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The maternally-inherited, intracellular bacterium Lariskella (Alphaproteobacteria: 
Midichloreaceae) has been widely detected in arthropods including true bugs, 
beetles, a wasp, a moth, and pathogen-vectoring fleas and ticks. Despite its 
prevalence, its role in the biology of its hosts has been unknown. We set out to 
determine the role of this symbiont in the leaffooted bug, Leptoglossus zonatus 
(Hempitera: Coreidae). To examine the effects of Lariskella on bug performance and 
reproduction as well as in possible interactions with the bug’s obligate nutritional 
symbiont, Caballeronia, bugs were reared in a factorial experiment with both 
Lariskella and Caballeronia positive and negative treatments. Lifetime survival 
analysis (~120 days) showed significant developmental delays and decrease in 
survival for bugs that lacked Caballeronia, and Caballeronia-free bugs did not 
reproduce. However, among the Caballeronia carrying treatments, there were no 
significant differences in lifetime survival or reproduction in treatments with and 
without Lariskella, suggesting this symbiont is neutral for overall bug fitness. To test 
for reproductive manipulation, crossing among Lariskella-positive and negative 
individuals was performed. When Lariskella-negative females were mated with 
Lariskella positive males, fewer eggs survived early embryogenesis, consistent with 
a cytoplasmic incompatibility (CI) phenotype. Wild L. zonatus from California and 
Arizona showed high but not fixed Lariskella infection rates. Within individuals, 
Lariskella titer was low during early development (1st–3rd instar), followed by an 
increase that coincided with development of reproductive tissues. Our results reveal 
Lariskella to be among a growing number of microbial symbionts that cause CI, a 
phenotype that increases the relative fitness of females harboring the symbiont. 
Understanding the mechanism of how Lariskella manipulates reproduction can 
provide insights into the evolution of reproductive manipulators and may eventually 
provide tools for management of hosts of Lariskella, including pathogen-vectoring 
ticks and fleas.
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1 Introduction

Arthropods harbor a multitude of microbial symbionts with 
diverse roles. Among those that are most consequential for the biology 
of their host, many are maternally (vertically) inherited and have 
relationships that have endured for remarkably long periods of time 
(Moran et al., 1997; Janson et al., 2008; Misof et al., 2014). Theory 
predicts that strictly vertically transmitted symbionts can proliferate 
through generations if they cause hosts to produce more daughters 
than do uninfected hosts (Bull, 1983). Some bacterial symbionts 
achieve this by increasing the total number of offspring, supplying 
essential nutrients that are deficient in the host’s diet or protecting 
against parasitism or environmental stress (Sasaki et  al., 1991; 
Montllor et al., 2002; Oliver et al., 2003; Pais et al., 2008; Sabree et al., 
2009). However, in some instances, symbionts manipulate host 
reproduction toward female fitness in ways that solely enhance their 
own transmission (O’Neill et al., 1997; Hunter et al., 2003; Engelstädter 
and Hurst, 2009). Reproductive manipulator symbionts can 
manipulate their host reproduction in many ways, of which the most 
common is called cytoplasmic incompatibility (CI) (Yen and Barr, 
1971; Stouthamer et al., 1999; Shropshire et al., 2020).

CI symbionts modify host males such that reproduction is 
sabotaged when infected males with modification factors mate with 
females lacking the CI symbiont, resulting in few or no offspring. 
The modification is “rescued” when a modified male mates with an 
infected female carrying rescue factors (Werren, 1997; LePage et al., 
2017; Shropshire et al., 2018, 2020). In the well-studied CI-causing 
symbiont Wolbachia (Hertig and Wolbach, 1924; Werren and 
Jaenike, 1995; O’Neill et al., 1997; Kozek and Rao, 2007), two 
cytoplasmic incompatibility genes, cifA and cifB, have been identified 
(LePage et al., 2017; Shropshire et al., 2018, 2020). While there is 
ongoing debate about the appropriate nomenclature and CI 
mechanism (Beckmann et  al., 2019a; Shropshire et  al., 2019), 
transgenic studies in Drosophila suggest a “two-by-one” model 
where both cifA and cifB from the Wolbachia strain wMel must 
be  expressed in males to induce CI, whereas only cifA needs to 
be expressed in females to rescue CI (Shropshire and Bordenstein, 
2019). An alternative hypothesis, known as the toxin-antidote (TA) 
model, suggests that while both cif factors colocalize in germ cells, 
cifB travels with mature spermatids and acts as a toxin to developing 
embryos unless the corresponding antidote cifA factor is present, 
binding to and neutralizing the toxin’s effects (Beckmann et  al., 
2019b; Horard et al., 2022).

The exact molecular mechanism behind CI is unknown and may 
vary depending on the host and symbiont strain (Shropshire and 
Bordenstein, 2019; Horard et al., 2022). However, the consequence of 
CI is a clear fitness decrease for symbiont-free females, which are only 
able to mate successfully with other symbiont-free males, and a 
relative fitness benefit for females that harbor the CI symbiont and can 
successfully mate with both symbiotic and aposymbiotic males. 
Reproductive manipulation can wield significant influence on host 
ecology and evolution due to rapid changes in host population 
structure and potentially contribute to speciation by altering mating 
outcomes and reproductive isolation mechanisms (Shoemaker et al., 
1999; Ferrari and Vavre, 2011; Correa and Ballard, 2016; Gebiola et al., 
2016). Leveraging these manipulation mechanisms can also lead to 
development of novel pest control strategies (Dobson et al., 2002; 
Zabalou et al., 2004; Bourtzis, 2008; Zhou and Li, 2016) as well as 

techniques to limit the spread of deadly disease vectors (Laven, 1967; 
Braig et al., 1994; Hoffmann et al., 2011; Walker et al., 2011).

The focal symbiont of this study, Lariskella, is a maternally 
inherited alphaproteobacterium belonging to the recently 
characterized family of uncultivable intracellular symbionts in the 
order Rickettsiales, Midichloriaceae (Montagna et al., 2013; Giannotti 
et  al., 2022). Midichloriaceae is an ancestrally aquatic clade of 
endosymbionts that includes the tick-associated clade Midichloria and 
the arthropod associated clade Lariskella, along with other lineages 
found in amoebae, corals, sponges, and aquatic invertebrates 
(Giannotti et  al., 2022). However, Midichloriaceae has received 
considerably less attention relative to the other lineages of Rickettsiales.

Lariskella, provisionally named “Montezuma” was first detected 
in the southern Khabarovsk Territory in Russia from blood and tissue 
samples from humans experiencing acute fever following tick bites 
(Mediannikov et al., 2004). Phylogenetic analysis placed the bacterial 
16S rRNA of Lariskella on a distinct branch within the Rickettsiales. 
Sequencing showed 97% of Ixodes persulcatus and 5% of 
Haemophysalis concinnae carried Lariskella (Mediannikov et  al., 
2004). In I. persulcatus, Lariskella is highly prevalent in females (up to 
90%) but less so in males (around 30%). This sex-specific distribution 
is consistent across Russian and Japanese tick populations, suggesting 
that Lariskella may influence reproductive processes or fitness in ticks 
(Duron et  al., 2017; Becker et  al., 2023). Lariskella was found at 
varying abundances within flea-associated bacterial communities 
(Jones et al., 2015), and in the hen flea Ceratophyllus gallinae, Lariskella 
is among the dominant bacterial associates (Aivelo and 
Tschirren, 2020).

“Montezuma” was later found and characterized in seed bugs of 
the genus Nysius (Hemiptera: Lygaeidae) and formally proposed as 
Ca. Lariskella arthropodarum (Matsuura et al., 2012). In a survey of 
191 species of bugs in the infraorder Pentatomomorpha, Lariskella 
was found in 16 host species, with the highest infection frequencies 
found in Nysius spp. (Lygaeidae), at 77–100% (Matsuura et al., 2012). 
Since then, Lariskella has been identified in several other insect orders. 
In Hemiptera, Lariskella was found sporadically in microbiome 
sequencing data from the lygaeid bug, Henestaris halophilus (Santos-
Garcia et  al., 2017) and was found in Macrosteles maculosus 
leafhoppers, where it may contribute to nutrition or host fitness 
(Mulio et  al., 2024). In Coleoptera, Lariskella was detected in the 
myrmecophile beetle of the genus Cephaloplectus (Ptiliidae) (Valdivia 
et al., 2023). In weevils in the genus Curculio, Lariskella exhibits a 
complex evolutionary history, as their sequences do not align with 
host phylogenies nor form a monophyletic group, indicating likely 
horizontal transmission events (Toju et  al., 2013). Additionally, 
Lariskella has also been identified in the tortricid moth, Epinotia 
ramella (NCBI: 3066224) and the chrysidid wasp, Hedychridium 
roseum (NCBI: 3077949) through metagenome sequencing (Schoch, 
2020). The function of Lariskella in all these hosts is unknown. Its 
potential role as a nutritional endosymbiont in ticks, aiding in the 
synthesis of essential nutrients deficient in their blood-based diet has 
been considered (Buysse and Duron, 2021), but incomplete vitamin 
biosynthesis pathways observed in genomic analyses suggest a more 
complex role that requires further investigation (Buysse and 
Duron, 2021).

Here we  investigated the role of Lariskella in the seed-feeding 
leaffooted bug Leptoglossus zonatus (Hemiptera: Coreidae). First, 
we determined the effects of Lariskella on the lifetime fitness of its host 
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in a factorial design, comparing bugs with and without both Lariskella 
and the primary symbiont in this system, the obligate, environmentally-
acquired symbiotic gut bacterium Caballeronia (Betaproteobacteria: 
Burkholderiaceae) (Hunter et al., 2022). We tested the hypothesis that 
Lariskella might provide nutritional benefits and rescue host 
development when Caballeronia was absent. In a second experiment, 
crosses between Lariskella-positive and negative adults were performed 
to investigate whether Lariskella caused CI. We found virtually no 
fitness costs or benefits of Lariskella, nor any interaction of Lariskella 
with Caballeronia. We also found a pattern of offspring production that 
suggests Lariskella causes CI, providing evidence to add Lariskella to 
the growing list of bacterial symbionts that cause this reproductive 
manipulation. Lastly, we found high frequencies of Lariskella in field 
populations of L. zonatus, as would be expected for a bacterium that 
causes moderate CI, has a near-perfect rate of maternal transmission, 
and imposes no fitness costs over the lifetime of the bug.

Leptoglossus zonatus is a polyphagous agricultural pest widely 
distributed in the southern and southwestern United States and in 
South America (Tollerup, 2019; Joyce et al., 2021). In the Southwest, 
L. zonatus is arboreal and commonly feeds on pomegranate, almonds, 
pistachio and oranges (Ingels and Haviland, 2014; Daane et al., 2019). 
As in Riptortus pedestris (Alydidae), the model system for 
bug-Caballeronia interactions, second instar Leptoglossus zonatus 
nymphs acquire their obligate symbiont, Caballeronia, orally from a 
complex assemblage of soil microbes (Kikuchi et al., 2011; Kikuchi 
and Fukatsu, 2014). In these insects, a very narrow tube (the 
“constricted region” (CR)) joins the midgut 3rd (M3) and 4th (M4) 
sections. The CR acts as a sorting organ that allows only specific 
lineages of bacteria to pass and colonize the M4, which then functions 
as a symbiotic organ (Ohbayashi et al., 2015; Itoh et al., 2019). In 
L. zonatus, Caballeronia acquisition appears to be obligate for normal 
development (Hunter et  al., 2022). Nymphs that failed to acquire 
Caballeronia experienced developmental delay, high rates of juvenile 
mortality, and were half the weight of their symbiotic counterparts 
(Hunter et  al., 2022). In R. pedestris, genomic and transcriptomic 
analyses revealed that Caballeronia can provide essential amino acids 
and B vitamins and help recycle metabolic waste, while receiving 
diverse sugars and sulfur compounds from the host (Ohbayashi 
et al., 2019).

2 Methods

2.1 Laboratory cultures

2.1.1 Leptoglossus zonatus culture
Leptoglossus zonatus adults were collected at the West Campus 

Agricultural Center pomegranate orchard maintained by the 
University of Arizona (Tucson, AZ, USA) in 2018 and established in 
the laboratory in large, screened plexiglass cages (30 × 30 × 30 cm) in 
a walk-in incubator set at 27°C, 16 L:8D. The cages contained whole 
cowpea plants (Vigna unguiculata) potted in PRO-MIX MP potting 
mix in 15 cm pots with raw Spanish peanuts glued to index cards 
for food.

2.1.2 Generating Lariskella-free cultures
First and 2nd instar nymphs were fed 75 μL of rifampicin-

saturated EtOH in 1 mL H2O. They were fed the antibiotic for 3 days, 

then given deionized water with 0.05% ascorbic acid (DWA) for 3 days 
before the nymphs were fed with Caballeronia for 2 days. Once these 
individuals reached adulthood and reproduced, a portion of the newly 
hatched offspring was sacrificed and screened for Lariskella 16S rRNA 
via diagnostic PCR using the Duron et al. (2017) primer set (Forward: 
MIDF2: CCTTGGGCTYAACCYAAGAAT) and (Reverse: LARISR2: 
TTCCCAGCTTTACCTGATGGCAAC). For the first generation, 
pairs chosen to produce the next generation had between 75 and 100% 
Lariskella negative progeny (among tested siblings) and were kept in 
separate containers. These F1 1st and 2nd instar nymphs were then 
treated with a higher dose (150 μL) rifampicin-saturated EtOH added 
to 1 mL H2O, then fed Caballeronia as before and reared to adulthood 
and allowed to mate and lay eggs. Again, a portion of neonates from 
several egg clutches were tested and only individuals with siblings that 
were 100% negative for Lariskella were kept. These F2 1st and 2nd 
instar individuals were treated for one more generation with the 
higher F1 dose of rifampicin. After these three generations of 
antibiotic treatment, nymphs were tested from different clutches. 
Nymphs from clutches in which 100% of the tested individuals were 
found to be Lariskella negative were combined to produce the final 
Lariskella negative (L−) culture. The L− culture was maintained 
without additional antibiotics for >50 generations in the same rearing 
room as the Lariskella positive (L+) culture and is periodically checked 
with diagnostic PCR to confirm symbiont status.

2.1.3 Maternal transmission rate of Lariskella
To test for the maternal transmission efficiency of Lariskella, 113 

eggs from 11 different females were collected, frozen at −20°C and 
individually extracted using the Qiagen DNeasy Blood and Tissue kit. 
Infection status was confirmed via diagnostic PCR and gel 
electrophoresis, with extractions from known Lariskella-free bugs 
included as negative controls for both the DNA extraction and PCR steps.

2.2 Absolute Lariskella quantification 
throughout development and in 
reproductive tissue

2.2.1 DNA extraction
To estimate Lariskella titer throughout development and in 

reproductive tissue, we reared a clutch of eggs from a single female 
and collected 4–6 individuals 2–4 days after hatching, as well as in 
each subsequent developmental stage. Collected individuals were 
stored at −80°C. Additionally, we isolated 8 pairs of testes and 8 pairs 
of ovaries from adult bugs within 48 h after eclosion and stored them 
at −80°C. Each set of testes and ovaries were snap-frozen with liquid-
nitrogen, pulverized with a disposable pestle and DNA extracted using 
the Qiagen DNeasy Blood and Tissue kit. For whole-body insect DNA 
extractions, we followed the same method, but for 4th instar to adult 
stages, we split individuals among 2–5 spin columns and combined 
the extractions after elution. This ensured that a maximum of 50 mg 
of tissue homogenate was used per column as per manufacturer’s 
instructions. Total DNA was quantified using the Qubit dsDNA assay 
and all extractions were kept at −20°C.

2.2.2 Absolute quantification
To quantify exact Lariskella genome copies in L. zonatus 

individuals, a 1.3 kb of the single copy dnaA gene of Lariskella was 
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amplified by TaKaRa ExTaq DNA polymerase by using Lariskella 
specific-primers designed by the available genome sequences of 
Lariskella, namely LardnaA_23F: TAGTTGATGTTGAGTCTCAT 
and LardnaA_1355R ACACTAGAATTATCGCTAAT, and the 
products were sub-cloned into a pt7Blue T-vector (Novagen). DNA 
sequences of sub-cloned fragments were further determined by 
BigDye terminator v3.1 cycle sequencing kit and ABI 3130xl genetic 
analyzer. Then, quantitative PCR was performed using L. zonatus 
Lariskella specific primers targeting the dnaA gene (Forward: 
LzLar_1113F: ACCTTCTATTACTGCAATAC) and (Reverse: 
LzLar_1216R: GCCTAGCAAGCACAGACTTTCC). A 3-step qPCR 
was performed with an annealing temperature of 54°C for 40 cycles 
with an additional melt curve step using the Bio-Rad CFX Connect 
system using the Maxima SYBR Green Master Mix. The absolute 
Lariskella abundance was estimated using 10-fold serial dilution 
standards (108–103) made directly from the pT7-blue vector 
containing the cloned Lariskella dnaA gene. All standards, unknown 
DNA samples and negative controls were run in triplicate.

2.3 Reproductive tissue and whole-body 
16S rRNA gene Illumina sequencing

2.3.1 Illumina sequencing
To verify that other reproductive manipulators were not present 

in L. zonatus (e.g., Wolbachia, Cardinium), 16S Illumina amplicon 
sequencing was performed on 5 whole-body 4th instar nymphs, and 
8 pairs of testes and ovaries. (These were the same samples collected 
for qPCR, described above.) Briefly, we followed Illumina’s two-step 
amplification protocol (Illumina, 2013). In an initial PCR, 
we amplified the V3-V4 hypervariable regions of the 16S rRNA gene 
using primers 341F/785R (Klindworth et al., 2013). In a second PCR 
we  added 8 bp barcodes to the forward and reverse ends of the 
amplicons; these uniquely identified each sample, allowing 
multiplexing. We  sequenced an equal mass of each sample’s PCR 
product on a 600 cycle paired-end Illumina MiSeq run at the 
University of Texas Arlington’s Life Science Core Facility. A DNA 
extraction blank was included with and processed identically to the 
samples, including sequencing.

2.3.2 Sequence data analysis
Adapters and primers were trimmed with cutadapt (Martin, 

2011). Poor quality reads were removed and bacterial amplicon 
sequence variants (ASVs, which approximate bacterial strains) were 
inferred using the R DADA2 package (Callahan et  al., 2016). 
We performed de novo chimera checking and removal. Taxonomy was 
assigned using the RDP classifier with the SILVA nr99 v138 database 
as the training set (Wang et al., 2007; Quast et al., 2013). We removed 
mitochondria, chloroplasts, and reads that did not fall within the 
expected length of the amplicon (398–445 bp). Contaminants were 
identified via the R decontam package’s isContaminant function, using 
a stringent threshold of 0.5 (Davis et  al., 2018). This resulted in 
removal of four contaminants belonging to the genera Acinetobacter, 
Ralstonia, Rahnella, and Micrococcus. To control for differences in 
sequencing depth among samples, data were rarefied to 17,875 reads 
per sample. This was the minimum per-sample read depth. All sample 
rarefaction curves had plateaued at this depth, indicating that bacterial 
diversity was fully characterized (Supplementary Figure 1).

2.4 Lariskella fitness effects and interaction 
with Caballeronia

2.4.1 Insects rearing
Insects were reared with and without Lariskella and with and 

without Caballeronia in a factorial design to test the effects of Lariskella 
on fitness, as well as the possibility of an interaction between the 
intracellular Lariskella and nutritional gut symbiont Caballeronia. 
We measured insect developmental mortality, development time, weight 
at adulthood, lifespan, lifetime fecundity, and egg viability (hatch rate). 
We reasoned that if Lariskella had a nutritional role we might expect 
greater fitness of Caballeronia-negative bugs when Lariskella was present.

2.4.2 Symbiont feeding
Eggs were collected from both Lariskella positive (L+) and Lariskella 

negative (L−) L. zonatus cultures. The eggs were transferred to Petri 
dishes supplied with water tubes (containing DWA). After confirming 
Lariskella status, early 2nd instar nymphs (the first feeding stage) were 
distributed into 16 L+ boxes and 16 L− plexiglass boxes 
(11.33 cm × 11.33 cm × 4 cm) with mesh lids. Eight nymphs were placed 
into each box and provided with raw peanuts for food, but initially, no 
water. Twenty-four hours later, the nymphs in eight of the L+ boxes and 
eight of the L− boxes were fed an aqueous suspension of Caballeronia 
cells (10,000 cfu/μL) once per day for 3 days. The remaining 8 L+ and 8 
L− boxes were fed water alone and served as Caballeronia-negative 
treatments. After the third day of Caballeronia or water-only feeding, 
water vials were returned to all boxes and a single cowpea (Vigna 
unguiculata) seedling in a tube with water agar was added to each box. 
Seedlings were replaced as needed and water vials refilled until the bugs 
reached adulthood.

2.4.3 Development and adult fecundity
Nymphal development and mortality were tracked daily until 

adulthood. Bugs that died before reaching adulthood were removed 
from the rearing box and the date of death and development stage was 
recorded. The fresh weight of each adult was measured within 48 h after 
eclosion and then adults were paired within each of the four treatments 
(L−C−, L−C+, L+C−, L+C+). The pairs were placed in small cages 
(transparent, lidded plastic 500 mL drink cups), each with peanuts, a 
water vial, and a single cowpea seedling. The pairs were monitored daily 
until the female died. When males died, they were replaced by other 
males from the same treatment (8 males replaced in total). Each day, egg 
clutches were collected from the cups and transferred to individual Petri 
dishes where eggs were counted, and hatching success was measured.

2.4.4 Survival, development, and weight analysis
To assess the effect that infection status (L−C−, L−C+, L+C−, 

L+C+) had on L. zonatus lifespan, survivorship was analyzed using a 
mixed-effects Cox regression model using the coxme R package 
(Therneau, 2024) with modified R code from Duarte et al. (2021) and 
cage as a random effect. The effect of treatment on time to reach each 
developmental stage was analyzed using a mixed-effects generalized 
linear model, with time (number of days to reach each stage post-
Caballeronia feeding), and the presence or absence of Lariskella and 
Caballeronia as explanatory variables and cage as a random effect using 
the R package lme4 (Bates et al., 2015). The effect of infection status on 
adult weight was also analyzed using the same mixed-effects model for 
males and females separately with adult weight as the response variable. 
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Post-hoc multiple comparisons were done with the emmeans package 
(Lenth, 2018) for survivorship, development time and weight resulting 
in adjusted p-values for these analyses.

2.4.5 Lifetime fecundity analysis
We analyzed the effect of Lariskella on lifetime fecundity of females. 

The few Caballeronia negative females that survived to adulthood failed 
to produce any eggs and were therefore excluded from analysis. The 
effect of Lariskella on lifetime reproduction of females was analyzed for 
the response variables total egg number, clutch size, and hatch rate, using 
a multiple linear regression model in R using the base stats package 
(v4.2.3, R Core Team, 2023) with time (days from pairing) and the 
presence or absence of Lariskella as explanatory variables. The effect of 
Lariskella on total egg production was determined using a one-way 
analysis of variance (ANOVA) (v4.2.3, R Core Team, 2023). Data 
involving bugs in six of the 32 boxes (4 C−, 2 C+) were excluded from 
analysis because diagnostic PCR indicated Caballeronia was either 
acquired from contamination sometime during the experiment (4 boxes 
in C− treatments) or was not acquired during exposure to Caballeronia 
(2 boxes in C+ treatments) using the same methods used in Hunter et al. 
(2022). Data from these boxes were excluded because lack of Caballeronia 
acquisition has severe negative fitness effects (Hunter et al., 2022), and 
late Caballeronia acquisition in boxes that were not supposed to have it 
would have had unknown effects on fitness.

2.5 Cytoplasmic incompatibility (CI)

2.5.1 CI crosses
When no apparent effects of Lariskella on L. zonatus fitness were 

found, the possibility of Lariskella causing cytoplasmic incompatibility 
was evaluated. If Lariskella induces CI, we would expect few or no eggs 
to hatch (due to early embryonic mortality) in the cross in which L+ 
males were mated with L− females. Leptoglossus zonatus bugs were 
reared and fed using the same protocol described above, but in this 
experiment, all adults were Caballeronia positive. They were paired in 
all four possible crosses among Lariskella infected and uninfected 
bugs (L+female/L+male (n = 7), L−female/L−male (n = 7), L+female/

L−male (n = 6), L−female/L+male (n = 6)). Eggs were collected from 
each pair at daily intervals for 2 weeks and held in Petri dishes for 
2 weeks to monitor hatching.

2.5.2 CI analysis
Careful observation of eggs showed two types of hatching failure. 

Unhatched pale, homogeneously-colored eggs appeared to have died 
early in embryogenesis (“early-death”; Figures 1a,b), while dark eggs 
often showed a well-developed embryo through the semi-transparent 
chorion that failed to eclose or died during emergence (“late-death”; 
Figures 1a–c). Eggs were categorized into successful hatch, early-death 
and late-death embryos (Figure 1). Late mortality of eggs appears to 
be common; we noticed these dark eggs in every treatment in the 
fitness experiment. We also hypothesized that CI would cause early 
embryonic mortality based on observations from other CI− inducing 
bacteria (Duron and Weill, 2006; Shropshire et al., 2020). To test for 
CI, we  therefore compared exclusively early egg death among 
treatments, using the Kruskal-Wallis one-way analysis of variance and 
the Dunn pairwise test for pairwise comparisons between groups.

2.6 Survey for Lariskella in field-collected 
Leptoglossus zonatus

2.6.1 Collection of Leptoglossus zonatus
The lack of a performance or fecundity cost for L. zonatus bearing 

Lariskella, coupled with near perfect maternal transmission and 
moderate CI would all lead to a prediction that Lariskella in field 
populations of L. zonatus should be at high frequencies, but not likely 
fixed (Turelli and Hoffmann, 1995; Turelli et al., 2022). To test this 
prediction, we surveyed L. zonatus adults collected from two locations 
in California, USA (Fresno and Bakersfield) and in Tucson, Arizona 
in 2018–2019 (Ravenscraft et al., 2024). All samples were stored in 
95% ethanol. We also examined the frequency of Lariskella over time 
at one location, a University of Arizona pomegranate orchard adjacent 
to the Arizona Veterinary Diagnostics Laboratory, Tucson, AZ. A 
sample of adults was collected at approximately 6-week intervals from 
April to October in both 2019 and 2020.

FIGURE 1

(a,b) Unhatched L. zonatus eggs showing the pale homogenous color of eggs that died early in development (“early death”) and the dark brown color 
of eggs in which the embryo is well developed (“late death.”), (c) Nymphs that died during emergence were included in the “late death” category.
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2.6.2 DNA extraction and diagnostic PCR
Adult and nymphal bugs from the CA and 2018–2019 AZ 

samples were dissected, and DNA was extracted from a small 
portion of the M4 midgut region and surrounding tissue using the 
Qiagen DNeasy Blood and Tissue kit. DNA from the Tucson, AZ 
pomegranate orchard samples of 2019–2020 was extracted using 
an alternative but equivalent method: abdomens were removed 
from bugs, and entire abdomens were homogenized via bead 
beating. DNA extractions were performed with a small amount of 
the homogenate (5 μL) and a Chelex extraction protocol (Hunter 
et  al., 2022). All the extractions were kept at −20°C until 
diagnostic PCR was performed using Lariskella specific primers 
(Duron et al., 2017).

3 Results

3.1 Lariskella maternal transmission rate 
and abundance through development

Lariskella was maternally transmitted with >99% efficiency. 
All the eggs tested (113) were positive for Lariskella, while the 
negative control extrtactions from the Lariskella-free culture 
consistently tested negative. The titer of Lariskella remained 
similar throughout the first three developmental stages (1st–3rd 
instar), with an average of 1.95 × 104 copies per nymph. Lariskella 
titer increased after the third instar (Figure 2a) and was also high 
in reproductive tissue (testes and ovaries), with an average total 
abundance similar to the whole-body 4th instar nymph 
(Figure  2b). On average, Lariskella was similarly abundant in 
ovaries and testes, although titers of Lariskella in ovaries had 
higher variance (Figure 2b).

3.2 Reproductive tissue and whole-body 
16S Illumina sequencing

Amplicon sequencing with universal 16S rRNA primers of 
whole-body 4th instar nymphs and reproductive tissues was used 
to characterize the bacteria associated with L. zonatus. 
Unsurprisingly, the dominant sequence variant (SV) in whole-
body samples was the obligate nutritional gut symbiont 
Caballeronia (Figure  3). Lariskella reads occurred in low 
abundance in 3/5 of 4th instar nymphs, with the common gut 
bacterium, Enterococcus, also being abundant in samples without 
Lariskella. In contrast, Lariskella was abundant in both ovaries 
and testes, consistent with a CI-causing phenotype. Lariskella was 
the most consistently present and abundant intracellular taxon 
found. Importantly, symbionts known to cause CI (Wolbachia, 
Cardinium, Rickettsiella, Spiroplasma, Mesenetia and Rickettsia) 
were all absent. Enterococcus was also abundant in several 
reproductive tissue samples. This bacterium is a common gut 
inhabitant (Engel and Moran, 2013; Lebreton et al., 2014) and was 
likely a contaminant from gut disruption during dissections. The 
genus Serratia includes opportunistic pathogens and intracellular 
symbionts, but this lineage was found in a minority of reproductive 
tissue samples (43%) (Slatten and Larson, 1967; Sikorowski et al., 
2001; Perreau et al., 2021).

3.3 Caballeronia effects on performance 
and fitness of Leptoglossus zonatus

Pairwise comparisons of insect performance and fitness were 
conducted among Lariskella negative (L−) and positive (L+) and 
Caballeronia negative (C−) and positive (C+) bugs. The 

FIGURE 2

(a) Absolute Lariskella dnaA copy number per individual throughout development (1st instar nymph—adult) and (b) in reproductive tissue of adults. 
Each point in panel (b) represents the paired ovaries or testes from one individual.
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individuals in both Caballeronia negative treatments showed the 
major fitness deficits we expected from a previous study (Hunter 
et al., 2022). Survival analysis showed a significant decrease in 
lifetime survival for bugs that did not receive Caballeronia (L−
C−/L−C+, z = 6.60, adjusted p < 0.001 and L+C−/L+C+, 
z = 4.07, adjusted p < 0.001; Figure 4). The few survivors of the 
Caballeronia-negative treatments showed significantly longer 
development times (L−C−/L−C+, t = 6.55, df = 16.3, adjusted 
p < 0.0001; L+C−/L+C+, t = 7.42, df = 19.2, adjusted p < 0.001; 
Figure 5). There was also no evidence that Lariskella was able to 

rescue bugs that lacked Caballeronia; the lengthened development 
times were equivalent in Caballeronia negative bugs with and 
without Lariskella (L−C−/L+C−, t = 1.557, df = 17.8, adjusted 
p = 0.42; Figure 5). Although a few Caballeronia negative bugs 
did eclose as adults, females weighed significantly less than 
Caballeronia positive bugs (L+C+/L+C, t = 3.33, df = 27.3, 
adjusted p = 0.01 and L−C+/L−C−, t = 3.20, df = 27.7, adjusted 
p = 0.017; Figure  6a). Similarly, Caballeronia negative males 
weighed significantly less than their Caballeronia positive 
counterparts, (L+C+/L+C−, t = 5.573, df = 27.58, adjusted 

FIGURE 3

Leptoglossus zonatus amplicon 16S rRNA sequences from whole-body 4th instar nymphs and reproductive tissue (ovaries and testes). Each bar 
represents an individual, and the colors represent reads of bacterial taxa denoted in the caption. In whole-body samples, the gut-associated bacterium 
Caballeronia was the most abundant followed by Enterococcus and Lariskella. Lariskella was the most abundant bacterium in the reproductive tissue 
followed by Enterococcus and Serratia.

FIGURE 4

(a) Kaplan–Meier survival curves showing the total lifespan of individuals from the 2nd instar nymphal stage (when Caballeronia was acquired) based 
on the presence or absence of the primary symbiont Caballeronia (C+ or C−) and the presence or absence of the secondary symbiont Lariskella (L+ or 
L−). (b) Coefficients of a mixed-effects Cox regression model in which higher coefficients indicate lower survivorship. The model shows a significant 
decrease in survivorship for bugs that lack Caballeronia regardless of Lariskella infection status. It also shows that Lariskella presence or absence does 
not significantly influence survivorship (L−C−/L+C−, adjusted p = 0.36 and L−C+/L+C+, adjusted p = 0.21, all other pairwise comparisons, adjusted 
p < 0.001).

https://doi.org/10.3389/fmicb.2025.1595917
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Umanzor et al. 10.3389/fmicb.2025.1595917

Frontiers in Microbiology 08 frontiersin.org

p < 0.0001 and L−C+/L−C−, t = 3.72, df = 24.15, adjusted 
p = 0.0054; Figure 6b). Lastly, when Caballeronia negative females 

were paired with mates, no female produced any eggs, indicating 
that Caballeronia is required for L. zonatus reproduction.

FIGURE 5

Development times for four treatments across developmental stages starting at the molt into the 2nd instar when the bugs were fed either 
Caballeronia (C+) or deionized water (C−). Development time lagged significantly for the Caballeronia negative treatments but was not significantly 
different between Lariskella positive and negative bugs (adjusted p > 0.4 for Lariskella comparisons while keeping Caballeronia status constant). Bars 
with different letters reflect statistically significant differences. Numbers next to the bars indicate the number of replicates analyzed, with total numbers 
of individuals measured in parentheses.

FIGURE 6

(a) Mean weights of adults from the fitness experiment, showing a significant difference in weight between Caballeronia positive and negative females 
(C+, C−) regardless of Lariskella status (adjusted p > 0.9 for Lariskella comparisons while keeping Caballeronia status constant and all other pairwise 
comparisons, adjusted p < 0.018). (b) Although there was a significant difference in weights among C+/C− males when controlling for Lariskella status 
(adjusted p < 0.01), there was no significant difference between L−C−/L+C+ males (adjusted p = 0.0571).
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3.4 Lariskella effects on performance and 
fitness of Leptoglossus zonatus

In contrast to the findings for Caballeronia, there were no 
significant differences in lifetime survival between the treatments 
with and without Lariskella (adjusted p-value of all possible 
Lariskella comparisons >0.21; Figure 4). Similarly, adults that were 
Lariskella positive developed at equivalent rates to individuals that 
lacked Lariskella (L−C+/L+C+, t = −0.226, df = 13.9, adjusted 
p < 0.99; Figure 5). Finally, adult female weight was not influenced 
by the presence of Lariskella (L+C+/L−C+, t = 0.55, df = 14.0, 
adjusted p = 0.945 and L+C−/L−C−, t = −0.047, df = 29.4, adjusted 
p = 1.0; Figure 6a). Caballeronia positive males with and without 
Lariskella were also similar weights (L+C+/L−C+, t = −2.288, 
df = 9.93, adjusted p = 0.17; Figure 6b).

3.5 Lifetime fitness

Of the egg laying adults in the treatments with Caballeronia, 
paired adult females had a long reproductive period of about 
100 days. Both clutch size and egg hatch rates declined 
throughout the life of the female, so time was a significant factor 
for both (Fclutch size = 25.08, df = 258, p < 0.001; Figure 7a), (F hatch 

rate = 7.757, df = 258, p < 0.001; Figure 7b). However, the fecundity 
of reproducing females was not influenced by the presence of 
Lariskella (t = 0.757, p = 0.45) with females producing 
approximately 300 eggs over their lifetime whether Lariskella was 
present or absent (Figure 8). Similarly, the presence of Lariskella 
did not influence egg hatch rate (t = −0.389, p = 0.69; Figure 7b).

3.6 CI crosses

In a second experiment, males and females with and without 
Lariskella were crossed in all four possible combinations to 

evaluate the possibility that Lariskella caused cytoplasmic 
incompatibility. In evaluating egg mortality in these crosses, 
we  distinguished between early embryonic mortality, which 
appeared to be uncommon in all crosses except the putative CI 
cross, and the more frequent late embryonic mortality observed in 
offspring of aging females (e.g., Figure  7b, and see Methods, 

FIGURE 7

Scatterplots of (a) clutch size and (b) egg hatch rate of adult female L. zonatus with and without Lariskella over the lifetime reproductive period of 
~100 days. The fecundity of females (Caballeronia-positive treatments only) was not influenced by the presence of Lariskella (p = 0.45 and p = 0.70 for 
clutch size and hatch rate respectively). Both clutch size and egg viability (hatch rate) declined significantly throughout life.

FIGURE 8

The presence of Lariskella did not influence the lifetime number of 
eggs produced by Caballeronia positive females during their lifetime 
(t = −0.23, p = 0.82). No Caballeronia negative adult females laid 
eggs, so those two treatments are absent from this figure.
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Figure 1). In the putative CI cross, with L+ males mated with L− 
females, there was a significant decrease in early embryonic 
survival of offspring relative to the other three crosses (c2 = 23.44, 
df = 3, p > 0.0001, Figure 9), consistent with the pattern expected 
in a CI phenotype. Cytoplasmic incompatibility is not complete, 
but survival of eggs laid by females in the CI cross was less than 
two thirds that of eggs in the other three crosses.

3.7 Lariskella frequency in the field

The proportion of bugs infected with Lariskella was high but not 
fixed for L. zonatus samples collected in California and Arizona, USA 
(Figure 10a). In a Tucson pomegranate orchard sampled repeatedly 
over two seasons, the proportion of Lariskella positive bugs in samples 
was variable and ranged from a low of 66% in July and August of 2019 
to a high of 100% in June and July of 2020, but showed no clear 
seasonal pattern (Figure 10b).

4 Discussion

We examined the role of the intracellular symbiont Lariskella on 
Leptoglossus zonatus fitness when the obligate nutritional symbiont, 
Caballeronia was present or absent. We  found no fitness costs or 
benefits to Lariskella throughout the lifetime of L. zonatus, nor did 
we find evidence that Lariskella provides any benefits in the absence 
of Caballeronia. However, crossing experiments revealed that 
Lariskella causes incomplete cytoplasmic incompatibility (CI), 
characterized by a dramatic increase in early embryonic mortality, 
observed only in the putative CI cross. Additionally, high but not fixed 
frequencies of Lariskella were found in field populations. The high 
frequencies would be predicted for a symbiont that spreads via CI, has 
near-perfect maternal transmission and an absence of fitness costs 
(Fine, 1978; Turelli et  al., 1992; O’Neill et  al., 1997; Hurst and 
Frost, 2015).

In the current study, bugs with and without Lariskella showed 
equivalent development times and lifetime survivorship under 
laboratory conditions. In contrast, most individuals lacking the 
primary symbiont, Caballeronia, died before reaching adulthood. 
Although a few Caballeronia-negative individuals survived for several 
months, nearly all failed to reach adulthood, and none were able to 
reproduce. This result provides even more support for an earlier 

FIGURE 9

The proportion of a female’s eggs that survived early embryonic 
development among crosses of Lariskella-infected (L+) and 
uninfected (L−) adults in Caballeronia + L. zonatus. Significantly 
fewer eggs survived early embryogenesis in the putative CI cross 
than in any of the other crosses (p < 0.001), suggesting that Lariskella 
causes CI in L. zonatus. Numbers under bars refer to the number of 
replicates. Bars with different letters reflect statistically significant 
differences. Numbers next to the bars indicate the number of 
replicates analyzed, with total numbers of egg clutches measured in 
parentheses.

FIGURE 10

(a) Lariskella infection frequencies in three L. zonatus populations in USA on pomegranates: two populations in California (Bakersfield and Fresno) and 
one from Tucson, Arizona. Lariskella frequencies were high (0.88 Bakersfield, 0.92 Fresno, and 0.94 Tucson), but were not fixed in any population. (b) 
Lariskella infection frequency in L. zonatus over time in a single pomegranate orchard in Tucson, AZ, USA. Bugs were sampled at approximately 6-week 
intervals over the bugs’ active period from April to October in 2019 and 2020.
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conclusion that Caballeronia is obligate for L. zonatus (Hunter et al., 
2022). While the survivorship of Lariskella-positive bugs (L+C+) 
appeared lower than that of Lariskella-negative bugs (L−C+), the 
difference was not statistically significant. However, this finding is 
based on laboratory conditions, and bugs in the field likely face more 
environmental stressors. Under such conditions, the costs and benefits 
of harboring Lariskella are likely to differ.

CI Wolbachia titer and effects have been shown to be influenced 
by stressful conditions. Some strains have shown reduced densities 
and CI strength when exposed to increased rearing and nutritional 
stress (Sinkins et al., 1995; Yamada et al., 2007). It is not entirely clear 
what influence this has on host fitness; reduced symbiont titers might 
even be beneficial to the host under stress. Notably, other Wolbachia 
strains do not show such declines in CI strength under stress (Dutton 
and Sinkins, 2004), suggesting that CI-symbiont interactions vary 
depending on both symbiont strain and environmental context.

Our results further suggest that Lariskella cannot offset the severe 
fitness costs experienced by bugs lacking Caballeronia, at least under 
the laboratory conditions tested. This does not rule out a possible 
nutritional role for Lariskella, however. If signaling by the presence of 
Caballeronia in the gut is necessary for basic functions like gut 
development as has been found in R. pedestris (Jang et al., 2023), it 
could be that even if Lariskella synthesized all the nutrients limiting 
for L. zonatus, it would not compensate for the absence of the 
development regulating function of Caballeronia. Further, 
Caballeronia alone may provide all limiting nutrients in abundance 
such that any nutrient biosynthesis of Lariskella is entirely redundant. 
Nevertheless, it remains possible (though, we speculate unlikely) that 
Lariskella could confer a nutritional benefit that becomes evident 
when L. zonatus is paired with a suboptimal Caballeronia strain or 
close relative.

Previous work showed that some Caballeronia strains are more 
beneficial to L. zonatus development and adult weight than others 
(Hunter et al., 2022), and allied genera in the Burkholderiacae can 
colonize the R. pedestris gut and provide some benefits but are inferior 
to Caballeronia for bug fitness (Itoh et al., 2019). A field survey of 
L. zonatus revealed 26 distinct Caballeronia lineages, with three 
lineages present in two-thirds of the individuals sampled. It was also 
not uncommon for multiple lineages to be present simultaneously in 
the midgut (Ravenscraft et  al., 2024). Considering these findings, 
perhaps a better test of a nutritional role for Lariskella would be to 
introduce a suboptimal Caballeronia that triggers the normal 
developmental program of the bug but falls short of providing 
complete nutrition for L. zonatus. In this situation, a nutritional role 
of Lariskella could benefit L. zonatus. Analysis of the genome of the 
CI-causing Lariskella in L. zonatus, when available, will allow us to 
predict whether Lariskella could complement the nutrition provided 
by a suboptimal Caballeronia or other Burkholderiaceae strain.

The recent emergence of Lariskella as a relatively common 
symbiont of arthropods underscores the mystery of the family to 
which it belongs, the Midichloriaceae. This family is the most diverse 
yet least understood within the intracellular bacterial order 
Rickettsiales, an order of alphaproteobacteria that includes significant 
human and livestock pathogens, and is hypothesized to have given rise 
to mitochondria (Andersson et al., 1998; Fitzpatrick et al., 2006; Salje, 
2021; Giannotti et  al., 2022; Schön et  al., 2022). Members of 
Midichloriaceae are intracellular symbionts found in a wide array of 
hosts and habitats, primarily aquatic, and have been detected in 

protists (e.g., amoebas, ciliates) and invertebrates (e.g., ticks, corals, 
and arthropods), reflecting a complex ecological distribution. Despite 
a shared intracellular lifestyle, their genomes exhibit considerable 
variation in size and gene content, including key metabolic pathways, 
even among closely related genera, evidence of rampant horizontal 
gene transfer and recent host shifts (Giannotti et al., 2022; Castelli 
et al., 2024). The type genus Midichloria has been found exclusively in 
ticks, especially Ixodes spp., where it can inhabit mitochondria (Lo 
et al., 2006; Sassera et al., 2006; Duron, 2024) and appears to function 
as a nutritional symbiont by synthesizing folate, biotin, and B vitamins 
essential to its blood-feeding hosts (Duron, 2024; Leclerc et al., 2024). 
Given the frequent host shifts within Midichloriaceae and the 
similarity in B vitamin deficiencies between blood and plant sap diets 
(Moran et al., 2003; Douglas, 2017), it is plausible that some Lariskella 
strains may provide nutritional benefits in both blood and sap-feeding 
arthropods. The current study adds cytoplasmic incompatibility (CI) 
as another phenotype associated with Midichloriaceae.

Wolbachia, in the Anaplasmataceae family of Rickettsiales, was 
thought to be  unique in causing CI for several decades after the 
phenomenon was first documented (Yen and Barr, 1971; Werren and 
Jaenike, 1995; Stouthamer et al., 1999). Since then, representatives of 
five other bacterial lineages have been shown to cause CI, including 
two other Alphaproteobacteria (Mesenetia & Rickettsia), Ricketsiella 
(Gammaproteobacteria), Cardinium (Bacteroidota), and Spiroplasma 
(Mollicutes) (Hunter et al., 2003; Takano et al., 2017; Rosenwald et al., 
2020; Pollmann et al., 2022; Owashi et al., 2024). The current work 
may be the first characterization of the functional role of Lariskella in 
any host, and places this bacterium among a group of now seven 
lineages that cause CI.

We do not know whether Lariskella causes CI in other hosts, but 
here the frequency of hosts carrying Lariskella may give some hints. 
Theory predicts that the invasion of a CI symbiont with a near perfect 
maternal transmission rate coupled with a lack of fitness costs should 
result in high frequencies or fixation in a population (Fine, 1978; Turelli 
et al., 1992; O’Neill et al., 1997; Engelstädter and Telschow, 2009; Hurst 
and Frost, 2015). Although Lariskella infection in L. zonatus was not 
fixed in any of the California or Tucson populations surveyed, all three 
sites had a similarly high frequency of Lariskella infection (>85%), 
similar to the numbers previously observed for Nysius seed bug species 
in Japan (Matsuura et al., 2012) and Ixodes ticks in Russia and Japan 
(Mediannikov et al., 2004; Duron et al., 2017; Becker et al., 2023). These 
high frequency infections would be consistent with either a mutualistic 
or parasitic association, such as a nutritional role or reproductive 
manipulation. Within L. zonatus populations, several factors could 
explain the lack of fixation in the field, including an incomplete CI 
phenotype and low symbiont titer early in host development that may 
render the symbiont vulnerable to environmental stressors like heat or 
environmental antibiotic exposure (Corbin et  al., 2017; Endersby-
Harshman et al., 2019; Martins et al., 2023). The diversity of Lariskella 
strains in L. zonatus is currently unknown, but it is possible that multiple 
strains exist in natural populations. Notably, the mitochondrial 
population structure of L. zonatus in California shows signs of a 
selective sweep or bottleneck, with only three mitochondrial haplotypes 
compared to 17 in its congener L. clypealis (Joyce et al., 2017). In the 
context of our findings, this reduced haplotype diversity may suggest a 
recent spread of a single Lariskella strain along with a co-inherited 
mitochondrial haplotype (Raychoudhury et al., 2010). Additionally, the 
long reproductive period of L. zonatus may reduce CI strength, as CI 
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Wolbachia have been shown to decline with male age in some systems 
(Reynolds and Hoffmann, 2002). While low prevalence of Lariskella in 
other arthropod species could suggest a number of scenarios including 
a relatively recent, horizontally acquired association, or one that is 
asymptomatic and slowly declining, it may also indicate a conditional 
role other than CI such as defense or temperature stress mediation 
(Oliver et al., 2003, 2010).

Understanding Lariskella’s role in L. zonatus could also inform pest 
management strategies for tree crops and other hosts and may also 
provide insight into management of blood-feeding arthropods that 
vector human pathogens. Although the current study observed only a 
mild CI phenotype (with 40% of eggs affected), more examples of 
Lariskella CI strains and host backgrounds are needed to determine the 
range of CI strength that can be caused by this lineage. In Wolbachia and 
Mesenetia, CI can cause complete (100%) offspring mortality 
(Hoffmann et al., 1986; Merçot and Charlat, 2004; Takano et al., 2017; 
Shropshire et  al., 2021), but CI strength in Wolbachia varies 
tremendously depending on both the symbiont and the host genotype 
(Merçot and Charlat, 2004; Sicard et al., 2021). Recent work shows that 
incomplete CI Wolbachia strength in Culex pipiens can be explained by 
the divergence of CI gene repertoires relative to strains that induce 
complete CI (Sicard et al., 2021). Conversely, in Drosophila, Wolbachia 
CI strength can vary from 30 to 100% mortality, depending on host 
species (Merçot and Charlat, 2004). The identification of a new CI 
lineage, Lariskella, that also infects human disease vectors (e.g., ticks and 
fleas) is notable given the pathogen-blocking effects of CI Wolbachia in 
mosquitoes (McMeniman et al., 2009; Moreira et al., 2009; Walker et al., 
2011). CI Wolbachia pathogen-blocking has spurred a global program 
deploying Wolbachia in mosquitoes to combat RNA viruses responsible 
for deadly diseases (Utarini et al., 2021).

Future research should focus on comprehensive screening of 
Lariskella across a broad range of arthropods and comparative genome 
sequencing to characterize its metabolic pathways, potential 
nutritional roles, and capacity to manipulate host reproduction via 
homologs of known cytoplasmic incompatibility (CI) genes. For 
example, Mesenetia, another alphaproteobacterium within 
Rickettsiales, carries homologs to Wolbachia CI genes (Takano et al., 
2017). Both Mesenetia and Wolbachia belong to the family 
Anaplasmataceae, which phylogenetic analyses often identify as a 
sister group to Midichloriaceae. Given the widespread occurrence of 
horizontal gene transfer and host shifts, Lariskella may have evolved 
CI independently, similar to Cardinium, which lacks Wolbachia CI 
genes (Mann et al., 2017; Lindsey et al., 2018). Alternatively, Lariskella 
could represent a novel mechanistic model of CI that diverges from 
the toxin-antidote, and two-by-one models observed in Wolbachia. 
Understanding the prevalence of Lariskella, its evolutionary trajectory, 
and its interactions within arthropod hosts will advance our 
knowledge of symbiont-driven reproductive manipulation and vector 
ecology. This research could also provide insights for developing new 
control strategies for pest and pathogen vectors.
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