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Disinfectants are commonly utilized by humans to combat microorganisms. However, 
residual disinfectants may promote environmental antimicrobial resistance by 
facilitating horizontal gene transfer (HGT) of antibiotic resistance genes. Bronopol is 
a routinely used disinfectant that persists in the environment, and previous studies 
have concentrated on its ecotoxicity rather than its implications on the propagation 
of resistance genes. This study aimed to establish an in vitro conjugation model 
to investigate whether bronopol promotes the transfer of antibiotic resistance 
genes (ARGs) via plasmid conjugation. Using Escherichia coli DH5α and DC8855 
as donors harboring RP4-7 and blaNDM-4-positive IncFII(K) plasmids, respectively, 
and J53 as the recipient strain, we found that sub-inhibitory concentrations of 
bronopol (2 μg/L and 20 μg/L) significantly increased the conjugative transfer 
frequency (CTF) of both plasmids. Mechanistic analysis revealed that bronopol 
enhanced bacterial membrane permeability, as demonstrated by propidium iodide 
(PI) staining, 1-N-phenylnaphthylamine (NPN) fluorescent probes, transmission 
electron microscopy (TEM), and upregulation of the outer membrane protein 
gene ompC. Additionally, bronopol treatment upregulated RP4 plasmid-encoded 
genes involved in DNA transfer/replication (trfAp) and the global regulator of HGT 
(kilA/kilB). These findings highlight a previously unrecognized role of bronopol 
in facilitating the dissemination of antibiotic resistance genes, particularly those 
of clinical significance.
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1 Introduction

Antimicrobial resistance (AMR) is mostly attributable to the extensive utilization of 
antibiotics in agriculture and healthcare, resulting in the rapid emergence of antibiotic-
resistant bacteria (Aminov, 2009). AMR is expected to cause 10 million deaths by 2050, with 
a total economic cost of $100 trillion (Patricios et al., 2023). In addition to the unavoidable 
establishment of medication resistance, the fast spread of drug-resistant genes is especially 
concerning in the long run. Mutation, vertical gene transfer (VGT), and horizontal gene 
transfer (HGT) are the primary mechanisms by which AMR is transmitted (Neil et al., 2021; 
Guzman-Otazo et al., 2022).

Antibiotic-resistant genes (ARGs) are transmitted in the environment mostly by HGT 
(Woods et al., 2020; Xu et al., 2021). There are three major HGT pathways: transformation, 
transduction, and conjugation (Phan et al., 2024). Conjugation is the most common HGT 
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mechanism, involving direct physical contact between cells via 
columnar bridges or pore channels (Meng et  al., 2022; Zhuang 
et al., 2024). When bacteria are exposed to severe environmental 
conditions, such as the presence of antimicrobial drugs, they may 
acquire ARGs, which allow them to change their genomes for 
increased flexibility and adaptation (Liu et al., 2019; Song et al., 
2020). Notably, the frequency of conjugation among bacteria 
remains modest, although certain foreign chemicals have the 
ability to accelerate this process. For example, the antibacterial 
medication mucin (Xiao et  al., 2022), the antiepileptic drug 
carbamazepine (Wang et al., 2019), non-nutritive sweeteners (Yu 
et  al., 2021), and disinfectants such as triclosan and hydrogen 
peroxide (Lu et  al., 2018) have been shown to favor the 
conjugation process.

Bronopol (2-bromo-2-nitro-1,3-propanediol) is a preservative 
and broad-spectrum biocide widely used in food industry, 
cosmetics formulation, and aquaculture product development 
(Peters et al., 1983; Butler and Stergiadis, 2011; Carbajo et al., 2015; 
Lopez-Sanchez et  al., 2021; Wang et  al., 2022). While existing 
research has primarily focused on its environmental and human 
health risks (Perrenoud et  al., 1994; Aerts et  al., 2020; Lopez-
Sanchez et al., 2021; Magara et al., 2021; Wang et al., 2023), the role 
of bronopol in plasmid-mediated conjugative transfer of ARGs 
remains unexplored (Vijayakumar and Sandle, 2019). Escherichia 
coli (E. coli) serves as a universal model for studying intraspecific 
conjugative transfer (Zhu et al., 2023; Yang et al., 2024). To gain 
fundamental insights into bronopol-bacteria interactions and their 
potential clinical hazards, this study investigated the impact of 
bronopol on conjugative transfer of the RP4-7 and blaNDM-4-positive 
IncFII(K) plasmids in E. coli strains, exploring underlying 
mechanisms involving membrane permeability, reactive oxygen 
species (ROS) production, and conjugation-related genes 
expression. Our findings reveal that bronopol promotes conjugative 
transfer, representing a previously unrecognized pathway for 
environmental dissemination of ARGs.

2 Materials and methods

2.1 Bacterial strains and disinfectants

Escherichia coli DH5α, which possesses the RP4-7 plasmid 
containing chloramphenicol and ampicillin resistance genes, acted as 
the donor, while E. coli J53, resistant to sodium azide, acted as the 
recipient. Both isolates were procured from the laboratory for 
conjugation testing. Bronopol originated from Aladdin, and 
phosphate-buffered saline (PBS) was employed as the solvent.

2.2 Proliferation of donor and recipient 
bacterial strains

Overnight cultures of J53 and DH5α were diluted in Luria-Bertani 
(LB) broth to a turbidity of 0.5 McFarland standard. Bronopol was 
administered to each bacterium to achieve final concentrations of 
2 μg/L, 20 μg/L, and 200 μg/L. Samples devoid of bronopol served as 
controls. The mixes were incubated statically, and OD600 was recorded 
hourly for a duration of 16 h. Each group was examined three times.

2.3 In vitro conjugative transfer system

Conjugation experiments between donor and recipient bacteria 
were conducted under bronopol exposure using a modified protocol 
adapted from the previous study (Pallares-Vega et al., 2021). Bacteria 
were cultivated in LB broth at 37°C and harvested using centrifugation. 
A McFarland turbidity of 0.5 was then attained by resuspending the 
bacterial precipitate in PBS, resulting in a final bacterial density of 
1.5 × 108 CFU/mL, thereby forming the final conjugation system with 
a total volume of 2 mL. One milliliter of either donor or recipient 
bacteria was combined with varying concentrations of bronopol 
(2 μg/L and 20 μg/L), then incubated statically for 12 h at 37°C. Plates 
were prepared by adding 5 μL of conjugation mixture to LB agar 
supplemented with sodium azide (200 mg/L) and ampicillin 
(100 mg/L), then incubated under standard conditions. 
Transconjugant enumeration was performed by plating on LB agar 
medium containing 200 mg/L sodium azide to quantify recipient 
counts. CTF was calculated as the transconjugant-to-recipient ratio. 
Antimicrobial susceptibility tests verified representative colonies from 
conjugate crosses. All mating experiments were conducted in 
biological triplicate.

2.4 Reactive oxygen species (ROS) 
production and membrane permeability 
assay

Intracellular ROS levels were measured with a Cellular ROS 
Assay Kit (Beyotime, Shanghai, China) per the manufacturer’s 
protocol. Donor and recipient cultures were grown overnight to an 
OD600 of 0.5 and resuspended in PBS. Bacteria were incubated with 
10 μM DCFH-DA at 37°C for 30 min in the dark. The unbound 
probe was removed via two PBS washes. After a 2-h incubation at 
37°C, fluorescence intensity was recorded using Infinite M200 
Microplate Reader at 488 nm excitation/525 nm emission. All 
experiments were performed in triplicate biological repeats. 
Membrane permeability was evaluated with 0.5 μM PI (propidium 
iodide) and 10 μM NPN (1-N-phenylnaphthylamine) (Beyotime). PI 
excitation/emission was 535 nm/615 nm, while NPN was 
350 nm/420 nm. All tests were conducted in triplicate. According to 
the previous experimental protocol (Zhang et al., 2022), we analyzed 
bacterial membrane permeability using Confocal laser scanning 
microscopy (CLSM). Bacteria with a 0.5 McFarland turbidity were 
inoculated into PBS containing 2 μg/L bronopol or 20 μg/L bronopol 
and treated at 37°C for 12 h. The samples were then incubated at 
room temperature in PI (50 mg/L) for 20 min. Bright-field and 
fluorescent images were captured using CLSM (LSM800, Zeiss, Jena, 
Germany).

2.5 Analysis with TEM

Following 12-h exposure to 20 μg/L bronopol, bacterial cell 
ultrastructure was analyzed via transmission electron microscopy 
(TEM). E. coli DH5α and J53 cultures were harvested by 
centrifugation at 5,000 × g for 6 min, washed twice with ice-cold PBS, 
and resuspended in PBS. Cells were fixed in 2.5% (v/v) glutaraldehyde 
in 0.1 M sodium cacodylate buffer (pH 7.4) at 4°C overnight. 
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Specimens were dehydrated through a graded ethanol series (50, 70, 
90, 100% for 15 min each), infiltrated with Epon-Araldite epoxy 
resin, and polymerized at 60°C for 48 h. Ultrathin sections (70 nm) 
were prepared using an EM UC7 ultramicrotome (Leica, Germany), 
post-stained with 2% uranyl acetate and lead citrate, and imaged on 
a Tecnai T12 TEM (Thermo Fisher Scientific, USA) operated 
at 120 kV.

2.6 Expression levels of mRNA from 
conjugative transfer-related genes

Bacterial cultures (1.5 × 108 CFU/mL) were treated with 20 μg/L 
bronopol at 37°C for 12 h. Total RNA was extracted using the 
EASYspin Bacterial RNeasy Mini Kit (Aidlab, China) as per the 
manufacturer’s instructions. cDNA was synthesized via reverse 
transcription with the PrimeScript RT reagent Kit (TaKaRa, Japan). 
qRT-PCR was carried out on an Applied Biosystems 7500 Fast Real-
Time PCR System (Thermo Fisher Scientific, USA) using SYBR 
Premix Ex Taq II (TaKaRa, Japan). Relative mRNA levels were 
normalized to the 16S rRNA using the 2−ΔΔCt method. Primer 
sequences are in Supplementary Table S1. All experiments were done 
in triplicate.

2.7 Statistical analysis

GraphPad Prism version 8.2.1 was used to analyze the data. The 
mean ± standard deviation is used to display the data. Independent 
samples t-test was used to assess significant differences, and p < 0.05 
was considered statistically significant.

3 Results

3.1 The minimum inhibitory concentration 
(MIC) of bronopol

Bronopol exhibited strain-specific minimum inhibitory 
concentrations (MICs), with values of 2 mg/L for DH5α and 4 mg/L 
for both J53 and DC8855 (Figure  1 and Table  1). After 24 h, all 
treatment groups with sub-inhibitory concentrations achieved growth 
levels comparable to the control group. However DH5α treated with 
200 μg/L bronopol displayed a lower growth rate during the 
exponential phase (5–12 h post-treatment; Figure  1A). To ensure 
consistent bacterial growth, which is a critical requirement for 
comparing the changes in the conjugative transfer frequency, in the 
subsequent experiments, we selected the concentrations of 2 μg/L and 
20 μg/L.

3.2 The subinhibitory concentration of 
bronopol enhances the conjugative 
transfer frequency of plasmids

Sub-inhibitory concentrations of bronopol significantly enhanced 
the conjugative transfer frequency (CTF) of the RP4-7 plasmid in a 
dose-dependent manner (Figure 2A). At 20 μg/L, the CTF increased 
by 4.15-fold (p < 0.01) compared to the control, while a 1.76-fold 
increase was observed at 2 μg/L (p < 0.05). To ascertain whether 
bronopol could enhance the CTF of clinically relevant wide-host-
range plasmids and to explore its implications for the spread of 
clinically significant carbapenem-resistant genes, we  concurrently 
measured the CTF of the IncFII(K) plasmid harboring the blaNDM-4 
gene (Figure 2B). While bronopol induced a weaker CTF promotion 
for IncFII(K) plasmid (115,297  bp, >10 KB) compared to RP4-7 
(60,002 bp), a 2.32-fold increase (p < 0.05) was detected for IncFII(K) 
at 20 μg/L. This indicates that bronopol at residual concentrations in 
the environment has a low capacity to increase the conjugative transfer 
frequency of large plasmids.

3.3 Impact of bronopol on cell membrane 
penetration

The cell membrane plays a pivotal role in the conjugation process. 
To delve into the biological mechanism of conjugative transfer, 
we investigated whether subinhibitory concentrations of bronopol 
could enhance cell membrane permeability by assessing inner and 
outer membrane permeability, conducting TEM, CLSM, and 
measuring ROS production. NPN staining revealed significant 
increases in outer membrane permeability, respectively, in both 
donor and recipient strains treated with 2 μg/L and 20 μg/L bronopol 
(Figure  3A). In addition, we  evaluated the cell membrane 
permeability using PI staining through microplate reader assays and 
CLSM analysis. The results showed that after pre-incubation of cells 
with bronopol, the fluorescence intensity increased in a 
concentration-dependent manner due to PI uptake and DNA 
binding, indicating a gradual decline in cell membrane integrity 
(Figure 3B and Supplementary Figure S1). In contrast to the blank 
control group, the bronopol-treated donor and recipient strains did 
not display a significant increase in fluorescence associated with ROS 
accumulation (Figure  3C). Concurrently, TEM images vividly 
revealed distinct morphological alterations in the cells induced by 
bronopol (Figures 3D,E). Bronopol-treated cells exhibited shrunken, 
roughened surfaces with distinct cytoplasmic membrane detachment, 
whereas control cells retained smooth, intact membranes. 
Collectively, these data affirm that bronopol exposure enhances cell 
membrane permeability, potentially facilitating the colocalization-
mediated transfer of antibiotic-resistance genes.

3.4 Effects of bronopol on RP4 plasmid 
conjugation-related genes and outer 
membrane porins/efflux pumps

Plasmid conjugation is predominantly governed by three core 
systems: mating-pair formation, DNA transfer, and replication. To 
investigate bronopol’s impact on this mechanism, we  analyzed 

TABLE 1 Basic information of clinical strain used in the conjugation assay.

Strains MLST 
types

Plasmid 
names

Resistance 
genes

Accession 
no. (NCBI)

DC8855 ST12531 pDC8855-

NDM-4

【IncFII(K)】

blaNDM-4, 

blaLAP-2, qnrS1, 

aac(3)-IId, 

blaCTX-M-14

CP146021
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transcriptional changes in genes encoding conjugation machinery 
components. Our results revealed significant divergences in gene 
expression patterns between treatment groups (Figure 4A). Following 
exposure to 20 μg/L bronopol during conjugation, mRNA expression 
levels of trfAp, kilA, and kilB were synergistically upregulated by 69.9, 
37.5, and 49.9% compared to the control, respectively. Conversely, 
treatment with 2 μg/L bronopol induced no significant change in kilA 
expression, yet triggered marked increases in trfAp and kilB expression 
(83.5 and 27.0%, respectively). Furthermore, no significant effects of 
various treatment groups were detected on the global regulatory gene 
(korB). These findings suggest that bronopol promotes conjugative 
transfer channel formation and plasmid transmission through 
coordinate upregulation of global regulator genes (kilA/kilB) and the 
trfA promoter (trfAp).

Next, we investigated alterations in outer membrane porin and 
efflux pump gene expression at the bacterial cellular level. Among the 
tested genes, ompA expression did not differ significantly between 
bronopol-treated and control groups (Figure  4B). Notably, ompC 
transcription was significantly upregulated in cells exposed to both 
2 μg/L and 20 μg/L bronopol. Additionally, examination of major 
efflux pump genes revealed a modest upregulation of acrA and acrB 

in bronopol-treated cells at sub-inhibitory concentrations. Collectively, 
these findings suggest that bronopol exposure induces coordinated 
increases in ompC membrane porins and efflux pumps.

4 Discussion

The misuse and overuse of antibiotics have emerged as key drivers 
of the global rise in AMR (Browne et  al., 2021). While HGT of 
resistance elements across bacterial species exacerbates this crisis, the 
role of disinfectants in modulating HGT remains understudied. In 
recent years, especially against the backdrop of the COVID-19 
pandemic, the usage of various disinfectants has increased sharply. 
Currently, the increase in the usage of disinfectants may accelerate the 
spread of AMR, thus posing environmental and public health risks 
(Hu et al., 2023). Recent research has begun to uncover disinfectants 
as potential facilitators of plasmid-mediated conjugation, yet most 
prior studies rely on laboratory strains and model plasmids (Han et al., 
2019; Mantilla-Calderon et al., 2019; Lu et al., 2020). Here, we show 
that bronopol at environmentally relevant concentrations significantly 
increases CTF of RP4-7 (Supplementary Figure S2). Compared with 

FIGURE 1

Growth curves of (A) donor (E. coli DH5α) and (B) recipient (E. coli J53) strains exposed to sub-inhibitory concentrations of bronopol.

FIGURE 2

Bronopol increases the conjugation frequencies of the RP4-7 plasmid (A) and the IncFII(K) plasmid (B). Independent-samples t-test was used to 
compare bronopol-treated groups to the blank control (drug-free): ns, not significant, **p < 0.01; ***p < 0.001.
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the RP4 plasmid, clinical IncFII(K) plasmids typically carry multiple 
replicons and have more complex conjugative transfer systems (Ho 
et al., 2015; Rodriguez et al., 2015). The IncFII(K) plasmid used in this 
study was classified as a large plasmid type (115,297  bp, >10 kb). 
Fortunately, bronopol showed weak promotion of conjugative transfer 
of the IncFII(K) plasmid. Given the widespread use of bronopol, 
further attention should still be paid to the risk of bronopol promoting 
the transmission of drug-resistant plasmids in other clinical strains in 
the future.

The process of plasmid conjugative transfer is directly related to 
changes in the permeability of the cell membrane, which acts as a 
barrier that controls the entry and efflux of chemicals (Chen et al., 
2005). Increased membrane permeability has been shown to greatly 
aid plasmid horizontal transfer in earlier research (Han et al., 2019; Yu 
et al., 2021). As a powerful membrane-disrupting agent, bronopol 
induces intracellular substance leakage and cell death (Lee and O'neill, 
2019). Using the NPN probe to measure outer membrane permeability, 
the study’s findings demonstrated that bronopol treatment within the 
measured concentration range damaged the bacterial outer 
membrane. Furthermore, PI staining and laser confocal observation 

showed that 2 μg/L bronopol treatment also potentially increased the 
permeability of the plasma membrane (Figure 2A). Unlike triclosan, 
which relies on ROS-mediated lipid bilayer damage (Lu et al., 2018). 
Bronopol-induced permeability occurred independently of ROS 
production. This distinction highlights a novel ROS-independent 
pathway for disinfectant-enhanced conjugation, likely involving direct 
structural alterations of the bacterial cell envelope. Such membrane 
remodeling may facilitate plasmid translocation by creating transient 
pores or destabilizing the membrane barrier, as previously proposed 
for quaternary ammonium compounds (Liu et al., 2023).

The RP4 plasmid harbors a suite of genes essential for conjugative 
transfer (Miyakoshi et al., 2020; Virolle et al., 2020). In this study, 
bronopol exposure significantly upregulated the expression of trfAp, 
a key gene encoding the DNA transfer/replication initiator protein. 
This finding aligns with a recent report demonstrating concentration-
dependent trfAp induction by glyphosate in E. coli (Zhang et al., 2021; 
Yang et al., 2022). The kilA and kilB genes are host-killing determinants 
inhibited by korA and korB, respectively (Goncharoff et al., 1991) . In 
this study, we observed the synergistic increase of the kilA and kilB 
genes, which is similar to the result of a previous study (Yang et al., 

FIGURE 3

(A) Alterations in outer membrane permeability evaluated using the NPN probe after exposure to subinhibitory doses of bronopol. (B) Assessment of 
inner membrane permeability alterations using PI probe following exposure to subinhibitory doses of bronopol. (C) Variations in ROS production 
resulting from exposure to subinhibitory concentrations of bronopol. (D) Blank control treatment group. (E) Surface morphology was examined using 
scanning electron microscopy with 20 μg/L of bronopol. Substantial differences between the bronopol-treated groups and the bronopol 0 μg/L were 
established using one-way analysis of variance: *p < 0.05; ***p < 0.001; ns, not significant.
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2022). This study suggests that the increased expression of kilA and 
kilB antagonizes the functions of korA and korB, leading to the release 
of the inhibition of RP4 transfer genes during conjugation.

Previous studies indicate that conjugation-promoting compounds 
induce remodeling of the bacterial outer membrane, often 
accompanied by upregulation of outer membrane porin genes (Rosas 
and Lithgow, 2022; Wu et al., 2023). However, the specific porin genes 
involved in this remodeling process can vary depending on the 
compound. For instance, the antiepileptic drug carbamazepine 
upregulates ompA and ompN to facilitate conjugative transfer (Wang 
et al., 2019). In contrast, bronopol exposure modestly induced ompC 
expression without altering ompA levels in this study. The increased 
ompC expression may enhance plasmid uptake by augmenting 
membrane permeability or creating translocation channels for RP4 
transfer. Concurrent upregulation of acrA and acrB, genes that encode 
efflux pumps responsible for extruding antimicrobial compounds, 
implies a dual role for bronopol: it disrupts membrane integrity while 
simultaneously triggering adaptive responses in bacteria to expel the 
disinfectant. Collectively, these findings and data suggest that 
bronopol promotes plasmid dissemination through a multifaceted 

mechanism rather than a single pathway, involving membrane 
permeability enhancement, porin remodeling, efflux pump activation, 
as well as selectively activating plasmid-encoded transfer machinery 
and global regulatory networks.

Notably, this study has limitations. While bronopol enhances 
intergenera plasmid transfer, cross-genera validation is lacking. 
Additionally, although membrane permeability and conjugative gene 
upregulation were identified as mechanisms, other pathways, such as 
metabolite alterations, require further exploration. These 
uninvestigated aspects may involve complex interplay between 
disinfectant exposure and bacterial physiology, underscoring the need 
for broader validation and mechanistic studies to fully characterize 
bronopol’s impact on antibiotic resistance dissemination. A critical 
observation from this study is the substantial difference in bronopol’s 
promotion of conjugative transfer frequency between RP4-7 and 
IncFII(K), suggesting that bronopol’s enhancing effect may exhibit 
plasmid specificity. Given the diversity of clinical resistance plasmids, 
we advocate that future studies should incorporate as many types of 
clinical resistance plasmids as possible to overcome the limitations of 
previous research that only involved RP4 plasmids.

FIGURE 4

Effects of bronopol stress on the expression of genes associated with pore formation and conjugation. (A) The global regulation gene (korB), DNA 
transfer and replication system genes (trfAp), and global regulator genes (kilA and kilB). (B) Cell membrane porin genes (ompA and ompC) and efflux 
pump genes (acrA and acrB). Error bars represent the standard deviations of triplicate tests. ns, not significant, *p < 0.05, **p < 0.01; ***p < 0.001.
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SUPPLEMENTARY FIGURE S1

Fluorescence microscopy imaging of membrane permeability using PI 
staining. (A) PBS control; (B) cells treated with bronopol 2 μg/L; (C) cells 
treated with bronopol 20 μg.

SUPPLEMENTARY FIGURE S2

Frequency of RP4-7 plasmid (A) and IncFII(K) plasmid (B) conjugative 
transfer underexposure to bronopol. Significant differences between 
bronopol treated groups and the control were analyzed using 
independent-sample test: ns, not significant, *p < 0.05; **p < 0.01; 
***p < 0.001.
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