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Impact of sample multiplexing on
detection of bacteria and
antimicrobial resistance genes in
pig microbiomes using long-read
sequencing

Mirena Ivanova, Frank M. Aarestrup and Saria Otani*

Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark,

Kgs Lyngby, Denmark

The e�ects of sample multiplexing on the detection sensitivity of antimicrobial

resistance genes (ARGs) and pathogenic bacteria in metagenomic sequencing

remain underexplored in newer sequencing technologies such as Oxford

Nanopore Technologies (ONT), despite its critical importance for surveillance

applications. Here, we evaluate how di�erent multiplexing levels (four and

eight samples per flowcell) on two ONT platforms, GridION and PromethION,

influence the detection of ARGs, bacterial taxa and pathogens. While overall

resistome and bacterial community profiles remained comparable across

multiplexing levels, ARG detection was more comprehensive in the four-plex

setting with low-abundance genes. Similarly, pathogen detection was more

sensitive in the four-plex, identifying a broader range of low abundant bacterial

taxa compared to the eight-plex. However, triplicate sequencing of the same

microbiomes revealed that these di�erences were primarily due to sequencing

variability rather thanmultiplexing itself, as similar inconsistencies were observed

across replicates. Given that eight-plex sequencing is more cost-e�ective while

still capturing the overall resistome and bacterial community composition, it may

be the preferred option for general surveillance. Lower multiplexing levels may

be advantageous for applications requiring enhanced sensitivity, such as detailed

pathogen research. These findings highlight the trade-o� between multiplexing

e�ciency, sequencing depth, and cost in metagenomic studies.
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Introduction

Advancements in sequencing technologies have markedly improved metagenomics

and microbiome research, allowing for accurate and comprehensive analysis of complex

microbial communities (e.g., Satam et al., 2023). Short-read sequencing platforms, such as

Illumina, have been widely used for metagenomic studies, including pathogen surveillance

and antimicrobial resistance, due to their high accuracy, throughput and cost-effectiveness

(Quince et al., 2017; Hendriksen et al., 2019; Bogri et al., 2024; Kohle et al., 2024; Royer

et al., 2024). However, they also result in fragmented contigs and genomes, andmight suffer

to resolve complex or repetitive genomic regions, especially in microbial communities with

a high bacterial diversity, closely-related species/strains, or a rich antimicrobial resistance

gene (ARG) reservoir (Albertsen et al., 2013; Quince et al., 2017; Sereika et al., 2022).
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Illumina-based research has also been conducted over a longer

period of time compared to newer sequencing technologies

(Goodwin et al., 2016; Satam et al., 2023), thus its performance,

such as library preparation, platform, depth, coverage, and the

impact of multiplexing, has been studied relatively more (Campbell

et al., 2015; Poulsen et al., 2022; Ribarska et al., 2022). In

contrast, the effect of sequencing output, particularly in terms of

multiplexing and data yields, remains unexplored for newer long-

read technologies such as Oxford Nanopore Technologies (ONT).

The introduction of ONT platforms, such as GridION

and PromethION, provide increased resolution of microbial

communities, ARGs, and pathogenic species (Meslier et al., 2022;

Agustinho et al., 2024). Because of their longer reads, they result

in more complete metagenome-assembled genomes (MAGs), and

with increased N50 that varies for different DNA extraction

methods and metagenomic sample types, e.g., from 4 kb (Latorre-

Pérez et al., 2020) to up to 10–15 kb reads (Buttler and Drown,

2022). This capability is particularly valuable for applications

such as metagenomic comparison and surveillance of closely-

related species and antimicrobial resistance (AMR) genes, as short

reads may have challenges capturing the critical DNA regions for

species or gene differentiation. Longer DNA sequences provide

better coverage of these regions and may help resolve bacterial

or gene assignment issues. Importantly, the ability to accurately

resolve microbiome composition is also dependent on sequencing

output, as a higher number of reads provides more comprehensive

information on the composition and functional potentials in

complex microbial communities (Sharon et al., 2015; Liao et al.,

2023). In any sequencing technology, the number of reads per

sample is directly influenced by the number of samples sequenced

on a single flowcell, also known as multiplexing.

The optimal use of any ONT flowcell capacity, especially

with various sample multiplexing, remains largely underexplored.

Particularly how the number of samples multiplexed per flowcell

affects detection sensitivity, and data quality and size, to resolve

microbial and ARG diversities. This is especially relevant in the

context of surveillance programs, where sequencing costs and

throughput must be balanced with the need for accurate detection

of resistance genes and clinical infectious agents in a short time

(Besser et al., 2018; Liu et al., 2021a; Kumburu et al., 2023).

To date and to the best of our knowledge, there has been no

comparative analysis of sample multiplexing between the different

ONT platforms, GridION and PromethION, and how varying

multiplexing levels may affect the sensitivity of ARG and bacterial

detection. PromethION platform with its higher data output

capacity compared to GridION (Latorre-Pérez et al., 2020) may

allow for greater multiplexing, but it remains unclear whether or

how increased sample numbers per flowcell might lead to decreased

sensitivity, particularly for low-abundance species and ARGs.

In this study, we assessed the impact of sample multiplexing

on the detection sensitivity of ARGs and bacterial taxa using two

long read ONT sequencing platforms: GridION and PromethION.

Specifically, we compared bacterial and ARG communities in the

same pig microbiome multiplexed at two levels (four and eight

samples) on both platforms. We also evaluated the ability of both

platforms to detect representatives of pathogenic bacterial species

across all multiplexed samples.

Materials and methods

Experimental design

A total of four different pig fecal samples were selected for

this study (Figure 1). They were sequenced as four and eight

samples per flowcell on GridION, and four and eight samples

per flowcell on PromethION (P2 Solo version) (Figure 1). We

only tested four and eight samples per flowcell as running

one sample per GridION or PromethION flowcell would be

under-utilizing the system capacity. To confirm this, we have

tested single-plex sample on GridION as it theoretically produces

max 48 Gb (ONT: https://nanoporetech.com/products/sequence/

gridion) and confirmed it would be under-utilized (details in

Supplementary material), therefore all our downstream analyses

is based on four- and eight-plexed metagenomics. In all eight-

plex flowcells, four additional fecal samples were included solely

to fill the flowcell capacity to eight. These extra samples were

not part of the four-sample set also sequenced in the four-plex

runs, and were therefore excluded from downstream analysis to

ensure that comparisons between four- and eight-plex conditions

were based on the same biological samples (Figure 1). To assess

whether the variation in ARG and bacterial detections was due to

multiplexing levels or simply the inherent variability in sequencing

replicates, we performed additional triplicate sequencing of the

same samples under four- and eight-plex conditions on both

GridION and PromethION for all the sequencing runs. This

allowed us to determine whether the detected differences in

ARG and bacterial species were attributed to multiplexing rather

than sample-to-sample sequencing variability. All fecal samples

originated from Danish healthy pigs submitted to the Danish

Integrated Antimicrobial Resistance Monitoring and Research

Programme (DANMAP https://www.danmap.org/) (Aarestrup

et al., 1998). All pig fecal samples were selected from geographically

close farms with very similar production settings and feeding

regimes. Additionally, the pigs were all of the same age and

similar weight, minimizing biological variability. The samples

were stored at −80◦C immediately after collection, thawed on

ice and 170 (± 5) mg were weighted and used for subsequent

DNA extraction.

DNA extraction, library preparation and
ONT sequencing

Total DNA was extracted using the Quick-DNA HMW

Magbead Kit (Cat. No. D6060, Zymo Research) following the

manufacturer’s instruction with minor modifications: 170 ±

5 g feces were suspended in increased volume of 200 uL

DNA/RNA shield R1100, followed by incubation for 10 min—

during microbial lysis, treatment was done with larger volume

of 100 uL lysozyme (100 mg/ml) and the incubation during

DNA purification was prolonged to 15min. DNA yield was

measured using the Qubit 4 Fluorometer (Cat. No. Q33238,

Invitrogen), and was stored at 4◦C until library preparation.

From each sample, 1 µg DNA input was used for library

preparation with the same Ligation gDNA Native Barcoding
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FIGURE 1

Study experimental design. G1-G4: pig fecal microbiomes sequenced on GridION at four- and eight-plex; P1–P4: pig fecal microbiomes sequenced

on PromethION at four- and eight-plex.

Kit 24 V14 (SQK-NBD114.24, Oxford Nanopore Technologies,

Oxford) following the manufacturer’s instruction with minor

modifications: increased incubation times during the end prep.

to 10min, and during the barcode and adaptor ligation steps

to 40min. Four and eight samples were multiplexed and loaded

on FLO-PRO114M flowcell (R10.4M chemistry) and sequenced

on PromethION P2 Solo platform, and the same four and

eight samples were multiplexed and loaded on FLO-MIN114

flowcell (R10.4 chemistry) and sequenced on GridION platform.

Sequencing was performed for 72 h and reads were basecalled

using GuppyBasecaller (v7.2.13) with super-accurate basecalling

option. Low-quality reads were filtered using the default setting on

MinKNOW with reads below a score of <9 and read lengths <200

bp to be omitted.

ARGs and bacterial assignment and data
analysis

Taxonomic and gene assignment of the reads was

carried out as described in Bogri et al. (2024). Briefly,

raw sequence data were mapped with KMA v1.4.12a

(Clausen et al., 2018) against a custom reference genomic

database (last updated 22/05/2024) that was used previously

for taxa assignments (Hendriksen et al., 2019; Jensen

et al., 2023), comprising of NCBI GenBank databases

of bacteria (closed genomes), archaea, MetaHitAssembly

(PRJEB674–PRJEB1046), HumanMicrobiome (genome

assemblies), and bacteria_draft.

For ARG assignment, all reads were aligned with KMA

v1.4.12a to the ResFinder database v4.0 (last updated 14/05/2024),

consisting of known and acquired resistance genes (Zankari et al.,

2017; Bortolaia et al., 2020).

To calculate the abundance of bacteria and ARGs from long

read sequencing data, unlike conventional approaches where read

count is used as a parameter in Illumina sequencing where read

lengths are all equals (e.g., Jensen et al., 2023), we adapted a

depth calculation approach that is specific to ONT, accounting

for its long and variable read lengths. This approach allows

for more accurate taxa and gene abundance estimates as it

avoids calculating abundance based on read counts (which varies

in number and length in long read sequencing compared to

Illumina), and uses basepair-based approach, which takes into

account the entire sequencing run output regardless of the

read counts (whether short or long). This approach takes into

account how many reads were assigned to a taxon or gene,

in addition to the length of those reads as an input since

the reads vary in length. The depth approach was determined

for each feature as follows: First, each ARG or bacterial taxon

was considered present in a sample if its coverage was ≥0.9

when aligned to its reference in the database to increase our

confidence for calling the ARGs or bacterial taxa. Second, the

coverage of each ARG or bacterial species in a sample was

calculated by dividing the number of covered reference basepairs
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(namely refCoveredPositions in KMA.mapstat output file) by

the basepair length of each ARG or bacterial genome in the

reference database. Lastly, the total basepairs aligned to each

detected ARG or bacterial species were divided by the total

length of all reference ARGs or bacterial species, respectively,

that met the ≥0.9 coverage threshold and were found in that

sample. All those depth values were then log10-transformed

when visualizing in the downstream analyses. Python scripts are

made available on GitHub (https://github.com/mirivan2/create_

files_from_mapstat) to calculate ONT depths using this approach.

The calculated feature depths were further used for comparison

between samples sequenced on GridION and PromethION or

between the sequenced triplicates.

Simpson and Shannon diversity indices (Simpson, 1949; Ortiz-

Burgos, 2016), and the Chao1 richness estimate (Chao, 1984) were

calculated at species taxonomic levels and for all identified ARGs

using the diversity function in the “vegan” R package v2.6.6.1

(Oksanen, 2024) and visualized using “ggplot2” R package v3.5.0

(Wickham, 2016). Heatmaps were generated using the “pheatmap”

R package v.1.0.12. Kruskal–Wallis test with Benjamini-Hochberg

(BH) correction (adjusted p-value <0.05) was used to test for

statistical significance between the detected ARGs and bacteria at

four- and eight-plex for GridION and Promethion (Kruskal and

Wallis, 1952). In addition, the ALDEx2 tool based on Welch’s

t-test and multiple testing correction using the BH procedure

was performed to control for false discovery rate (FDR) (Gloor

et al., 2016). Beta diversity represented by a principal component

analysis (PCA) of Bray-Curtis dissimilarities between four- and

eight-plexed samples was performed by “vegan” and visualized

by “ggplot2”.

Results and discussion

Comparison of the sequencing outputs
between GridION and PromethION across
di�erent multiplexing levels

Since ONT produces reads of varying lengths, we used basepair

depth comparisons to more accurately reflect sequencing output,

rather than read counts as typically done in Illumina sequencing.

We therefore use only basepair output when comparing the

sequencing output of fecal microbiomes from four pigs, sequenced

as four-plex and eight-plex on both GridION and PromethION

(Figure 1), in all downstream analyses below.

From PromethION, the total number of high quality

basepairs (quality Q-score of ≥10) were 123.77 Gb in the

four-plex setting (from all four samples combined; Figures 1,

2; Supplementary Figure S1), which decreased to 109.64 Gb

in the eight-plex (from all eight samples combined; Figure 2;

Supplementary Figure S1). Similarly, for GridION, the high-

quality base pairs decreased from 17.46 Gb in the four-plex to 13.36

Gb in the eight-plex flowcell (Figure 2; Supplementary Figure S1).

On average, for 72-h sequencing PromethION produced

approximately 2.1X more basepairs per sample in four-plex

(30.94 ± 6.87 Gb) than in eight-plex (13.98 ± 3.44 Gb)

(Supplementary Figure S1; Supplementary Figure S2), which

should be compared to the expected 2-fold reduction. On

FIGURE 2

Total number of high quality basepairs for four and eight samples

per flowcell sequenced on GridION (purple) and PromethION

(yellow). Number of individual sample outputs and high quality reads

are in Supplementary Figure S1.

GridION, sequencing output varied less between the four-

and eight-plex runs over the same sequencing time, compared

to PromethION (Supplementary Figures S1, S2), likely due to

differences in platform throughput capacity, with PromethION

designed for substantially higher data yields per flowcell (Latorre-

Pérez et al., 2020; Oxford Nanopore Technologies, 2024). Overall,

PromethION generated up to nine times more high-quality

basepairs than GridION (Supplementary Table S1). Despite

that both platforms and multiplexing levels used comparable

DNA input (∼1 µg) and the same library preparation method

over the same sequencing period. This difference can be

attributed to the larger capacity of the PromethION FLO-

PRO114M flowcell compared to the GridION FLO-MIN114

flowcell. Theoretically, PromethION flowcells can yield up to

290 Gb per flowcell over 72 h when using R10.4.1 chemistry for

metagenomic samples [Oxford Nanopore Technology https://

nanoporetech.com/document/requirements/promethion-2s-

spec, (Fernandes et al., 2014; Latorre-Pérez et al., 2020)]. The

four-plex generated more data per sample compared to eight-

plex on both platforms (Supplementary Table S1), which is

expected as less sample on a flowcell will allow higher throughput

per sample.

The total number of reads and basepairs produced by GridION

and PromethION at four- and eight-plex for the four samples, as

well as the number of reads mapped to ARGs and bacterial species,

are in Supplementary Table S1.
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Resistome variations across multiplexing
levels between microbiomes on GridION
and PromethION

Overall, resistome richness (Chao1) decreased with increasing

multiplexing on both GridION and PromethION, while resistome

diversity (Shannon and Simpson indices) remained relatively

stable across different multiplexing levels (Figure 3). This trend

was consistent across both platforms. The observed increase in

ARG richness in the four-plex microbiomes could be attributed

to the higher sequencing output in these samples compared to

the eight-plex microbiomes, as richness indices are known to be

influenced by sequencing depth (Reese and Dunn, 2018) (Figure 3;

Supplementary Tables S1). These results align with prior studies

showing that sequencing depth has a stronger effect on richness

than on diversity indices (Reese and Dunn, 2018; Fernandes

et al., 2014). Although few ONT-specific studies have assessed

alpha diversity changes at all, and none on multiplexing, our

findings support the general observation that richness decreases

with reduced per-sample output, while Shannon and Simpson

indices remain relatively stable. Finally, recent studies have shown

that pig gut microbiome composition and alpha diversity vary

with breed, environment, and feed efficiency (Saladrigas-García

et al., 2022; Lee et al., 2023; Rahman et al., 2024). In our study,

alpha diversity was not significantly different between four- and

eight-plex conditions, especially our pigs came from homogeneous

background and similar feeding regimes and conditions.

To evaluate whether sample multiplexing on GridION affects

the detection of ARGs, we compared the number and depth

of resistance genes identified in pig microbiomes G1 to G4

sequenced at four- and eight-plex levels. Overall, more ARGs

were detected in the four-plex condition, but most of these

genes were low-depth and the gene difference was not statistically

significant (adjusted p < 0.05) as estimated by the Kruskal-

Wallis test and BH correction (Supplementary S7). Analysis of

variance of beta diversity, measured by Bray-Curtis dissimilarities

also did not detect significant differences between the identified

ARGs in the samples sequenced at four- and eight-plex for both

GridION and PromethION (Supplementary Figure S8). Below we

summarize the ARG detection patterns across all four samples.

On GridION and based on gene coverage threshold at ≥0.9, pig

microbiome (G1) had 96 and 75 different observed ARGs at four-

and eight-plex, respectively (Supplementary Table S2). In total, 24

ARGs were unique to four-plexed G1 microbiome and three to

eight-plexed G1 microbiome (Figure 4A; Supplementary Table S2).

Among the 24 ARGs detected at four-plex only, none was

of high depth: e.g., tet(X) and erm(A) were very low in

depth (Figure 4B; Supplementary Table S2), and the three ARGs

detected at eight were also of low depth: tet(X6), ant(6)-Ib

and blaTEM-1B (Figure 4B; Supplementary Table S2). A similar

pattern was observed in pig microbiome G2 from GridION,

where 15 ARGs (all low depths between −0.99 and −2.11) were

detected in the four-plex but not in the eight-plex (Figures 4A,

B; Supplementary Table S2). The ARGs detected in the eight-

plex but absent in the four-plex (tet(S/M), tetB(P), aph(3′’)-

Ib, aph(4)-Ia, aph(2′’)-Ic, aph(6)-Id, and cat) were also of

low depth in G2 (Figure 4B; Supplementary Table S2). Similar

patterns of low depth ARGs being uniquely detected in either

the four- or eight-plex microbiomes were observed in G3

and G4 (details in Supplementary Information Text; Figure 4B;

Supplementary Table S2).

To determine whether these observed variations were due to

multiplexing level or inherent sequencing variability, we performed

triplicate sequencing of the same microbiomes (Full triplicate

results in Supplementary Figure S3; Supplementary Table S4). The

triplicates showed similar variations, where several low depth ARGs

were inconsistently detected across the replicates despite being

from the same sample and DNA extract (Supplementary Figure S3;

Supplementary Table S4). Specifically, low-abundance ARGs

were often missing in one or two triplicates, mirroring the

inconsistencies seen between four- and eight-plex multiplexing

(Supplementary Figure S3). This suggests that the differences

in ARG detection between multiplexing levels are more

likely due to technical variability between samples during

sequencing, particularly for low-abundance genes, rather than a

direct effect of multiplexing, which has been confirmed by our

statistical analysis.

We next evaluated whether multiplexing affected ARG

detection in samples sequenced with PromethION. Similar to

GridION, the observed differences between four- and eight-

plex were limited to ARGs with low sequencing depth and the

differences were statistically not statistically significant (adjusted

p < 0.05) On PromethION and in microbiome P4, four ARGs

detected at four-plex were absent at eight-plex, all with low

depths (ant(6)-Ia, aph(3”)-III, blaACI-1, and cfr(C) depth ranging

from −1.52 to −2.35) (Figure 5B; Supplementary Table S2X).

Four ARGs detected at eight-plex were not found at four-

plex, all of which also had low depths (vanHBX, tet(W/32/O),

sul2, and aac(6′)-Im depth from −3.55 to −4.24) (Figures 5A,

B). Similar results were recorded from pig microbiomes P1,

P2, and P3, where only very few ARGs were detected in

eight-plex or four-plex microbiomes only, all with low depths

below −3.00 (Figure 5B; Supplementary Table S2), specifically

tet(C), blaOXA-452, rmtF, aph(3′)-Ia and nimJ. Therefore here

for PromethION, and similar to GridION, both multiplexing

levels captured comparable resistome compositions with no

statistically significant differences (adjusted p < 0.05) in the

detected ARGs and the variations were only in the ARGs with

low depths.

Similar to AMR in GridION, to validate whether these

variations were due to multiplexing level or sequencing variability,

we performed triplicate sequencing on PromethION. As observed

with GridION, several low-abundance ARGs were inconsistently

detected across replicates, despite originating from the same DNA

sample (Supplementary Figure S3; Supplementary Table S4). This

reinforces that the observed differences in ARG presence between

the four- and eight-plex runs are not significant (adjusted p

< 0.05) and are likely due to stochastic sequencing variation

rather than an effect of multiplexing itself. Thus, both platforms

demonstrate that multiplexing does not substantially impact

resistome composition, with discrepancies primarily occurring for

ARGs at the detection limit.

Finally, ALDEx2 tool found no significant differentially

abundant ARGs (adjusted p < 0.05) between the four- or
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FIGURE 3

Variations in ARGs richness and diversity with four- and eight-plexed microbiomes on GridION (A) and PromethION P2 Solo (B).Red circles are

four-plex, blue circles are eight-plex.

eight-plex levels of multiplexing on GridION and PromethION

(Supplementary Figure S4).

Previous studies have demonstrated that sequencing depth

influences the detection of ARGs in metagenomic analyses. For

instance, Zaheer et al. (2018) observed that higher sequencing

depths led to the identification of a greater number of rare ARGs

using Illumina short read sequencing, which were often missed at

lower depths. This finding underscores the importance of sufficient

sequencing coverage to capture the full spectrum of ARG diversity,

particularly those present at low abundance.

Bacterial community variations across
multiplexing levels between microbiomes
on GridION and PromethION

Bacterial species and genera richness, similar to the resistomes,

were affected by the number of multiplexed samples more

than bacterial diversity for both GridION and PromethION

(Supplementary Figure S7). The Kruskal-Wallis test followed

by BH correction on the first 100 most abundant bacterial

species resulted in no significant (adjusted p < 0.05) difference
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FIGURE 4

Pig microbiome ARGs from GridION: (A) Number of ARGs detected at the two levels of multiplexing, using 0.9 coverage threshold. (B) Top 50 ARGs

with highest depths (values presented as log10 for visualization) for the pig microbiomes and at the two levels of multiplexing, using 0.9 coverage

threshold. The color gradient represents log10 of the depth and the color intensity decreases with decreasing depth. Empty cells represent 0 (log10

of 1).

between four- and eight-plex for both PromethION and GridION

(Supplementary Table S7). Similarly, analysis of variance of

beta diversity did not detect significant differences between

the identified bacterial species in the samples sequenced at

four- and eight-plex for both GridION and PromethION

(Supplementary Figure S8).

On GridION, for pig microbiome G1, 263, and 171 bacterial

species were identified at four- and eight-plex, respectively,

with a ≥0.9 coverage threshold (Supplementary Table S3). When

comparing four- and eight-plex in the same microbiome, 118

bacterial species were found in four-plex and not in eight-plex

and only four of them with relatively higher depths (log10 >-

1.00, Supplementary Table S3). In microbiome G2, 83 species were

not detected at eight-plex and only two (Carnobacterium sp.,

Aerococcus viridans) had high depths (log10 is >-1.00, Figure 6A;

Supplementary Table S3). In microbiome G3, 154 species were

only detected in four-plex and only three had high depths (log10

>-1.00, Figure 6A; Supplementary Table S3) (Corynebacterium

glutamicum, Collinsella aerofaciens, Lactobacillus crispatus), while

44 species were not found in four- and found in eight-plex,

however, all of them had low depths (below−3.00). In microbiome

G4, similar to the other samples, 67 species were unique to four-

plex [only two had relatively high depth: Ligilactobacillus ruminis

and Dialister succinatiphilus (−0.49 and −0.73, respectively)]

(Figure 6A; Supplementary Table S1) and 27 were unique for eight-

plex (all low in abundances below −3.2). The majority of the
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FIGURE 5

Pig microbiome ARGs from PromethION: (A) Number of ARGs detected at the two levels of multiplexing, using 0.9 coverage threshold. (B) Top 50

ARGs with highest depths (values presented as log10 for visualization) for the pig microbiomes and at the two levels of multiplexing, using 0.9

coverage threshold.

identified bacterial species were known gut microbiome taxa (e.g.,

Bifidobacterium spp., Collinsella spp., Lactobacillus spp.) and the

variations between the two levels of multiplexing were mostly in

taxa of low depth but insignificant (adjusted p < 0.05) (Figure 6A;

Supplementary Table S3).

On PromethION, microbiome P1 had 320 detected bacterial

species at four- and 251 at eight-plex (Supplementary Table S3).

In total, 30 bacterial species were undetected at four-plex

and all of which had low sequencing depths (log10 below

−2.00, Supplementary Table S3), and 99 bacterial species

were undetected at eight-plex; with Blautia obeum, a widely

occurring bacterium in mammal intestines (Liu et al., 2021b),

has the highest depth of −1.72 which is still relatively low

(Figure 6B; Supplementary Table S3). In microbiome P2,

68% of the species detected at four-plex were also found

in eight-plex, three species with greater depth than −1.00,

with Faecalibacterium prausnitzii, one of the most abundant

bacterial species in the gut and associated with healthy gut

microbiome (Lopez-Siles et al., 2017), having the highest

depth at −0.5 (Figure 6B; Supplementary Table S3). Similarly

to the other samples, all undetected species at four-plex had

very low abundances (sequencing depths of below −3.5). Of

the 92 and 67 undetected species for the P3 and P4 eight-

plexed microbiomes, respectively, only Eubacterium rectale

(microbiome P3), and Ligilactobacillus ruminis and Dialister

succinatiphilus (microbiome P4), all known human and animal

gut microbiota species, had sequencing depths >-1.00 (Figure 6B;

Supplementary Table S3) (Morotomi et al., 2008; Xiao et al., 2024).
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FIGURE 6

Top 50 most abundant bacterial species (values presented as log10 of the calculated depth for visualization) detected at four- and eight-plex for the

pig microbiomes on GridION (A) and PromethION (B).

Across all samples, bacterial species absent in either multiplexing

level were predominantly low in depth and abundance, and

species detected exclusively in eight-plex were generally at the

very low detection limit (log10 <-3.00). These findings suggest

that both four- and eight-plex multiplexing detect comparable

bacterial community profiles, with insignificant variations

(adjusted p < 0.05), mainly affecting low-abundance taxa.

Finally, similar to AMR, to validate whether these variations

were due to multiplexing or sequencing variability, the triplicate

sequencing on GridION and PromethION showed several

low-abundance taxa that were inconsistently detected across

replicates, despite originating from the same DNA sample

(Supplementary Table S5; Supplementary Figure S5). This also

confirms that those minor variations are due to sequencing

variation rather than an effect of multiplexing itself. Thus, both

platforms demonstrate that multiplexing does not substantially

impact the bacterial composition.

ALDEx2 tool applying Welch’s t-test followed byBenjamini-

Hochberg correction also concluded that there were no significant

differentially abundant species between the samples when
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FIGURE 7

Pathogenic bacterial species detected at the four- and eight-plex on GridION (A) and PromethION (B) at ≥0.9 coverage threshold of the calculated

depths (values are presented as log10 for visualization). Dendrograms are based on Euclidean clustering (≥0.5 coverage threshold of detected

pathogens are in Supplementary Figure S6).
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sequenced at four- or eight-plex for both GridION and

PromethION (Supplementary Figure S4).

Detection of selected pathogenic species
at various levels of multiplexing on GridION
and PromethION

We then investigated if selected known pathogenic species

were detected at different multiplexing levels on both GridION

and PromethION. Detection of pathogenic species in metagenomic

samples, especially for surveillance purposes, is important, e.g., to

identify causative agents of animal diseases, therefore, it is essential

that certain bacterial pathogens (e.g., Clostridium spp., Escherichia

coli, Streptococcus spp.) are detected using metagenomics even

when more samples are multiplexed in one library. For this we

selected representative bacterial taxa that are known to be involved

in animal pathogenicity [adapted from Gand et al., 2024, CDC and

WHO], those were counted for 107 bacterial pathogenic species

(Supplementary Table S6).

We investigated the presence of these bacterial pathogens at ≥

0.9 coverage threshold (Figure 7 and Supplementary Table S6) for

both GridION and PromethION. The detected pathogenic species

varied among samples and all of them were present at very low

depths in both platforms (Figure 7 and Supplementary Table S6).

The majority of the species were detected at both four- and eight-

plex and few at four-plex only. Several species, e.g., Prevotella

nanceiensis from microbiome G2, Listeria monocytogenes from G3

and Escherichia coli from P4 were detected at eight- but not at

four-plex at coverage of ≥0.9, however, all of them were present

at low depths (log10 −3.77, −3.71, −4.14, respectively) (Figure 7

and Supplementary Table S6). Similar results were obtained when

lower coverage for taxa assignment was applied (≥0.5, details in

Supplementary Information Text). However, it has to be noted that

none of the samples included in this study originated from diseased

pigs (clinical samples), thus the low number and abundance level of

the pathogenic bacterial species detected.

Conclusion

We observed differences in antimicrobial resistance genes

(ARGs) and bacterial species between the four-plex and eight-

plex sequencing runs on both GridION and PromethION. These

differences were primarily observed in low-abundance ARGs and

bacterial taxa, where the four-plex identified more genes and

species. Despite this, the overall resistome and bacterial community

composition remained comparable between the two multiplexing

levels on both platforms.

Our results suggest that these variations are more likely

due to sequencing variability rather than an effect of increased

multiplexing, as similar inconsistencies were observed in triplicate

sequencing of the same sample and DNA using the same

library preparation methods, particularly in low-abundance

ARGs and bacterial taxa. Additionally, while more bacterial

pathogens were detected in four-plex than in eight-plex, they

were present at very low abundances and depths, suggesting

that the overall detection trends remain similar across both

multiplexing strategies.

Given that eight-plex sequencing is more cost-effective

while still providing comparable resistome and bacterial

community profiles, it may be the preferred option, especially

with PromethION where large data outputs are obtained,

for general detection purposes, especially in large-scale

studies or surveillance programs where sequencing costs

are a limiting factor. However, for applications requiring

highly sensitive pathogen surveillance or detection of

rare ARGs, a lower multiplexing level (e.g., four-plex)

may be more appropriate to maximize sequencing depth

per sample.

These findings contribute to a growing body of work

evaluating ONT platforms for microbiome and resistome analyses

(Meslier et al., 2022; Gand et al., 2024). While most previous

studies have focused on comparisons long-read to short-

read sequencing, few have explored how multiplexing affects

detection performance on ONT platforms. Our results suggest

that careful consideration of sequencing depth is necessary to

balance sensitivity and throughput in long-read surveillance

applications. This aligns with earlier Illumina-based studies

showing that lower sequencing depth reduces the likelihood of

detecting low-abundance ARGs, thereby affecting overall resistome

richness (Zaheer et al., 2018). However, since multiplexing is

rarely addressed in Illumina studies, direct comparisons remain

limited. Our study fills a methodological gap by systematically

assessing how multiplexing affects detection sensitivity in ONT

sequencing—a question that has received limited attention in

the literature, despite its growing relevance for large-scale

metagenomic studies.

While this study focused on healthy pigs to establish a

controlled and diverse baseline for multiplexing comparisons,

future studies should apply the same methodology to diseased

animals. This would help evaluate how disease-associated

microbiome shifts or pathogen overgrowth affect detection

sensitivity and multiplexing outcomes.
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SUPPLEMENTARY SCRIPT 1

Script 1: create_files_from_mapstat_resfinder.py. To concatenate all

mapstats and calculate the ARG depths as described in material methods.

SUPPLEMENTARY SCRIPT 2

create_files_from_mapstat_bacteria.py. To concatenate all mapstats and

calculate the bacterial taxa depths as described in material methods.

SUPPLEMENTARY TEXT

More details on resistome variations across multiplexing levels in

microbiomes on GridION and PromethION:

Based on the sequencing depth at ≥0.9 gene coverage, pig microbiome

(G1) had 96 and 75 observed ARGs at four- and eight-plex, respectively

(Supplementary Table S2). 24 genes were unique to four-plexed G1

microbiome and three to eight-plexed G1 microbiome (Figure 4A). Among

the 24 genes detected at four-plex only, none was of high sequencing

depth: e.g., erm(A) was the highest yet remains very low in depth, cfr(C),

sul1, etc. (Figure 4B; Supplementary Table S2), and the three ARGs detected

at eight were also of low depth: tet(X6), ant(6)-Ib and blaTEM-1B (Figure 4B;

Supplementary Table S2). When also considering the single-plex for

microbiome G1, among the top 50 ARGs with highest sequencing depths

10 ARGs detected at single- were not found at four- and eight-plexed

microbiomes (Supplementary Table S2). Those genes were floR,

tet(O/W/32/O/W/O), tet(32), vanHAX, tet(X6) (at four-plex only), tet(Z),

blaDHA-16, tet(31), erm(C) (at eight-plex only) tet(X3), aadA11.

Using GridION and fFor pig microbiome G2, fifteen ARGs with sequencing

depths between −0.99 and−2.11 were detected in four-plex and not in

eight-plex (Figure 4B; Supplementary Table S2), all with relatively low

sequencing depth. The ARGs that are detected in eight-plex and not

detected at four-plex, were tet(S/M), tetB(P), aph(3′ ’)-Ib, aph(4)-Ia,

aph(2′ ’)-Ic, aph(6)-Id and cat (Figure 4B; Supplementary Table SX), all of

which are of low sequence depth. Similar pattern of low abundance ARGs

were detected in only four-plex or eight-plex in the remaining microbiomes

(G3 and G4—further details in Supplementary Information). For microbiome

G3, five genes among the top 50 ARGs with highest sequencing depths at

eight-plex were not captured by the four-plex multiplexing Twenty-three

genes with sequencing depths between −0.55 to −2.00 were not detected

at eight-plex, while five genes at eight-plex were not captured by the

four-plex sequencing, namely tet(W/32/O), blaCARB-14, ant(9)-Ia, cfxA6

and tet(X5) (Figure 4). Twenty-three genes with sequencing depths between

−0.55 to−2.00 were not detected at eight-plex, among them tet(33) with

the highest sequencing depth of −0.55 (Figure 4 and

Supplementary Table S2). A total of 29 ARGs were detected at eight-plex in

microbiome G4 compared to 49 at four-plex. Two of the genes at eight-plex

(tet(W/32/O) and aac(6′)-Im) with sequencing depths of −1.16 and −1.81,

respectively, were not present at four-plex (Supplementary Table S2). In

order to validate if these observed variations were due to the multiplexing or

because of inherent variability in sequencing replicates, especially they were

all low in depth and abundances, the fecal microbiomes were additionally

sequenced in triplicates (Full triplicate results in Supplementary Table S4;

and Supplementary Figure S3). Similar variations were observed between

the same microbiomes when sequenced in triplicates. I.e., several ARGs

were not detected in one or two of the three triplicates even from the same

sample and DNA (Supplementary Figure S6).

More details on bacterial community variations across multiplexing levels

in microbiomes on GridION and PromethION:

Bacterial species and genera richness, similar to the resistomes, were

a�ected by the number of multiplexed samples more than diversity for both

GridION and PromethION P2 Solo (Supplementary Figures S5, S6).

On GridION, for pig microbiome G1 at single-plex, 1,559,838 (30.7%) reads

were aligned to 426 bacterial species with a threshold of ≥0.9

(Supplementary Table S3), while 592,849 and 203,145 mapped to 263 and

171 bacterial species at four- and at eight-plex, respectively, with a

threshold of ≥0.9 (Supplementary Table S3). When comparing four- and

eight-plex, 65% of the bacterial species at four- were detected at eight-plex

(Supplementary Figure S6; Supplementary Table S3). Deep sequencing

(single-plex) of microbiome G1 revealed 195 bacterial species that were not

detected at four-plex. Of them, only six had sequencing depths between

−0.44 and −0.97 (Porphyromonadaceae, Olsenella, Megasphaera elsdenii,

Aerococcus viridans, Bacteroidales and Psychrobacter fulvigenes), which

are mainly marine bacteria (Psychrobacter fulvigenes) or part of the

indigenous human and animal microbiota (Porphyromonadaceae,

Olsenella, Megasphaera elsdenii and Bacteroidales) and only Aerococcus

viridanshave previously been associated with disease in humans (Mohan,

2017) and pigs (Martín et al., 2007). At eight-plex, 266 bacterial species were

not detected at eight-plex compared to single-plex, of them nine with

sequencing depths lower than −1.00. Of them, Jeotgalibaca arthritidis

(−0.97) has been isolated from joint liquids of arthritic pigs (Zamora et al.,

2017) and Streptococcus parauberis (−0.66), associated with pigs and cows

and causing mastitis in cows (Pitkälä et al., 2008). Additionally, 118 bacterial

species were found in four and not in eight-plex and only four of them with

sequencing depths below −1.00 (described above,

Supplementary Table S3). Microbiome G2, 83 species were not detected at

eight-plex and only two (Carnobacterium sp., Aerococcus viridans) had

sequencing depths below −1.00. In microbiome G3, 154 species less were

detected in eight-plex and only three of them with sequencing depths

below −1.00 (Corynebacterium glutamicum, Collinsella aerofaciens,

Lactobacillus crispatus), while 44 species were not found in four- and found

in eight-plex, however, all of them had low sequencing depths (below

−3.00). In microbiome G4, 224 species were present in four and 184 in

eight-plex. Similarly to the other samples, 67 species were unique for

four-plex (only 2 in Ligilactobacillus ruminis and Dialister succinatiphilus

(−0.49 and −0.73) and 27 were unique for eight-plex (all below −3.2) and
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only Bifidobacterium aesculapii was detected in eight but not in four-plex

with seq depth of −2.4.

More details on pathogenic bacterial detection using di�erent levels

of multiplexing:

At the less strict threshold of coverage (≥0.5), on GridION four species

(Myroides injenensis, Prevotella nanceiensis, Klebsiella oxytoca at −2.83 and

Prevotella marseillensis) were detected at eight-plex but not at four, while

no species were detected at eight- but not at four-plex for PromethION P2

Solo (Supplementary Table S6).

out of place: Variations in pathogenic bacterial detection between the

microbiomes because of the number of, multiplexedsequenced samples in

a flowcell could have great implications on pathogen surveillance. For

example, C. perfringens type C and hemolytic E. coli cause hemorrhagic

gastroenteritis and death in piglets (47). Healthy animals, including sows,

may variably carry small numbers of C. perfringens type C in their intestines,

which could proliferate rapidly (47), therefore detection of even low

pathogen numbers is crucial for disease prevention and surveillance.

Testing the reproducibility of repeated sequencing in detecting ARGs and

bacteria on GridION and PromethION P2 Solo

To assess if repeated sequencing of a metagenomic sample can detect

same ARGs and bacterial species, four samples (P1, P2, P3, and P4) were

sequenced on both GridION and PromethION P2 Solo in triplicate each at

four- and eight-plex. The detected ARGs across the three replicates varied

for each sample, however, the most abundant ARGs (with highest

sequencing depths) were captured in all three replicates sequenced on

GridION and PromethION P2 Solo at both levels of multiplexing. Similarly,

for bacterial species, with some exceptions, the most abundant bacteria

were detected in all three replicates for both levels of multiplexing. The least

abundant bacteria were identified at four- but not at eight-plex

(Supplementary Tables S4, S5).

SUPPLEMENTARY FIGURE S1

Total number of high quality reads for one, four and eight samples per

flowcell sequenced on GridION and four and eight samples per flowcell

sequenced on PromethION P2 Solo.

SUPPLEMENTARY FIGURE S2

Average number of high quality base-pairs for four and eight samples per

flowcell sequenced on GridION and PromethION P2 Solo.

SUPPLEMENTARY FIGURE S3

Top 50 (or all ARGs, if their total number in a sample was <50) ARGs with

highest sequencing depths across the three replicates for the four samples

sequenced at four- and eight-plex on GridION (A) and PromethION P2

Solo (B).

SUPPLEMENTARY FIGURE S4

Di�erential abundance e�ect plot showing the within-group dispersion of

depth values for bacterial species and ARGs between four- and eight-plex

runs for both GridION (A) and PromethION P2 Solo (B). Each point

represents a feature (ARG or taxon), with lighter or darker shades of gray

reflecting di�erent levels of within-group variance as calculated by ALDEx2.

Statistically significant features (adjusted p < 0.05, Benjamini–Hochberg

corrected) would appear in red (none were found in our case). The gray

dotted vertical line indicates an e�ect size of 1.

SUPPLEMENTARY FIGURE S5

Top 50 bacterial species with highest sequencing depths across the three

replicates for the four samples sequenced at four- and eight-plex on

GridION (A) and PromethION P2 Solo (B) at a sequencing depth threshold

of 0.9.

SUPPLEMENTARY FIGURE S6

Pathogenic bacterial species detected at the four- and eight-plex on

GridION (A) and PromethION P2 Solo (B) at coverage of ≥0.9 and ≥0.5 as

threshold for calculation of depths.

SUPPLEMENTARY FIGURE S7

Chao1 richness index and Shannon and Simpson diversity indices calculated

from the abundance tables at species level for GridION (A) and PromethION

P2 Solo (B).

SUPPLEMENTARY FIGURE S8

Principal Coordinates Analysis (PCA) of beta diversity based on Bray–Curtis

dissimilarities of antimicrobial resistance gene (ARG) composition across

four- and eight-plex sequencing conditions. Samples were sequenced

using GridION and PromethION. Each point represents a sample, colored by

the multiplexing level.

SUPPLEMENTARY TABLE S1

All run raw outputs in read counts and in basepair counts.

SUPPLEMENTARY TABLE S2

List of all identified ARGs in the original samples with four- and eight-plex of

the pig microbiomes on both GridION and PromethION in the original

setup of metagenomes in Figure 1. Each sheet represents one run (G,

GridION - P, PromethION).

SUPPLEMENTARY TABLE S3

List of all identified bacterial species in the original samples with four- and

eight-plex of the pig microbiomes on both GridION and PromethION in the

original setup of metagenomes in Figure 1. Each sheet represents one run

(G: GridION - P, PromethION).

SUPPLEMENTARY TABLE S4

List of all identified ARGs in the triplicate samples with four- and eight-plex

of the pig microbiomes on both GridION and PromethION. Those are only

for the triplicate samples to confirm the variations observed between

sequenced samples. Each sheet represents one run and one multiplexing

level (G: GridION - P, PromethION).

SUPPLEMENTARY TABLE S5

List of all identified bacterial species in the triplicate samples with four- and

eight-plex of the pig microbiomes on both GridION and PromethION.

Those are only for the triplicate samples to confirm the variations observed

between sequenced samples. Each sheet represents one run and one

multiplexing level (G: GridION - P, PromethION).

SUPPLEMENTARY TABLE S6

List of the pathogenic bacterial species detected at the four- and eight-plex

on GridION (sheets named G) and PromethION (sheets named P) at

coverage of ≥ 0.9 (G_0.9 and P_0.9) and ≥ 0.5 (G_0.5 and P_0.5) as

threshold for calculation of depths. Last sheet has the full list of all the

potential pathogenic species we investigated their presence.

SUPPLEMENTARY TABLE S7

Results of Kruskal–Wallis tests comparing the abundance of antimicrobial

resistance genes (ARGs) and bacterial species between four- and eight-plex

sequencing runs on GridION and PromethION platforms. Analyses were

performed separately for each platform. P-values were corrected using the

Benjamini–Hochberg procedure to control the false discovery rate (FDR).

No features were found to be significantly di�erent (adjusted p < 0.05)

between multiplexing levels. Each Sheet is a platform and a feature (either

bacteria or ARG).
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