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Introduction:Mold-derived contamination in cigar tobacco leaves causes severe

economic losses and health risks due tomycotoxin production. This study aimed

to identify early-warning biomarkers formold and elucidate their interactionwith

fungal communities.

Method: Gas chromatography-ion mobility spectrometry (GC-IMS) combined

with high-throughput sequencing was employed to profile volatile organic

compounds (VOCs) and fungal communities during artificial molding.

Results: A total of 72 VOCs were detected, with four compounds (2-methyl-1-

butanol-M, 2-methyl-1-butanol-D, 2-propanone, and 1-penten-3-ol) identified

as early-warning biomarkers through VIP > 1 and P < 0.05, showing 1.31.5-

fold increases in early mold stages (MB3). Furthermore, fungal diversity sharply

declined post-molding (OTUs reduced by 85.7%), with Aspergillus dominating

(>99.45% abundance), and exhibiting strong positive correlations with 1-penten-

3-ol (ρ = 0.61) and benzaldehyde-M (ρ = 0.67).

Discussion: These findings provide actionable biomarkers for industrial mold

prevention and insights into fungal-VOC interaction, with implications for

perishable crop storage.

KEYWORDS

cigar tobacco, GC-IMS, early-warning biomarkers, fungal community, Aspergillus,

volatile organic compounds

1 Introduction

Mold contamination in agricultural products poses severe economic and health threats.
Such contamination not only compromises the appearance and sensory quality but also
promotes the biosynthesis of hazardous metabolites, including mycotoxins (Cao et al.,
2024; Zhou et al., 2024b). In China alone, tobacco mold results in annual losses exceeding 7
billion CNY, while mycotoxins from spoiled leaves endanger consumer safety (Jiabao et al.,
2022; Pauly and Paszkiewicz, 2011). Consequently, the early and rapid detection of leaf-
borne spoilage fungi is imperative to prevent these contaminants from entering the final
product. In addition, studying early-warning biomarkers could help companies develop
more appropriate storage strategies to reduce mold growth.

Mold contamination exhibits dynamic progression characteristics, with its risk level
transitioning from an initial safe state to subsequent stages of microbial proliferation
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and mycotoxin production. The process of mold infestation varies
widely, encompassing a spectrum from a risk-free state to the
emergence of microorganisms and eventual toxin generation.
Mold monitoring can be achieved through mycelium observation,
characteristic biomarkers, and toxin detection (Gong et al., 2024).
Conventional mycelium examination methods face limitations
in early warning capabilities due to their time-consuming and
observational lag. Consequently, the detection of early-stage
biomarkers has emerged as a research priority for achieving timely
mold contamination alerts. Notably, mold colonies release VOCs
during early metabolic stages, a phenomenon that precedes visible
mycelial growth or sporulation by a considerable temporal margin.
Furthermore, modern analytical technologies offer enhanced
sensitivity, enabling not only more convenient detection but also
improved accuracy and precision in VOC quantification. Research
efforts to identify early-warning biomarkers throughVOCs analysis
have been conducted in several fields. For example, 1-octen-3-
ol and 3-octanone have been reported to serve as early-warning
biomarkers for molds in grain (Hamow et al., 2021; Tian et al., 2023;
Zhang et al., 2022). Additionally, some organic acids, aldehydes,
and ketones also have been identified as early-warning biomarkers
for mold in foods (Afsah-Hejri et al., 2023; Najmeh et al., 2022; Yin
et al., 2023).

Advanced detection technologies for VOCs encompass a
diverse array of analytical approaches, including electronic
nose (E-nose), solid-phase microextraction coupled with gas
chromatography-mass spectrometry (SPME-GC-MS), and gas
chromatography-ion mobility spectrometry (GC-IMS). For
example, E-nose platform was used to detect the VOCs in rice,
and established a system to detect the early stages of rice molds
(Zhang et al., 2022). Karlshoj et al. (2007) also identified alcohols
and ketones as characteristic metabolites from different molds
using E-nose. Afsah-Hejri et al. (2023) conducted a comprehensive
analysis of A. flavus-contaminated pistachios using SPME-GC-MS.
Their investigation identified α, β-dimethyl benzenepropanoic
acid as a definitive biomarker for A. flavus infection in pistachio
kernels. Emerging research in tobacco mold contamination has
demonstrated the successful application of GC-IMS for identifying
specific volatile biomarkers. Such Yu et al. (2023) identified
1-octene-3-alcohol, 1-pentanol, and pentanal as early-stage
biomarkers in cigar tobacco leaves following infection by two
strains of fungi (Aspergillus flavus and Penicillium chrysogenum).
Furthermore, Wei et al. (2025) characterized dynamic VOC
profiles during mold development in cigar components, revealing
distinct compound patterns between wrapper and filler leaves.
The wrapper exhibited elevated levels of 3-phenyl-2-propen-
1-ol, cyclopentanone, 3-methyl-1-butanol, (Z)-3-hexenol, and
4-methoxybenzyl formate, while the filler showed increased
1-pentanol-M, 3-methyl-1-butanol, 2-methyl-1-propanol-M, and
2-propenyl heptanoate concentrations during spoilage. Notably,
these successful precedents establish a methodological foundation
for employing GC-IMS technology in investigating VOC profiles
during tobacco fungal deterioration.

However, VOC emission patterns during mold contamination
demonstrate intrinsic connections with microbial metabolic
activities. Such as Li et al. (2021a) demonstrated that ethyl acetate-
D and 3-hydroxybutan-2-one-D show strong correlations with

Aspergillus flavus contamination in maize kernels. Nevertheless,
fungal spoilage constitutes an ecological succession process rather
than singular microbial action, characterized by dynamic microbial
community restructuring. Contemporary metagenomic analyses
reveal significant α-diversity reductions in phyllosphere microbiota
following tobacco mold outbreaks (Fu et al., 2024b; Wei et al.,
2024). Particularly, Aspergillus was a fungal species associated with
a high percentage of moldy tobacco leaves (Wei et al., 2024;
Wu et al., 2024a,b; Zhou et al., 2021a). Nevertheless, the causal
relationships between VOC flux dynamics and microbial consortia
evolution remain poorly elucidated. Therefore, studying VOCs and
fungal communities during mold growth, as well as analyzing the
correlation between characteristic substances and major fungi not
only helps to find early-warning biomarkers but also has deeper
significance in revealing the relationship between characteristic
substances and microorganisms.

In this study, we subjected cigar tobacco leaves to varying
durations of artificial molding under controlled laboratory
conditions. The VOCs were systematically analyzed using GC-
IMS, revealing statistically significant differential compounds
throughout the molding process, particularly identifying early-
warning biomarkers during the initial molding phase. Meanwhile,
we performed comprehensive analysis of fungal community
dynamics on tobacco leaf surfaces through high-throughput
sequencing. Furthermore, we established correlation networks
between these significantly differentiated compounds and fungal
populations using Spearman’s correlation analysis. This study
elucidates the characteristic VOC profiles associated with molding
in cigar tobacco leaves, with particular emphasis on early-stage
biomarkers. The findings provide theoretical foundations for
developing mold early-warning systems in tobacco processing.
Moreover, the identified correlations between characteristic
VOCs and predominant fungal species offer valuable insights
into microbial contributions to volatile compound formation,
potentially guiding targeted mold prevention strategies in tobacco
production. Additionally, this study provides methodological
guidance for the research of early-warning biomarkers in food
preservation, grain storage, and related fields.

2 Materials and methods

2.1 Reagents and instruments

2-butanone, 2-pentanone, 2-hexanone, 2-heptanone, 2-
octanone, and 2-nonanone (Analytical Reagent, 99.999%, Aladdin)
were used as reference standards. Ion mobility spectrometry was
performed using FlavourSpec R© (G.A.S., Germany, Dortmund).
CTC-PAL 3 static headspace automatic injection system (CTC
Analytics AG, Switzerland) were used.

2.2 Preparation and sampling of cigar
tobacco leaves

Sterile water was sprayed on the surface of the cigar tobacco
leaves, which were collected from the Hainan province until the
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moisture content reached 30%. The leaves were sealed and placed
in a constant temperature and humidity incubator at 28◦C and 85%
RH. Samples were collected at 3, 7, 10, and 15 days and labeledMB3,
MB7, MB10, and MB15, respectively (Yu et al., 2023; Wu et al.,
2024b; Wei et al., 2025). The untreated leaves were designated as
MB0. The samples were stored at −80◦C for subsequent microbial
diversity and volatile substance analysis.

2.3 DNA extraction and ITS application
sequencing

Genomic DNA was extracted using the E.Z.N.A.
R©

soil DNA
kit (Omega Bio-tek, Norcross, GA, U.S.), according to the
manufacturer’s instructions and detected using 1% agarose gel
electrophoresis. Amplification was performed using the primers
ITS1F 5′3′ CTTGGTCATTTAGAGGAAGTAA) and ITS2R 5′3′

GCTGCGTTCTTCATCGATGC) (Wang et al., 2022), followed by
detection of DNA concentration and purity using aNanoDrop 2000
spectrophotometer (Thermo Scientific). Purified PCR products
were sequenced on an Illumina NextSeq 2000 platform (Illumina,
San Diego, USA) according to the protocols of Majorbio Bio-
Pharm Technology Co. Ltd. (Shanghai, China). Each sample
was treated in triplicate. Sequencing reads were submitted to
the NCBI Sequence Read Archive (SRA) database (Accession
Number: PRJNA1215953).

2.4 Analysis of volatile organic compounds
using GC-IMS

2.4.1 Samples pretreatment
Tobacco samples (1.0 g) were placed in a headspace sampling

vial and sealed with a magnetic cap and silicone septum. Then,
incubating samples at 80◦C for 15min with the speed of 500 r/min
(Yu et al., 2023). Each sample was tested in triplicate.

2.4.2 GC-IMS analysis
2.4.2.1 GC conditions

MXT-WAX column (15 m×0.53mm, 1.0 um, Restek, USA);
column temperature 60◦C; carrier gas: nitrogen (purity ≥

99.999%). The procedure was as follow: 0–2min 2.0 mL/min, 2–
8min increase linearly to 10.0 mL/min, 8–10min increase linearly
to 100.0 mL/min, hold for 10min. The injection temperature was
maintained at 80◦C.

2.4.2.2 IMS conditions

Iionization source, tritium source (3H); drift tube length,
98mm; electric field strength, 500 V/cm; drift tube temperature,
45◦C; drift gas, nitrogen (purity ≥ 99.999%); and flow rate, 150.0
mL/min. Positive ion mode.

2.5 Data processing

Majorbio’s platform (https://www.majorbio.com/web/www/
index) was used for ITS sequencing data analysis (Ren et al., 2022).
The sequences were normalized based on the minimum sequence,
excluding sequences related to mitochondria and chloroplasts for
operational taxonomic units (OTU) clusters with 97% similarity.
The OTU cluster was annotated using the RDP Classifier version
2.11 in Unite (Release 8.0 http://unite.ut.ee/index.php). Alpha
diversities, including obs, shannon, simpson, ace, chao, and average
indices, were analyzed at the OTU level. The similarity among
the microbial communities in different samples was determined by
principal coordinate analysis (PCoA) based on unweighted unifrac
using R language (v3.3.1). Analysis of similarities (ANOSIM) was
used to test the differences in similarities among groups of samples
with 999 permutations (Somerfield et al., 2021). The correlation
between the top 10 genera was analyzed using Networkx (v1.11)
(|r| ≥ 0.5 and P < 0.05). In addition, using Spearman’s correlation
coefficients for exploratory the key volatile compounds and the top
10 genus (Xiao et al., 2015).

GC-IMS data were collected and analyzed using vocal
software, including built-in Reporter and Gallery Plot plugins
for plotting three-dimensional, two-dimensional, and fingerprint
chromatograms of the volatile components (Chang et al., 2024).
C4-C9 n-ketones were used as a reference to calculate the retention
index (RI). The volatile components were identified using NIST
2020 (National Institute of Standards and Technology database),
GC-IMS databases, and the RI index. The peak volume was used
to calculate the relative quantities of the volatile compounds
(Sun et al., 2023). A heatmap was generated using the online
platform for data analysis and visualization available at https://
www.bioinformatics.com.cn (last accessed on February 1, 2025).
Multiple statistical analyses were performed using SIMCA (v14.1)
for partial least squares discriminant analysis (PLS-DA) and
variable importance in projection (VIP). SPSS software (v22.0)
was used for the statistical analysis. One-way analysis of variance
(ANOVA) and Duncan’s multiple range test were used to assess the
significance of the sample validity (P < 0.05). Spearman correlation
coefficient heatmap was performed for the top ten genus and key
substances using R (v3.3.1).

3 Results

3.1 Dynamic changes of VOCs in cigar
tobacco leaf during mildew process
analyzed by GC-IMS

GC-IMS is a type of separation and identification technology
with strong separation ability and simple pretreatment process,
which is widely used in food, herbs, wine, environment, and
other fields (Cai et al., 2022; Chang et al., 2024; Chen et al.,
2024; Christmann et al., 2024). This study employed GC-
IMS to systematically investigate the spatiotemporal evolution
of VOCs in cigar tobacco leaves during progressive mold
development. The analytical outputs were visualized through
three-dimensional, two-dimensional, and two-dimensional
differencemaps (Figure 1). In the three-dimensional representation
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FIGURE 1

GC-IMS results of VOCs in cigar tobacco leaves at di�erent samples. (a) Three-dimensional spectrum; (b) Two-dimensional spectrum; (c)

Two-dimensional di�erence map.
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FIGURE 2

Fingerprint spectra (a) and heatmap (b) of VOCs in di�erent samples.

(Figure 1a), vertical red peaks correspond to reaction ion peaks,
flanked by discrete VOC signals whose color intensity reflects
compound abundance-white indicating baseline levels and red
denoting elevated concentrations (Zhao et al., 2024). Although
GC-IMS demonstrated effective separation of cigar leaf VOCs,
the three-dimensional visualization revealed limited capacity
for inter-sample differentiation due to substantial qualitative
similarities between mold stages. Enhanced resolution was

achieved through two-dimensional spectral analysis (Figure 1b),
where VOC profiles were color-coded by concentration gradients
(red: high abundance; blue: low abundance). This representation
facilitated comparative assessment of both quantitative and
semi-quantitative variations across samples. To emphasize
temporal changes during mold progression, differential spectral
mapping was implemented (Figure 1c). The comparative analysis
revealed distinct accumulation patterns, with MB3 and MB7
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FIGURE 3

Statistical analysis of the VOCs in di�erent groups. (a) PLS-DA; (b) Permutation test results (n = 200); (c) VIP score plot of the PLS-DA model; (d)

Specific contents of 14 compounds with significant di�erences.

stages exhibiting elevated concentrations of specific VOCs
that showed progressive attenuation in later stages (MB10
and MB15).

Gallery Plot analysis resolved 72 VOCs across progression
stages (Figure 2a), comprising 24 aldehydes (33.3%), 13
alcohols (18.1%), 12 ketones (16.7%), 1 organic acid, 2 esters,
3 pyrazines, 2 furans, 1 terpene, 1 thiophene, and 13 other
substances (18.1%). Figure 2a illustrates a trend where the
concentrations of ethanol, 1-propanol-2-methyl-D, amyl acetate,
and pyrazine decreased subsequent to the onset of mold.
Ethanol, a known product of microbial fermentation (Maicas,
2020), decreased in concentration, suggesting reduced microbial
metabolic activity. Furthermore, studies have demonstrated a
significant decrease in surface microbial diversity of tobacco
leaves following mold contamination (Fu et al., 2024b; Wei
et al., 2024; Zhang et al., 2024). 1-propanol-2-methyl-D,
amyl acetate, and pyrazine have been reported as flavoring
substances (Lakshmi et al., 2021; Müller and Rappert, 2010).
The substantial decrease in these substances may signify a
change in cigar leaf quality. The detailed information of VOCs
is presented in Supplementary Table 1. Hierarchical clustering
segregated samples into three contamination phases: Early
(MB3), Middle (MB7), and Late (MB10, MB15), with MB0

forming a distinct control cluster (Euclidean). The heat map
clustering clearly demonstrates substantial differences in VOC
content at different mold durations, thus facilitating the potential
for further monitoring of the early stages of tobacco molding
(Figure 2b).

Partial least squares discriminant analysis (PLS-DA)
demonstrated distinct clustering patterns among groups
(Figure 3a). MB0 and MB3 exhibited significant separation
from other groups, with MB3 representing the earliest detectable
mold stage. To assess the model’s performance metrics, 7-fold
cross-validation and permutation tests (200 iterations) were
employed in PLS-DA (Figure 3b). The PLS-DA score plot revealed
the model’s robust predictive capability (R2X = 0.91, R2Y =

0.975, Q2 = 0.776) (Figure 3b) (Westerhuis et al., 2008). The
successful application of GC-IMS in classifying varying degrees
of mold in peanuts and corn provides foundational support
for the feasibility of using this technology to analyze VOCs
associated with different levels of mold growth in tobacco
leaves (Chen et al., 2021; Li et al., 2021b). Furthermore, 21
significantly different VOCs (VIP > 1), including M37, M71,
M16, M48, M72, M12, M57, M35, M69, M1, M70, M33, M47,
M2, M46, M36, M50, M45, M10, M3, and M6 were identified
(Figure 3c). Among them, the VIP of M37 is the highest,
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TABLE 1 Results of the analysis of the di�erences in the relative content of volatiles in the samples.

No. Name MB0 MB3 MB7 MB10 MB15

M1 2-methyl-1-butanol-M 0.6849± 0.0153a 0.8786± 0.0459a 0.7532± 0.0244a 0.5432± 0.0490a 0.3756± 0.0745a

M2 2-methyl-1-butanol-D 0.3186± 0.0065ab 0.4586± 0.0512a 0.3198± 0.0149ab 0.1721± 0.0254bc 0.0895± 0.0277c

M3 1-Penten-3-ol 0.4851± 0.0049c 0.7345± 0.0153a 0.7345± 0.0701ab 0.6474± 0.0555abc 0.5994± 0.1205bc

M4 1-Hexanol 0.0378± 0.0021a 0.0317± 0.0063ab 0.0273± 0.0046b 0.0326± 0.0039ab 0.0293± 0.0056ab

M5 1-Pentanol 0.2018± 0.0376a 0.1424± 0.0339b 0.1648± 0.0226ab 0.1518± 0.0119ab 0.1481± 0.0272ab

M6 2-Pentanol 0.0468± 0.0088c 0.1013± 0.0520bc 0.2104± 0.0582ab 0.1546± 0.0630a 0.0480± 0.0143c

M7 2-Butoxyethanol 0.0281± 0.0021a 0.0236± 0.0025a 0.0240± 0.0031a 0.0244± 0.0032a 0.0248± 0.0028a

M8 1-Butanol-M 0.3959± 0.1540a 0.2730± 0.1121a 0.2442± 0.0194a 0.2429± 0.0173a 0.2405± 0.0708a

M9 1-Butanol-D 0.0586± 0.0190a 0.0700± 0.0240a 0.0533± 0.0019a 0.0492± 0.0058a 0.0488± 0.0061a

M10 1-Propanol-2-methyl-M 0.4863± 0.0317a 0.3373± 0.0281bc 0.4692± 0.0434a 0.3658± 0.0131b 0.3044± 0.0180c

M11 1-Propanol-2-methyl-D 0.1961± 0.0268a 0.1335± 0.0099b 0.1241± 0.0131bc 0.0863± 0.0067d 0.1042± 0.0092cd

M12 Ethanol 1.4788± 0.0031a 0.4016± 0.0208c 0.6572± 0.1762abc 0.8619± 0.0381ab 0.4952± 0.0652bc

M13 2-Ethyl hexanol 0.0301± 0.0014a 0.0273± 0.0019ab 0.0248± 0.0028b 0.0256± 0.0021b 0.0236± 0.0031b

M14 Benzaldehyde-M 0.1176± 0.0063c 0.1461± 0.0039bc 0.2214± 0.0346a 0.1856± 0.0355ab 0.1538± 0.018bc

M15 Benzaldehyde-D 0.0228± 0.0019a 0.0195± 0.0024a 0.0212± 0.0039a 0.0208± 0.0000a 0.0195± 0.0024a

M16 3-Methyl butanal 1.6635± 0.5402a 0.6063± 0.0295c 1.6460± 0.2966ab 1.8124± 0.0917ab 0.7231± 0.1864bc

M17 2-Furaldehyde-M 0.0818± 0.0141ab 0.0863± 0.0257a 0.0598± 0.0053bc 0.0525± 0.0032c 0.0549± 0.0032c

M18 2-Furaldehyde-D 0.0183± 0.0012ab 0.0212± 0.0025a 0.0175± 0.0014b 0.0175± 0.0014b 0.0183± 0.0021ab

M19 Alpha-Tolualdehyde 0.0260± 0.0019a 0.0285± 0.0025a 0.0269± 0.0044a 0.0285± 0.0007a 0.0252± 0.0031a

M20 1-Nonanal 0.0574± 0.0268a 0.0509± 0.0072a 0.0439± 0.0097a 0.0399± 0.0049a 0.0444± 0.0104a

M21 3-(Methylsulfanyl) propanal 0.0407± 0.0014a 0.0407± 0.0025a 0.0338± 0.0007b 0.0334± 0.0025b 0.0346± 0.0014b

M22 (E)-2-Hexenal-M 0.1327± 0.0083ab 0.1603± 0.0132a 0.1261± 0.0184b 0.1384± 0.0223ab 0.1473± 0.0159ab

M23 3-Methyl-2-butenal-M 0.2975± 0.0415a 0.2665± 0.0205a 0.2515± 0.0331a 0.2840± 0.0197a 0.2804± 0.0577a

M24 3-Methyl-2-butenal-D 0.0501± 0.0085a 0.0537± 0.0088a 0.0427± 0.0012a 0.0411± 0.0037a 0.0423± 0.0132a

M25 Heptaldehyde-M 0.2389± 0.0683ab 0.2930± 0.0629a 0.2405± 0.0254ab 0.1884± 0.0189b 0.1998± 0.0366b

M26 Heptaldehyde-D 0.0411± 0.0155a 0.0435± 0.0129a 0.0321± 0.0046a 0.0265± 0.0046a 0.0273± 0.0056a

M27 (E)-2-Pentenal-M 0.1677± 0.0568c 0.3955± 0.0624a 0.2674± 0.0361b 0.3011± 0.0486b 0.3182± 0.0222ab

M28 (E)-2-Pentenal-D 0.0741± 0.0058ab 0.0903± 0.0211a 0.0570± 0.0143b 0.0541± 0.0140b 0.0671± 0.0112ab

M29 (E)-2-Heptenal 0.0354± 0.0037a 0.0411± 0.0070a 0.0415± 0.0032a 0.0391± 0.0056a 0.0346± 0.0037a

M30 (Z)-2-Pentenal 0.1636± 0.0265a 0.1823± 0.0069a 0.1542± 0.0031a 0.1685± 0.0146a 0.2153± 0.0046a

M31 (E)-2-Butenal 0.2185± 0.0192a 0.1823± 0.0425a 0.2397± 0.0479a 0.2197± 0.0429a 0.2128± 0.0335a

M32 1-Hexanal-M 0.9591± 0.0443b 1.0552± 0.0505ab 1.0731± 0.0342a 1.0149± 0.0600ab 1.0816± 0.0619a

M33 1-Hexanal-D 0.7850± 0.1722ab 0.9034± 0.1756a 0.8578± 0.0839ab 0.6104± 0.1096b 0.7634± 0.1626ab

M34 (E)-2-Hexenal-D 0.0305± 0.0012b 0.0525± 0.0056a 0.0334± 0.0007b 0.0244± 0.0032c 0.0203± 0.0025c

M35 n-Pentanal 1.1292± 0.1138c 1.2847± 0.0527bc 1.5227± 0.1425ab 1.5304± 0.1072ab 1.7351± 0.2893a

M36 Propanal 1.9781± 0.0789a 2.2369± 0.0846a 2.0334± 0.2625a 2.1144± 0.1619a 2.3276± 0.2989a

M37 Acrolein 1.2928± 0.3166a 0.5392± 0.1157b 1.5968± 0.0968a 1.4137± 0.2368a 0.5038± 0.0314b

M38 6-Methyl-5-hepten-2-one 0.2881± 0.0342b 0.4619± 0.0282a 0.4680± 0.0113a 0.4346± 0.0390a 0.3740± 0.0917ab

M39 1-Hydroxy-2-propanone 0.1139± 0.0903a 0.2144± 0.1441a 0.0806± 0.0307a 0.0834± 0.0552a 0.0529± 0.0242a

M40 2-Heptanone-M 0.0879± 0.0068c 0.1416± 0.0172a 0.1314± 0.0092ab 0.0985± 0.0173c 0.1070± 0.0185bc

M41 Octanal 0.0643± 0.0282a 0.0496± 0.0070a 0.0317± 0.0044b 0.0330± 0.0053b 0.0362± 0.0067ab

(Continued)
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TABLE 1 (Continued)

No. Name MB0 MB3 MB7 MB10 MB15

M42 2-Heptanone-D 0.0240± 0.0035b 0.0321± 0.0028a 0.0309± 0.0019a 0.0244± 0.0012b 0.0244± 0.0032b

M43 3-Octanone-D 0.0191± 0.0019b 0.0326± 0.0043a 0.0191± 0.0019b 0.0195± 0.0024b 0.0187± 0.0019b

M44 Cyclohexanone 0.0212± 0.0025a 0.0354± 0.0141a 0.0216± 0.0028a 0.0224± 0.0039a 0.0220± 0.0032a

M45 1-Penten-3-one 0.2018± 0.0515b 0.4680± 0.0908a 0.1278± 0.0322b 0.1359± 0.0518b 0.1815± 0.0559b

M46 3-Pentanone 0.4932± 0.0473c 1.0885± 0.1560a 0.8021± 0.1258b 0.7158± 0.0508b 0.7439± 0.0801b

M47 2-Butanone 3.8723± 0.1650a 4.0412± 0.0721a 4.0107± 0.1552a 3.7189± 0.3434a 3.8259± 0.1325a

M48 2-Propanone 4.5938± 0.1152c 5.7222± 0.0201a 5.2575± 0.0877abc 4.7439± 0.1814bc 5.4764± 0.0152ab

M49 3-Octanone-M 0.1742± 0.2393a 0.1913± 0.0151a 0.0529± 0.0007a 0.0680± 0.0014a 0.0557± 0.0087a

M50 Acetic acid 0.4358± 0.1408a 0.7878± 0.2577a 0.6079± 0.0324a 0.4969± 0.0160a 0.3715± 0.0128a

M51 Linalyl acetate 0.0224± 0.0007ab 0.0244± 0.0012a 0.0228± 0.0019ab 0.0203± 0.0019b 0.0208± 0.0012b

M52 Amyl acetate 0.1640± 0.0220a 0.0208± 0.0000ab 0.0171± 0.0021b 0.0199± 0.0031ab 0.0183± 0.0012b

M53 Pyrazine 0.2140± 0.0014a 0.1294± 0.0118bc 0.1205± 0.0056c 0.1359± 0.0031abc 0.1567± 0.0019ab

M54 2-Ethyl-5-methylpyrazine 0.0383± 0.0035a 0.0533± 0.0300a 0.0289± 0.0037abc 0.0256± 0.0032bc 0.0216± 0.0019c

M55 2-Methylpyrazine 0.0501± 0.0021c 0.0602± 0.0025a 0.0602± 0.0019a 0.0566± 0.0025ab 0.0529± 0.0007bc

M56 2-Pentyl furan 0.3548± 0.1307a 0.3272± 0.0614a 0.2543± 0.0536ab 0.1933± 0.0193b 0.1656± 0.0489b

M57 Tetrahydrofuran 1.7315± 0.5124a 0.9518± 0.2095c 1.1426± 0.1318bc 1.4446± 0.1270ab 1.4295± 0.1553ab

M58 Delta-Cadinene 0.0423± 0.0058a 0.0362± 0.0007ab 0.0281± 0.0021c 0.0317± 0.0044bc 0.0309± 0.0007bc

M59 2,5-Dimethyl thiophene 0.0956± 0.0164a 0.0671± 0.0024ab 0.0541± 0.0095b 0.0505± 0.0060b 0.0480± 0.0058b

M60 1 0.2214± 0.0309a 0.1481± 0.0250bc 0.0826± 0.0272c 0.1339± 0.0291bc 0.1799± 0.0593ab

M61 2 0.2564± 0.0204a 0.2165± 0.0672a 0.2340± 0.0070a 0.2714± 0.0264a 0.2352± 0.0314a

M62 3 0.0403± 0.0044a 0.0334± 0.0035a 0.0631± 0.0381a 0.0326± 0.0043a 0.0631± 0.0266a

M63 4 0.0932± 0.0705a 0.0509± 0.0266a 0.0277± 0.0035a 0.0330± 0.0032a 0.0378± 0.0160a

M64 6 0.0419± 0.0067a 0.0366± 0.0032ab 0.0317± 0.0012b 0.0321± 0.0025b 0.0330± 0.0021b

M65 7 0.0529± 0.0171a 0.0525± 0.0136a 0.0419± 0.0067a 0.0439± 0.0106a 0.0452± 0.0139a

M66 8 0.0708± 0.0203a 0.0545± 0.0095ab 0.0374± 0.0037c 0.0525± 0.0042abc 0.0427± 0.0076bc

M67 9 0.4444± 0.0839b 0.6901± 0.0427a 0.6702± 0.0794a 0.6234± 0.0639ab 0.6027± 0.1635ab

M68 10 0.0912± 0.0311b 0.2100± 0.0194a 0.2140± 0.0573a 0.1607± 0.0367ab 0.1534± 0.0822ab

M69 15 0.9030± 0.0177a 0.6812± 0.0970b 0.4216± 0.0750c 0.3841± 0.0674c 0.4403± 0.0287c

M70 16 1.2415± 0.0826ab 1.0560± 0.0149c 1.3250± 0.1294a 1.1597± 0.0994abc 1.0767± 0.0885bc

M71 17 0.6055± 0.1554b 1.2700± 0.0607a 0.7219± 0.1096b 0.7548± 0.0346b 0.4094± 0.0635c

M72 18 0.6918± 0.1287c 0.7284± 0.1154bc 0.9669± 0.2139bc 1.3677± 0.1945a 1.0401± 0.1839b

Data are presented as mean± SD. Different letters indicate significant differences.

with a 2.36. For a comprehensive list of all metabolites and
their VIP scores, please refer to Supplementary Table 2. A
total of 14 compounds were matched with compound names

in the GC-IMS database. Following screening with criteria
of P < 0.05 and VIP > 1 (Figure 3d), four compounds-−2-

methyl-1-butanol-M, 2-methyl-1-butanol-D, 2-propanone, and
1-penten-3-ol—demonstrated elevated concentrations in MB3,

positioning them as promising early-warning biomarkers for
mold progression in cigar tobacco leaves. The specific content

and variations in VOCs among different samples were shown in
Table 1.

3.2 Changes in fungal community during
moldy process of cigar tobacco leaves

3.2.1 Fungal community alpha- and
beta-diversity

Alpha diversity indices (ace, chao1, sobs, and shannon) showed
significant decrease following mold formation on cigar tobacco
leaves (Figure 4a), indicating reduced fungal diversity and OTU
richness. These observations align with prior reports of diminished
mycobiota in mold-affected tobacco leaves (Fu et al., 2024b;
Wei et al., 2024; Wu et al., 2024b; Zhou et al., 2024b). High

Frontiers inMicrobiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1595849
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2025.1595849

sequencing coverage (99.93-99.99%) ensured reliable assessment of
microbial diversity. Beta diversity analysis via unweighted UniFrac-
based PCoA (Principal coordinates analysis) revealed distinct
clustering patterns betweenmoldy and control samples (Figure 4b).
Progressive compositional shifts occurred across moldy stages,
with ANOSIM confirming stronger inter-group than intra-group
dissimilarities (R = 0.5807, P = 0.001). This statistically validated
grouping underscores temporal dynamics in mold-associated
mycobiota restructuring.

3.2.2 Fungal OTU dynamics and annotation
Venn analysis revealed drastic OTU reduction post-mold,

with counts declining from 161 (MB0) to 21 (MB3), representing
85.7% species loss (Figure 5a). The OTU number of MB7, MB10,
and MB15 is relatively stable, with 37, 22, and 34, respectively
(Figure 5a). This collapse in fungal richness corroborates prior
observations of mycobiota simplification in mold-degraded
tobacco (Fu et al., 2024b; Wei et al., 2024). Genus-level profiling
of the top 30 taxa demonstrated Aspergillus dominance, escalating
from 91.15% (MB0) to > 99.45% in mold-affected samples
(Supplementary Table 3 and Figure 5b). Aspergillus was a fungal
species associated with a high percentage of moldy tobacco
leaves (Wei et al., 2024; Wu et al., 2024a,b; Zhou et al., 2021a).
Notably, Cladosporium—a putative pathogen (Feng et al., 2024)—
constituted 4.88% of MB0 but collapsed to <0.3% post-mold,
suggesting niche exclusion by Aspergillus. Minor taxa (<1%
total abundance) including Colletotrichum and Penicillium showed
similar suppression patterns.

3.2.3 Network analysis and spearman correlation
analysis between fungal communities and
compounds

To further explore the interactions among the fungal
communities before and after molding, the correlations among the
30 most abundant fungal species in the control samples (MB0) and
the molded samples (MB3, MB7, MB10, MB15) were examined
using network analysis (Ramayo-Caldas et al., 2016) (Figure 6a).
The red line indicated a positive correlation between the two fungi,
and the green line indicated a negative relationship between the two
fungi. The dots represented different fungi, and the size of the dots
indicated how many species were present in the sample, with the
larger the dots, the higher the percentage of species. There were
more interactions between fungi in the normal sample (MB0), and a
variety of fungi showed antagonistic relationships with Aspergillus,
such as Cladosporium, Alternaria, Sampaiozyma, Penicillium, and
Stagonosporopsis, suggesting niche overlap or metabolic inhibition
(Figure 6a). However, with the appearance of mold, the number of
interactions between fungi decreased, and the number of species
showing antagonistic interactions with Aspergillus also decreased.
The interactions between microorganisms on the surface of cigar
tobacco leaves were weakened, especially the antagonistic species
with Aspergillus (Figure 6b). This aligns with reports of weakened
microbial competition under environmental stress (Wu et al.,
2024b).

Spearman’s correlations were observed between dominant
fungi and 14 significantly different compounds (Figure 6c).
Aspergillus showed strong positive associations with 1-penten-
3-ol (ρ = 0.61) and benzaldehyde-M (ρ = 0.67), but negative
correlations with pyrazine (ρ = −0.71). Conversely, Aspergillus-
antagonistic taxa (e.g., Alternaria, Penicillium, Cladosporium,
Colletotrichum, Pseudocercospora) displayed inverse trends.

4 Discussions

4.1 Early-warning biomarkers in cigar
tobacco leaves

In this study, we used t-tests and PLS-DA to identify
significantly different substances in the mold of cigar tobacco,
particularly identifying four early-warning biomarkers in MB3.
Studies related to early-warning biomarkers for mold have
attracted attention from various industries. However, substantial
discrepancies persist in the kind of early-warning biomarkers
across studies. For example, Chen et al. (2021) employed GC-
IMS to realize the determination of early mold in rice. Li et al.
(2021a) investigated the VOCs of maize kernels at different
molding process, suggesting the ethyl acetate-D, ethyl acetate-M,
3-hydroxybutan-2-one-D, methyl-5-hepten-2-one, and dimethyl
disulfide were warning molecules at early stage of mold. Qin
et al. (2024) also investigated maize VOCs at different mold
times using GC-IMS and found that butan-2-one, ethyl acetate-D,
benzaldehyde, and pentan-2-one could be used as signal molecules
in the early stages. This phenomenon likely stems from the
dependency of VOC diversity not only on microbial species but
also on strain-specific growth environments and developmental
stages (Wheatley, 2002; Mayrhofer et al., 2006; Misztal et al., 2018).
Researches on mold biomarkers in tobacco has been reported. For
example, Yu et al. (2023) demonstrated that 1-octene-3-alcohol, 1-
pentanol, and pentanal as early markers of mold in cigar tobacco
leaves following infection by two strains of fungi. Similarly, Wei
et al. (2025) reported dynamic increases in characteristic volatiles
during the molding process of both cigar wrapper and filler
leaves. For example, 3-phenyl-2-propen-1-ol, cyclopentanone, 3-
methyl-1-butanol, (Z)-3-hexenol, and 4-methoxybenzyl formate
were characteristic volatile compounds in wrapper, and 1-pentanol-
M, 3-methyl-1-butanol, 2-methyl-1-propanol-M, and 2-propenyl
heptanoate were identified in filler. Some results have further
expanded this field: Zheng et al. (2023) utilized SPME-GC-MS
to screen eight mold-specific biomarkers in moldy tobacco, while
Lin et al. (2023) employed GC-IMS to propose cis-3-hexen-
1-ol, methyl butyrate, 2-pentanone, and ethylpropionic acid as
potential marker for themoldy. The discrepancies between research
findings may be attributed to the mold contamination levels,
differential microbial metabolic activities, dissimilarities in tobacco
leaf composition, or discrepancies in detection technologies. These
findings underscore the necessity for subsequent studies to establish
a standardized definition of early-stage mold contamination,
identify predominant mold-causing species, and characterize
their signature VOCs, which would significantly advance mold-
related research in the tobacco industry. Furthermore, beyond
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FIGURE 4

Fungal community diversity analysis across five groups. (a) Alpha diversity: ace, chao1, coverage, shannon, simpson, and sobs; (b) Beta diversity:

PCoA based on unweighted Unifrac distances (axes explained 30.09% variance), with ANOSIM confirming significant inter-group di�erences (R =

0.5807, P = 0.001).
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FIGURE 5

(a) Venn diagram of microbial OTU of fungi. (b) Species annotation at the genus level of fungal in five groups.

FIGURE 6

Fungal interaction networks and metabolite correlations. (a) Co-occurrence network of fungal communities in MB0 samples; (b) Network topology

of molded samples (MB3, MB7, MB10, and MB15). The red line signifies a positive correlation between the two fungi, while the green indicates

negative. Dots means the species of fungi, with size proportional to relative abundance. (c) Spearman correlation heatmap between the top 10 fungal

and 14 di�erentially abundant metabolite. Color intensity reflects correlation strength (red: positive, blue: negative). Significance levels: *P < 0.05, **P

< 0.01, ***P < 0.001.
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VOC analysis, early-warning biomarkers for mold contamination
could encompass monitoring alterations in mycotoxins and
their precursors, dynamic changes in microbial populations and
metabolic activities, as well as gene expression patterns and
protein markers associated with mycotoxin biosynthesis pathways
(Braissant et al., 2020; Fu et al., 2023, 2024a). Collectively, these
findings provide a solid foundation for research on early warning
systems for mold. The four early-warning biomarkers identified in
this study were statistically validated through VIP> 1 and P< 0.05,
however, their practical reliability under field conditions requires
further verification. Subsequent investigations will systematically
evaluate dose-response relationships between these biomarkers
and mold severity, determine compound-specific threshold values,
and establish operational protocols to guide industrial mold
monitoring systems.

4.2 Correlation analysis between fungal
communities and compounds

In essence, mildew formation results from the synergistic
interaction among microbial communities, substrate properties,
and environmental factors. Among these, the dynamic
succession of fungal communities plays a critical role in
identifying major fungal species. The characteristic of fungal
community in molded samples was a drastic reduction in
diversity and the overwhelming dominance of Aspergillus

(>99.45%) in (Figure 5). This rapid ascendancy of Aspergillus,
evident even in the early MB3 stage, aligns with previous
research identifying it as a primary spoilage agent in tobacco
(Fu et al., 2024b; Wei et al., 2024; Wu et al., 2024b; Zhou
et al., 2024b). This underscores the critical importance
of targeting Aspergillus in early mold prevention and
control strategies.

Furthermore, correlation analyses between molds and
substances provided insights into their interactions. The
strong positive correlations established between Aspergillus

and specific VOCs, 1-penten-3-ol (ρ = 0.61) and benzaldehyde-
M (ρ = 0.67), strongly suggest that these compounds are
significant metabolic compounds of Aspergillus activity on cigar
tobacco. This direct linkage reinforces their utility as reliable
indicators for early detection systems; an increase in these
VOCs serves as a proxy for active Aspergillus proliferation.
The association of 1-penten-3-ol with Aspergillus in this
system is particularly noteworthy. While benzaldehyde is
a recognized fungal volatile (Hung et al., 2015), and other
typical “moldy” VOCs like 1-octen-3-ol are known. The
prominent and early emergence of 1-penten-3-ol linked to
Aspergillus in cigar tobacco suggests it could be a more specific
or at least a highly sensitive early indicator in this particular
substrate-microbe interaction.

Conversely, the significant negative correlation was observed
between Aspergillus and pyrazine (ρ = −0.71). Pyrazines can
be produced by various microorganisms and are sometimes
associated with intrinsic tobacco aroma or early-stage microbial
activity (Müller and Rappert, 2010). Its decline concomitant
with Aspergillus proliferation likely reflects a multifaceted process:

the suppression of other initial microbial colonizers by the
aggressive growth of Aspergillus. This underscores that an early-
warning signature may not solely rely on the appearance
of new compounds but also on the significant alteration
or disappearance of VOCs present in healthy or incipiently
contaminated material.

5 Conclusions

In this study, GC-IMS was employed to analyze the VOCs
of various moldy cigar tobacco leaves. A total of 72 VOCs were
identified, among which 14 compounds exhibited significant
differences (VIP > 1, P < 0.05). Specifically, 2-methyl-1-butanol-
M, 2-methyl-1-butanol-D, 2-propanone, and 1-penten-3-ol
were found to be at higher levels in the early—stage samples
compared to others. These compounds could serve as early—
warning biomarkers for tobacco mold. Furthermore, HTS results
demonstrated that the number of species within the fungal
communities decreased during the molding process of cigar
tobacco leaves. Aspergillus was identified as the fungal species
most closely associated with the molding process. Spearman’s
correlation analysis revealed that Aspergillus was significantly
positively correlated with 1-penten-3-ol and benzaldehyde—M,
while being significantly negatively correlated with pyrazine.
Overall, this study achieved a remarkable feat by successfully
uncovering the early-warning biomarkers for the early mold of
cigar tobacco leaves. While these results are promising, there
is considerable scope for further development. A key future
direction will be the translation of these laboratory-validated
biomarkers into practical, field-deployable sensor technologies
for real-time, non-invasive monitoring in tobacco storage
and processing facilities. Furthermore, future research also
should aim to scale up the validation of the specificity and
reliability of these biomarkers across a broader range of cigar
tobacco varieties, curing processes, and diverse environmental
conditions encountered in industrial settings. Conducting
thorough industrial validation is crucial to support the integration
of this approach into practical applications within the tobacco and
relevant industries.
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