phenomenon could be  related to the oligotrophic conditions that 
prevail in desert ecosystems.

Sulfur (S) plays a pivotal role for numerous bio-chemical processes 
within the atmosphere, lithosphere, pedosphere, hydrosphere, 
biosphere, including the functions of all living organisms. 
Microorganisms drive the S cycle through oxidation, reduction and 
disproportionation reactions, connecting the cycles of C and N, 
providing energy flow and biogeochemical balance to ecosystems 
(Zhou et al., 2024). The S cycle involves the conversion of inorganic and 
organic S. In inorganic S conversion, the processes of ASR and DSR, 
and their key functional genes such as sat, aprA, aprB, dsrA and dsrB 
have been fully studied (Santana et al., 2021; Yu et al., 2021). DSR is 
often coupled with the oxidation of organic substrates, from volatile 
fatty acids (VFAs) to recalcitrant aromatic hydrocarbons (Muyzer and 
Stams, 2008). In our study, the abundance of genes for ASR in the AS 
is lower than that from the other five regions, but the difference was not 
considered significant (Figure  5 and Supplementary Table S12). 
Meanwhile, there was no significant difference in the abundance of the 
genes contributing to DSR across the regions. Other inorganic S forms, 
such as [Thio-]sulfate, tetrathionates (S4I), and elemental S (S0), require 
further investigation on the functional genes, pathways, and the type 
of microorganisms involved in biotransformation. SOX complex is an 
enzyme complex composed of seven core proteins SoxABCDXYZ, first 
discovered in Paracoccus pantotrophus and only exists in the bacterial 
periplasmic space (Friedrich et al., 2001). Thiosulfate is a good S source 
in organisms, which can produce organic sulfur through assimilation, 
extracellular entry or S and SO3

2− spontaneous formation of S2O3
2−, and 

the most important oxidation pathway through SOX system oxidation 
to SO4

2− (Friedrich et  al., 2001; Stoffels et  al., 2012). Our results 

TABLE 2  Microbial sulfur cycle processes in this study.

Name Description References

Assimilatory sulfate 

reduction

The pathway contains 11 gene families. The cysD, cysN, and sat gene families are involved in sulfate activation to adenosine 

5′-phosphosulfate (APS), while cysC converts APS to phosphoadenosine 5′-phosphosulfate (PAPS). The cysN-cysC gene cluster 

encodes the bifunctional enzyme CysN/CysC, responsible for sulfate assimilation to PAPS. Subsequently, cysH reduces PAPS to 

sulfite, and cysI, cysJ, and sir reduce sulfite to sulfide

Yu et al. (2021)

Dissimilatory sulfur 

reduction and 

oxidation

The pathway contains 22 gene families. The sat gene family participates in the interconversion of sulfate and adenosine 

5′-phosphosulfate (APS). The aprAB and qmoABC gene clusters are involved in the transformation of APS to sulfite. 

Furthermore, dsr gene families function in both dissimilatory sulfur reduction and oxidation. Specific members of these 

families (e.g., dsrAB, dsrC, dsrD, dsrEFH, dsrL, dsrMKJOP) are responsible for the transformation between sulfite and sulfide

Yu et al. (2021)

SOX systems
The SOX systems, comprising the 7 gene families soxA, soxB, soxC, soxD, soxX, soxY, and soxZ, catalyzes the oxidation of 

thiosulfate to sulfate in this pathway
Yu et al. (2021)

Sulfur reduction

The pathway contains 26 gene families. The asrABC, fsr, and mccA gene families are responsible for reducing sulfite to sulfide. 

The otr and ttrABC gene clusters reduce tetrathionate to thiosulfate. The sreABC and psrABC gene clusters mediate the 

reduction of elemental sulfur and polysulfide, respectively. Additionally, the hydABDG, shyABCD, and sudAB gene clusters 

catalyze the reduction of both elemental sulfur and polysulfide to sulfide

Yu et al. (2021)

Sulfur oxidation
The pathway contains 14 gene families. The fccAB and sqr gene families mediate sulfide oxidation. The doxAD, glpE, sseA, and 

tsdAB gene clusters oxidize thiosulfate, while soeABC and sorAB catalyze sulfite oxidation
Yu et al. (2021)

Sulfur 

disproportionation

The pathway contains 5 gene families. The phsABC gene cluster encodes thiosulfate reductase, which catalyzes the conversion 

of thiosulfate to sulfite and sulfide. The tetH gene mediates the disproportionation of tetrathionate into elemental sulfur, 

thiosulfate, and sulfate. Additionally, sor facilitates the transformation of elemental sulfur to sulfite and sulfide

Yu et al. (2021)

https://doi.org/10.3389/fmicb.2025.1595810
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al.� 10.3389/fmicb.2025.1595810

Frontiers in Microbiology 12 frontiersin.org

indicated that the abundance of the gene responsible for thiosulfate 
oxidation via the SOX complex in the HC region was lower than that 
in the LP region, but higher than that in the other four regions.

These functional genes are ubiquitously retrieved from a variety of 
habitats, and they all drive a variety of biogeochemical processes (Acinas 
et al., 2021; Broadbent et al., 2021; Kelly et al., 2021; Murakami et al., 2022; 
Nayfach et al., 2021; Sun et al., 2020; Zhang et al., 2021). In our study, the 
abundance of N- and S-cycling-related considerably differed between 
different eco-regions as opposed to the CAZyme-encoding genes’ 
abundance that differed geographically only slightly. Specifically, for N 
and S cycling for both HC and FG regions, their gene abundance was 
lower than those from the other four regions 
(Supplementary Tables S10, S12). The most important reason for this 
difference is the huge difference in the environmental conditions among 
the trialed regions. Another explanation for that discrepancy is the 
inherent limitation of DNA-based metagenomic technique that can only 
detect presence/absence of functional genes and not their expression level 

characteristics. Thus, complementary metatranscriptomic, metaproteomic 
and culture-dependent approaches could have helped uncovering 
microbial diversity, functional potential, and adaptations in different 
environments (Demin et al., 2024), on a global basis. In addition, classical 
quantitative polymerase chain reaction (qPCR) still remains a powerful 
tool for quantitative analysis of the key functional genes’ abundance 
involved in C, N, and S cycling (Tu et al., 2017).

5 Conclusion

Microorganisms play a vital key role in terrestrial ecosystems 
participating in biogeochemical cycling of the elements essential for life. 
In this study, using metagenomics and statistical tools, we identified the 
abundance of the functional genes from the topsoil (0–20 cm) of six 
typical eco-regions in China. Remarkably, the HC and KS regions 
harbor the most abundant distinctive KEGG pathways, including 

FIGURE 6

Importance of environmental factors in driving the distribution of RPKM abundance for functional trait genes. Distance-based redundancy analysis 
(db-RDA) illustrates the effects of environmental factors on the variations in microbial genes composition involved in the SOC (a), N (b), and S (c) 
cycling, respectively. (d) Individual impact of each environmental factor is calculated based on rdacca.hp package in C, N, and S cycling. Vectors 
represent environmental factors; red vectors represent environmental factors significantly correlated with the first two axes (p < 0.01). KS, karst area of 
southwest China; AS, agro-pastoral ecotone of southwest China; QT, Qinghai–Tibet Plateau; LP, Loess Plateau; FG, forest-grassland ecotone; HC, 
deserts of the Hexi Corridor.
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carbohydrate metabolism and replication and repair of 
DNA. Meanwhile, we  demonstrated that the abundance of the 
CAZyme-encoding genes differs only slightly on a geographical basis 
as opposed to the abundance of N- and S-cycle related genes, which 
varies considerably between six eco-regions. In contrast to the excellent 
resilience of the HC and KS regions, the abundance of N and S cycling 
genes in these two regions is much lower than that from the remaining 
four regions. Furthermore, we linked the abundance of functional genes 
related to the C, N, and S cycles to multiple ecological drivers (latitude, 
NDVI, pH, EC, SOC, TN, C:N ratio, and MAP). Overall, these findings 
provide a reliable evidence base to accurately describe and characterize 
the functioning of soil microbiomes in terrestrial ecosystems.
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Glossary

MAP - Mean annual precipitation

MAT - Mean annual temperature

NDVI - Normalized difference vegetation index

SOC - Soil organic carbon

EC - Electrical conductivity

TN - Total nitrogen

RPKM - Reads per kilobase per million mapped reads

KEGG - Kyoto Encyclopedia of Genes and Genomes

CAZy - Carbohydrate-active enzymes

LDA - Linear discriminant analysis

db-RDA - Distance-based redundancy analysis

PCoA - Principal co-ordinates analysis

PPMC - Pearson’s product moment correlation coefficient

GHs - Glycoside hydrolases

GTs - Glycosyltransferases

PLs - Polysaccharide lyases

CEs - Carbohydrate esterases

AAs - Auxiliary activities

CBMs - Carbohydrate-binding modules

DNRA - Dissimilatory nitrate reduction to ammonia

ANRA - Assimilatory nitrate reduction

KS - Karst area of southwest China

AS - Agro-pastoral ecotone of southwest China

QT - Qinghai–Tibet Plateau

LP - Loess Plateau

FG - Forest-grassland ecotone

HC - Deserts of the Hexi Corridor
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