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Antimicrobial resistance (AMR) poses an escalating global threat that demands 
comprehensive surveillance approaches beyond traditional clinical contexts. Although 
next-generation sequencing (NGS), particularly whole-genome sequencing (WGS), 
has revolutionized AMR surveillance, current implementation predominantly targets 
clinical isolates, largely neglecting critical environmental and animal reservoirs. 
Consequently, significant gaps persist in our understanding of AMR dynamics 
across diverse ecosystems. This Perspective emphasizes the urgent need to adopt 
an integrated genomic framework, combining isolate-based WGS with shotgun 
metagenomics within a cohesive One Health strategy. Such an integrated approach 
would significantly enhance the detection, tracking, and containment of resistance 
determinants, facilitating proactive rather than reactive AMR management. Achieving 
this vision requires global standardization of sequencing methods, harmonization 
of bioinformatics pipelines, and strengthened cross-sectoral collaboration to 
ensure timely interventions against AMR threats worldwide.
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1 Introduction

The projection that antimicrobial resistance (AMR) could cause 10 million deaths annually 
by 2050, has reinforced its status as one of the greatest global health threats of the 21st century 
(Naghavi et al., 2024). Addressing AMR requires a multisectoral approach, particularly in 
understanding the evolution, reservoirs, and transmission pathways of resistant pathogens to 
implement effective containment strategies. However, the intricate nature of AMR drivers 
within various ecosystems impedes the comprehensive understanding of its dynamics. Next-
generation sequencing (NGS) has transformed genomic surveillance, providing unparalleled 
insights into the evolution of antimicrobial resistance (Hu et al., 2024). However, its application 
is still fragmented, primarily confined to clinical environments like hospitals and national 
reference laboratories. This narrow focus does not encompass the wider resistome, overlooking 
essential environmental and animal reservoirs. This Perspective highlights the critical need for 
a cohesive AMR surveillance framework within a One Health context, integrating whole-
genome sequencing (WGS) of clinical isolates with shotgun metagenomics, aiming to create 
a thorough, cross-sectoral approach for tracking and reducing the spread of resistance.
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2 The role of genomics in AMR 
surveillance

2.1 Advances in NGS for AMR detection

NGS has transformed microbiological workflows, offering high-
resolution characterization of AMR mechanisms in ways that were 
previously fragmented and labor-intensive. Traditionally, 
microbiologists relied on multiple complex techniques, including 
phenotypic assays, PCR-based resistance gene detection, multilocus 
sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and 
plasmid profiling, to identify resistance genes, virulence factors, and 
epidemiological relationships (Calero-Cáceres et  al., 2023). These 
approaches, while informative, were time-consuming and often lacked 
the resolution needed to track AMR evolution and transmission in 
real time.

The advent of WGS has streamlined these processes, providing a 
single, comprehensive method for detecting antimicrobial resistance 
genes (ARGs), mobile genetic elements (MGEs), virulence traits, 
clonal relatedness, and phylogenetic profiles in one sequencing run. 
WGS is now a cornerstone of AMR surveillance in clinical settings, 
facilitating outbreak detection, strain characterization, and 
retrospective epidemiological investigations (Waddington et  al., 
2022). Meanwhile, shotgun metagenomics broadens the scope of 
AMR surveillance, allowing for the detection of resistance 
determinants directly from complex environmental and community 
samples, capturing AMR dynamics in unculturable bacteria and 
understudied reservoirs (Pillay et  al., 2022). Together, these 
technologies are reshaping AMR monitoring across human, animal, 
and environmental health sectors, providing an unprecedented 
opportunity to trace resistance evolution and dissemination holistically.

2.2 Challenges in implementing genomic 
AMR surveillance

Despite significant advancements, genomics-based AMR 
surveillance remains fragmented, predominantly focused on clinical 
settings with insufficient integration across One Health compartments. 
WGS and metagenomics have yet to be  fully incorporated into 
veterinary and environmental health programs, largely due to 
technical and financial barriers, including high sequencing costs, 
bioinformatics complexity, and the absence of standardized workflows 
for data analysis and resistance gene annotation (Calero-Cáceres et al., 
2024). Additionally, inconsistencies in sequencing protocols across 
laboratories and countries hinder cross-sector comparability, limiting 
the ability to track resistance transmission across geographic and 
ecological boundaries (Ristori et al., 2024).

To maximize the impact of WGS and metagenomics in AMR 
surveillance, a globally coordinated and harmonized framework is 
needed. Standardizing sequencing methodologies, bioinformatics 
pipelines, and data-sharing platforms will facilitate interoperability 
across human, animal, and environmental health sectors (Calero-
Cáceres et al., 2024). Addressing resource constraints in low- and 
middle-income countries (LMICs) through investments in capacity-
building, real-time data integration, and public-private partnerships 
will be  crucial to bridging existing gaps and establishing a truly 
comprehensive AMR monitoring system (Calero-Cáceres, 2024).

2.3 Expanding AMR surveillance beyond 
clinical settings

The global challenge of AMR extends beyond clinical settings. 
While hospital-based surveillance has provided critical insights into 
AMR evolution, its scope remains narrow, capturing only a fraction of 
the broader resistance landscape. The environmental and animal 
reservoirs of AMR—wastewater, agricultural runoff, food, wildlife, and 
airborne microbiota—are under-monitored, limiting our ability to track 
resistance dissemination effectively (Endale et al., 2023). Moreover, the 
lack of standardized sampling methodologies, sequencing approaches, 
and data-sharing frameworks creates gaps in surveillance, hindering 
global efforts to mitigate resistance spread (Black et al., 2020).

Expanding surveillance beyond hospitals requires a dual strategy: 
(i) WGS of bacterial isolates from clinical and animal settings and (ii) 
Shotgun metagenomics for complex matrices in environmental and 
community settings. While WGS provides high-resolution data on 
priority pathogens and emerging resistance mechanisms, 
metagenomics enables the identification of resistance hotspots and 
reservoirs of dissemination, both of which are critical to One Health 
AMR surveillance (Black et al., 2020).

3 Integrating whole-genome and 
metagenomic surveillance in a One 
Health framework

3.1 Isolate-based WGS for high-priority 
pathogens

WGS is emerging as the most comprehensive approach for 
tracking antimicrobial-resistant bacteria in human and animal health, 
providing high-resolution detection of genetic resistance determinants, 
MGEs, and insights into strain evolution (Figure 1). Its implementation 
in AMR surveillance provides a robust framework for identifying 
high-risk strains, tracing transmission pathways, and monitoring the 
emergence of novel resistance mechanisms. Prioritizing WGS for 
WHO Priority Pathogens and newly emerging resistant bacteria is 
essential, particularly for strains exhibiting multidrug-resistant (MDR) 
or extensively drug-resistant (XDR) phenotypes (Calero-Cáceres et al., 
2023; Almutairy, 2024; World Health Organization, 2024).

WGS enables precise characterization of genetic determinants 
associated with resistance dissemination, including plasmids, 
integrons, transposons, prophages, and mutations known to confer 
antimicrobial resistance (Algarni et al., 2022). Integrating phylogenetic 
analysis and strain typing improves our understanding of 
epidemiological linkages, delineates transmission routes, identifies 
reservoirs, and highlights bacterial populations facilitating resistance 
gene transfer. However, WGS alone cannot characterize unculturable 
microbial reservoirs, underscoring the complementary need for 
metagenomics to capture the broader resistome across 
complex ecosystems.

3.2 Metagenomic-based AMR surveillance

While WGS provides high-resolution insights into individual 
resistant bacteria, metagenomics enables a more comprehensive 
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analysis of AMR within complex microbial communities, overcoming 
the limitations of culture-dependent methods (Pillay et al., 2022). By 
directly sequencing environmental DNA, metagenomics allows for the 
detection of resistance determinants in diverse reservoirs, including 
wastewater, food production systems, livestock environments, 
airborne microbiota, migratory animals, and vectors such as rodents 
and insects (Duarte et al., 2021). These compartments serve as critical 
hotspots for resistance gene exchange, driving the emergence and 
dissemination of novel resistance mechanisms across One Health 
sectors (Figure 1).

Beyond antimicrobial resistance gene (ARG) identification, 
metagenomic analysis facilitates the functional annotation of virulence 
factors, the epidemiological tracking of high-priority pathogens, and 
the surveillance of AMR trends at a broader ecological scale. Such data 
are essential for pinpointing transmission hotspots and assessing risks 
associated with environmental and community exposures, enabling 
early intervention before clinical outbreaks occur.

Integrating metagenomics with isolate-based WGS further 
strengthens surveillance efforts by providing complementary evidence 
that isolates alone cannot, supporting early detection of emerging 

FIGURE 1

Integrative framework for genomic surveillance of antimicrobial resistance (AMR) combining isolate-based whole-genome sequencing (WGS) and 
shotgun metagenomics within a One Health approach. Figure was created by Biorender.
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resistance threats. Therefore, standardization of sequencing depth, 
bioinformatics pipelines, and data-sharing protocols across sectors 
will be essential for optimizing the effectiveness of metagenomics in 
AMR monitoring and interventions globally (Calero-Cáceres 
et al., 2024).

3.3 Technical considerations for genomic 
AMR surveillance

The reliability of genomic AMR surveillance depends on well-
defined sequencing protocols, encompassing sample processing, 
sequencing methodology, and bioinformatics workflows (Figure 1). 
For isolate-based WGS, high-quality genomic DNA extraction, 
rigorous quality control, and standardized library preparation are 
crucial for accurate resistance detection (Sherry et al., 2023). Short-
read sequencing platforms (e.g., Illumina) offer high accuracy for 
single nucleotide polymorphism (SNP) detection, ARG annotation, 
phylogenetic analysis, and genome-wide association studies (GWAS). 
Long-read technologies (e.g., Oxford Nanopore, PacBio) facilitate 
complete genome assemblies, precise plasmid reconstruction, and 
structural variation analysis (Bejaoui et al., 2025). Sequencing depth 
depends on study objectives: ≥100 × coverage is needed for precise 
SNP detection, plasmid tracking, and outbreak investigations, whereas 
30–50 × coverage suffices for broader epidemiological surveillance 
and resistance gene identification.

For metagenomic surveillance, optimized DNA extraction 
methods are critical due to the complexity and variability of 
environmental samples, where resistance genes may be present at low 
abundances (Calero-Cáceres et al., 2024). Library preparation must 
minimize biases related to mixed microbial communities, and 
sequencing platform selection should balance resolution, accuracy, 
and cost-efficiency (Poulsen et al., 2022). Short reads offer affordable, 
high-throughput characterization of complex resistomes, whereas 
long reads enhance detection of MGEs, including plasmids and 
integrons. Sequencing depth must balance sensitivity for rare 
resistance genes with financial feasibility.

Regardless of approach, standardized bioinformatics pipelines are 
essential for consistent ARG annotation, strain typing, and 
comparative genomic analyses (Bogaerts et al., 2021). Integration with 
globally accessible AMR databases (e.g., NCBI, Pathogenwatch, 
ResFinder) will enhance data interoperability and facilitate real-time 
monitoring across sectors. Global harmonization of these technical 
elements is critical for robust AMR genomic surveillance, enabling 
early identification and response to emerging resistance threats 
(Argimón et al., 2021; Florensa et al., 2022).

4 Final considerations

Integration of whole-genome sequencing (WGS) and shotgun 
metagenomics is essential for a comprehensive AMR surveillance 
strategy, bridging high-resolution pathogen characterization with 
broader resistome analysis across diverse One Health ecosystems. 
While WGS enables precise strain tracking, outbreak investigations, 
and detailed genetic profiling of resistance, metagenomics provides 
critical insights into transmission dynamics, environmental reservoirs, 
and emergent resistance threats. Together, these approaches facilitate 

proactive rather than reactive surveillance, supporting timely 
interventions and evidence-based containment measures.

To fully harness genomic surveillance potential, global efforts 
must prioritize standardizing sequencing methodologies, harmonizing 
bioinformatics pipelines, and ensuring equitable access to genomic 
technologies, particularly in LMICs. A coordinated, cross-sectoral 
genomic surveillance framework integrating both WGS and 
metagenomics will enhance real-time monitoring, inform data-driven 
policy decisions, and support unified global responses to mitigate the 
rapidly evolving threat of antimicrobial resistance.
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