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Introduction: Seasonal drought associated with the subtropical monsoon

climate significantly impairs the growth and development of Camellia oil

tree seedlings. While previous studies have established that drought stress

elevates glutamate content in the rhizosphere of Camellia oil tree, the

mechanisms through which glutamate modulates rhizosphere microbial

community assembly remain unresolved.

Methods: To investigate the effects of glutamate on the rhizosphere

environment under drought stress, we conducted an experiment using three-

year-old potted seedlings subjected to moderate drought. These seedlings were

irrigated with 50 mL of glutamate solutions at varying concentrations (0, 1, 2,

5, and 10 mmol/L; labeled G0, G1, G2, G5, and G10, respectively). Through

analysis of rhizosphere soil nutrients, enzyme activity, and bacterial community

abundance (relative and absolute).

Results: The study revealed the following: Concentrations of available nitrogen

forms (DON, NH4
+-N, NO3

−-N) increased proportionally with glutamate

concentration, whereas soil pH and urease activity exhibited inverse trends.

Alpha and beta diversity analyses demonstrated significant divergence in

bacterial community composition across treatments. Kruskal-Wallis, ANOVA,

and LEfSe analyses identified 24 bacterial phyla significantly associated with

treatment differences, with their abundance patterns corresponding to nitrogen

cycling gene dynamics—generally peaking at G5 before declining.

Discussion: These findings collectively suggest that 5 mmol/L Glu represents a

pivotal concentration influencing rhizosphere bacterial community dynamics in

Camellia oil tree under drought stress.
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Introduction

Camellia oil tree, a perennial evergreen shrub or small tree
indigenous to China, is a vital woody oilseed species. Its seed-
derived oil is widely recognized as a premium edible oil. Crucially,
this species predominantly thrives in hilly regions, effectively
alleviating arable land pressure and mitigating competition with
staple crops, thereby contributing to national food security. The
escalating impacts of global climate change have established
drought as a critical constraint on Camellia oil tree growth and
productivity (Tan, 2023; Zhou et al., 2023). Previous studies
showed that glutamate content in rhizosphere soil was closely
related to the degree of drought (Yuan et al., 2024). Glutamate
(Glu), a multifunctional metabolic product, serves as a critical
amino acid in plant systems. As a central component of
nitrogen metabolism, Glu and its derivatives directly participate
in synthesizing and metabolizing nitrogen-containing compounds,
including carbohydrates, fatty acids, and other amino acids,
thereby bridging carbon and nitrogen metabolic pathways (Liao
et al., 2022). Over 95% of plant NH4

+—derived from root
absorption or nitrate reductase (NR)- and nitrite reductase (NiR)-
mediated NO3

− reduction—is assimilated via the glutamine
synthetase/glutamate synthase (GS/GOGAT) cycle, where Glu acts
as a pivotal intermediary (Fortunato et al., 2023). This underscores
its indispensable role in nitrogen metabolism in higher plants.

Amino acids, including Glu, are increasingly incorporated into
organic fertilizers to mitigate abiotic stresses. Functioning as a
primary metabolite, nitrogen source, and signaling molecule, Glu
contributes to plant adaptation under stress conditions (Liao et al.,
2022; Qiu et al., 2020). For instance, foliar application of 4 mmol/L
Glu under drought stress enhances wheat dry matter accumulation,
photosynthetic efficiency, and grain quality while minimizing yield
loss (Li et al., 2024). When utilized as a nitrogen source in
rice, Glu is rapidly metabolized into compounds like glutamine
rather than accumulating (Kan et al., 2017). Furthermore, Glu
bolsters plant tolerance to cold, salinity, cadmium, and arsenic
by improving photosynthetic capacity and antioxidant system
performance (Asgher et al., 2022; Franzoni et al., 2022; Gai et al.,
2020; Lee et al., 2021). However, excessive Glu accumulation
under NH4

+ stress can impair the tricarboxylic acid (TCA) cycle,
suppressing plant growth (Wang et al., 2020). Beyond stress
adaptation, Glu influences microbial community dynamics. In
strawberry anthosphere studies, Glu supplementation drastically
altered microbial composition, with Streptomycetaceae dominating
99.9% of the community by weeks 6 and 8 post-treatment (Kim
et al., 2021). Amino acids, as vital nitrogen sources for plants
and microbes, trigger competitive uptake in soil systems: microbes
rapidly assimilate these compounds, though plants exhibit superior
absorption efficiency (Jones et al., 2005). Similarly, organic matter
enriched with phenylalanine or leucine enhances humus formation
via bacterial activity (Zheng et al., 2021).

While Glu research has predominantly focused on plant
growth regulation, shifts in rhizosphere microbiomes remain
underexplored. This gap is particularly significant given that
root-associated microbial communities— often termed the plant
second genome, play essential roles in supporting plant growth
and development through multiple mechanisms (Berendsen et al.,
2012). Advancing our understanding of how rhizosphere microbes

mediate plant adaptation to abiotic stress is pivotal for enhancing
future resilience to extreme environmental conditions.

Current analytical methodologies for assessing microbial
dynamics are constrained by critical limitations. Although relative
quantification sequencing has been extensively employed to link
shifts in taxonomic composition with environmental gradients
(Props et al., 2017; Wang et al., 2024), this approach yields a
partial understanding of microbial ecology. Emerging evidence
demonstrates that apparent increases in relative abundance of
specific taxa might represent not biological proliferation but rather
the competitive suppression of coexisting species. Conversely,
absolute quantification sequencing enables precise detection of
subtle microbial population fluctuations at heightened resolution,
thereby providing superior capacity to monitor community-level
adaptations to environmental stressors (Maghini et al., 2024;
Tkacz et al., 2018). This methodological dichotomy highlights the
imperative for incorporating absolute quantification frameworks
to resolve complex plant-microbe interaction mechanisms under
abiotic stress conditions.

Previous studies by our group have demonstrated that
Glu content in Camellia oil tree rhizosphere soil rises with
escalating drought severity. However, whether this drought-
induced Glu accumulation induces structural shifts in the
rhizosphere microbiome remains unresolved. In this study, we
integrate absolute and relative quantification data to analyze the
effects of exogenous Glu on the rhizosphere microbial community
of Camellia oil tree, thereby elucidating its regulatory mechanisms
on microbial composition and function. These findings aim to
establish a theoretical foundation for development and utilization
of rhizosphere microorganisms in the future.

2 Materials and methods

2.1 Experiment design

The experiment was conducted at the nursery of Central South
University of Forestry and Technology, situated in Changsha,
Hunan Province, China (28◦11’N, 113◦04’E), which features a
subtropical monsoon climate with a mean annual precipitation
of 1,361 mm and an average temperature of 17.2◦C. In late
November 2023, 3-year-old Camellia oil tree “Huashuo” seedlings
were transplanted into plastic pots (30 cm height × 25 cm
diameter) filled with lateritic soil collected from a Camellia oil tree
plantation. Prior to transplantation, the soil was manually cleared
of plant debris and sieved through a 2-mm mesh. After an 8-month
pre-cultivation phase involving periodic pruning to standardize
plant growth, drought pre-treatment commenced on 20 June
2024. The pre-treatment protocol comprised initial saturation
watering (until drainage occurred from pot bases) followed
by complete cessation of irrigation. Soil water content (SWC)
was monitored daily via gravimetric methods. The experimental
drought treatment was initiated when SWC declined to 20–25%
(m/m), corresponding to moderate drought thresholds as per
national agricultural meteorological standards (National Technical
Committee for Agricultural Meteorology Standardization, 2015).
All measurements and procedures began immediately upon
attaining this target SWC level.
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The experiment commenced on 1 July 2024 with five
treatments: ¬ Root application of 50 mL deionized water (G0);
 Root application of 50 mL 1 mmol/L Glu solution (G1);
® Root application of 50 mL 2 mmol/L Glu solution (G2);
¯ Root application of 50 mL 5 mmol/L Glu solution (G5);
° Root application of 50 mL 10 mmol/L Glu solution (G10).
The experimental design adopted a randomized block arrangement
with three blocks per treatment group, each containing five
replicates (n = 15 per treatment). Glu was applied only once;
during subsequent treatments, only watering was conducted to
maintain soil moisture and weeds were regularly removed. Glu
(≥ 98.5% purity; Hushi Co., China) was dissolved in deionized
water to prepare the designated concentrations. Soil moisture
was maintained at 20–25% (m/m) through daily gravimetric
monitoring. Pots were weighed daily at 08:00, and weight loss
attributable to evapotranspiration was offset by supplemental
irrigation to restore the target soil moisture level. This protocol
ensured consistent drought stress across all treatments throughout
the experimental period.

2.2 Sample collection

Following 30 days of treatment, Camellia oil tree seedlings
were carefully excavated. Root systems were gently cleaned through
manual removal of loosely adhered soil aggregates, followed by
meticulous brushing to dislodge rhizosphere soil particles. The
collected soil was homogenized using a 2-mm sieve and divided
into two aliquots. Cryopreserved subsamples were flash-frozen in
liquid nitrogen and stored at -80◦C in an ultra-low temperature
freezer for subsequent 16S rRNA sequencing-based analysis of
microbial communities. The remaining soil samples were air-dried
and used to determine physicochemical properties.

2.2.1 Soil nutrient and enzyme activity
measurement

Soil pH was measured using a pH meter (Sartorius, Germany)
with a soil-to-water ratio of 1:5. Soil organic carbon (SOC)
was determined using the potassium dichromate-sulfuric acid
colorimetric method. Total nitrogen (TN) content was measured
using the Kjeldahl method (Kirk, 2002). Ammonium nitrogen
(NH4

+-N) was determined using the indophenol blue colorimetric
method. Nitrate nitrogen (NO3

−-N) was extracted with potassium
chloride solution and analyzed using a discrete chemical analyzer
(SmartChem 200). Dissolved organic nitrogen (DON) was
extracted from soil using deionized water and also measured
with the discrete chemical analyzer (Jones and Willett, 2006).
Total phosphorus (TP) and available phosphorus (AP) were
determined using the sodium hydroxide fusion-molybdenum
antimony colorimetric method and the Mehlich 3 method,
respectively (Daniels et al., 2001). Total potassium (TK) and
available potassium (AK) were analyzed using a flame photometer
(Gao et al., 2019).

Catalase (CAT) activity was determined using a titration
method (Goldblith and Proctor, 1950), while urease (Ure) activity
was measured using the phenol-sodium hypochlorite colorimetric
method, with one unit of enzyme activity defined as the amount
of enzyme that produces 1 mg of NH4

+-N per gram of soil
within 24 h (Kandeler and Gerber, 1988). Phytase (Phy) activity

was assessed by hydrolyzing sodium phytate to release inorganic
phosphorus, which reacts with molybdate color reagent under
acidic conditions to form a blue complex, and absorbance was
measured at 700 nm. One unit of Phy activity was defined as the
release of 1 µMol of inorganic phosphorus per gram of soil per
hour (Jackman and Black, 1952). The activities of acid phosphatase
(ACP), β-glucosidase (βG), and leucine aminopeptidase (LAP)
were measured using the p-nitrophenol (pNP)-based microplate
method.

2.2.2 Method for absolute quantification of 16S
rRNA amplicon sequencing

Total genomic DNA was extracted using the FastDNA SPIN
Kit for Soil (MP Biomedicals, Santa Ana, CA) according to the
manufacturer’s instructions. The integrity of genomic DNA was
detected through agarose gel electrophoresis, and the concentration
and purity of genomic DNA were detected through the Nanodrop
2000 and Qubit3.0 Spectrophotometer. Multiple spike-ins with
identical conserved regions to natural 16S rRNA genes and
variable regions replaced by random sequence with ∼40% GC
content were artificially synthesized. Then, appropriate proportion
of spike-ins mixture with known gradient copy numbers were
added to the sample DNA. The V3-V4 hypervariable regions
of the 16S rRNA gene and spike-ins were amplified with the
primers 341F (5-CCTACGGGNGGCWGCAG-3) and 805R (5-
GACTACHVGGGTATCTAATCC-3) and then sequenced using
Illumina NovaSeq 6000 sequencer.

The raw read sequences were processed in QIIME2 (Bolyen
et al., 2019). The adaptor and primer sequences were trimmed using
the cutadapt plugin. DADA2 plugin was used for quality control
and to identify amplicon sequence variants (ASVs) (Callahan et al.,
2016). Taxonomic assignments of ASV representative sequences
were performed with confidence threshold 0.7 by a pre-trained
Naive Bayes classifier which was trained on the SILVA (version
138.2). Then the spike-in sequences were identified, and reads were
counted. Standard curve for each sample was generated based the
read-counts versus spike-in copy number, and the absolute copy
number of each ASV in each sample was calculated by using the
read-counts of the corresponding ASV. Since the spike-in sequence
is not a component of the sample flora, the spike-in sequence needs
to be removed in the subsequent analysis (Jiang et al., 2019).

2.3 Data analysis

Data organization was performed using Microsoft 365.
One-way ANOVA was conducted in SPSS 22.0 (IBM, USA)
with Duncan’s post-hoc test to determine significant differences
(significance threshold, P < 0.05). All statistical analyses were
implemented in R (v4.3.2) using standardized bioinformatics
workflows. Alpha-diversity index were calculated with the
vegan and ade4 packages, followed by Principal Component
Analysis (PCA) to evaluate β-diversity patterns, validated through
permutational multivariate analysis of variance (PERMANOVA;
999 permutations). Hypothesis testing included one-way ANOVA
with Tukey HSD post hoc comparisons, Wilcoxon rank-sum
tests, and Kruskal-Wallis tests. Temporal trends of differentially
abundant taxa were analyzed via fuzzy c-means clustering (Mfuzz),
while functional predictions were generated using PICRUSt2 with
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KEGG Orthology annotations. All visualizations (boxplots, bar
charts, Venn diagrams, heatmaps) were produced in ggplot2
following data-ink optimization principles (Dixon, 2003; Dray
and Dufour, 2007; Kumar and Futschik, 2007; Wickham, 2016).
A partial least squares path model (PLS-PM) was conducted to
determine the direct and indirect effects of Glu content and
microbial communities using the “plspm” package in R (version
4.4.3). Prior to this step, a collinearity analysis was performed on all
indicators, and those with a Variance Inflation Factor (VIF) greater
than 10 were excluded. In the partial least squares (PLS) analysis,
latent variables were defined as: Glu concentrations (0, 1, 2, 5,
10 mmol/L), soil nutrients (sub-variables: pH, SOC, TK, AP, DON),
soil enzymes (sub-variables: Phy, BG), and alpha diversity (sub-
variables: Shannon). The process of the construction of the model
reference.1 After standardizing the data, the metric PLS method
was applied using the centroid weighting scheme. The algorithm
was run for a maximum of five iterations and terminated when the
convergence tolerance reached 1× 10−6. The overall model fit was
appropriately classified into weak, moderate, and strong according
to threshold values of 0.1, 0.25, and 0.36 for the goodness-of-fit
(GoF) index (Wetzels et al., 2009). Finally, we calculated the GoF
for component-based and covariance-based PLS-PM.

3 Results

3.1 Effect of different glutamate
concentrations on soil physicochemical
properties and enzyme activities

The application of different Glu concentrations induced
significant variations in soil physicochemical properties (Table 1).
Soil pH declined progressively with increasing Glu concentration,
reaching its lowest value (4.66) in the G10 treatment, though no
significant difference was observed compared to G5. SOC, TN,
TP, TK, AP, and AK contents peaked under the G5 treatment,
significantly exceeding those in G0, G1, and G2. In contrast, DON,
NH4

+-N, and NO3
−-N levels attained their maxima under G10,

with values of 72.02, 13.47, and 54.08 mg/kg, respectively.
Rhizosphere enzyme activities exhibited Glu concentration-

dependent trends (Table 2). Maximal CAT, Phy, acid ACP, and βG
activities were recorded under G10 at 2.68 mL/g, 0.63 µmol/g/h,
271.95 nmol/g/h, and 60.41 nmol/g/h, respectively. These values
were significantly elevated relative to G0, corresponding to 1. 5-, 1.
4-, 2. 2-, and 2.4-fold increases. Conversely, Ure and LAP activities
showed a general decline with rising Glu concentrations, reaching
0.31 mg/g and 3.84 nmol/g/h under G10. No significant differences
in Phy, ACP, or LAP activities were detected between G10 and G5.

3.2 Glutamate increased the alpha
diversity of the bacterial community

The alpha diversity index of bacterial communities, including
both relative and absolute abundance-based measures, exhibited

1 https://github.com/gastonstat/plspm T
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TABLE 2 Soil enzyme activities by treatments.

Treatments CAT ml/g Ure mg/g Phy µmol/g/h ACP nmol/g/h βG nmol/g/h LAP nmol/g/h

G0 1.74± 0.14c 0.46± 0.01a 0.44± 0.02b 126.11± 15.66b 25.19± 1.55c 2.49± 0.02d

G1 2.34± 0.37ab 0.42± 0.02b 0.44± 0.14b 283.87± 14.35a 57.78± 0.49a 5.02± 0.02a

G2 2.21± 0.29b 0.39± 0.01c 0.51± 0.04ab 276.28± 25.41a 60.52± 5.58a 4.74± 0.12b

G5 1.77± 0.06c 0.38± 0.01c 0.59± 0.05ab 260.08± 8.71a 50.13± 3.63b 3.84± 0.04c

G10 2.68± 0.13a 0.31± 0.02d 0.63± 0.12a 271.95± 8.04a 60.41± 4.62a 3.84± 0.12c

G0, G1, G2, G5, and G10 represent root treatments with Glu solutions of 0, 1, 2, 5, and 10 mmol/L, respectively. Different lowercase letters indicate significant differences between treatments
(P < 0.05).

consistent trends across treatments (Figure 1). Species richness
index (ACE, Chao1, and Observed) increased with rising Glu
concentrations, peaking in G10 and reaching the lowest values
in G0, though no significant difference occurred between G0
and G1. Faith’s phylogenetic diversity (Faith_pd) mirrored this
richness pattern, with maximal values in G10. Absolute abundance-
based measures revealed no significant differences among G0,
G1, and G2, whereas relative abundance analysis detected a
significant divergence between G0 and G2. Coverage index showed
no significant variation among G0, G1, and G2; however, under
relative quantification, these treatments exhibited significantly
higher coverage than G5 and G10.

Pielou’s evenness (Pielou_e) under relative quantification was
significantly elevated in G10 compared to other treatments, with
G1, G2, and G5 showing no significant differences but all exceeding
G0. Conversely, absolute quantification demonstrated significantly
lower Pielou_e in G0 relative to Glu-treated groups, which
showed no intergroup differences. The Shannon index increased
progressively with Glu concentration under both quantification
methods, attaining maximal values in G10. In contrast, the Simpson
index displayed an inverse trend, peaking in G0 and reaching
its nadir in G10.

3.3 Treatment-dependent divergence in
bacterial β-diversity

Principal Coordinate Analysis (PCoA) revealed consistent
overall patterns between absolute and relative quantification
(Figure 2). The G5 and G10 treatments occupied the first
and fourth quadrants, respectively, whereas G0, G1, and G2
clustered in the second and third quadrants, demonstrating distinct
differentiation among treatments. Under absolute quantification,
the first principal coordinate (PCoA1) accounted for 44.53%
of variance, and the second axis (PCoA2) explained 16.96%.
Similarly, relative quantification showed PCoA1 explaining 45.97%
of variance and PCoA2 contributing 16.90%.

3.4 Glutamate increased the absolute
abundance of bacterial phyla

To assess the effects of varying Glu concentrations on
rhizosphere soil community composition in Camellia oil
tree, bar charts were generated for the top 12 phyla under
both relative and absolute abundance metrics (Figure 3a).

Marked discrepancies emerged between the two quantification
methods. Under relative abundance, the collective proportions
of Acidobacteriota, Chloroflexota, Actinomycetota, and Bacillota
declined progressively with increasing Glu concentrations,
while Pseudomonadota exhibited an inverse trend. Absolute
abundance profiles, however, revealed divergent dynamics:
Acidobacteriota and Pseudomonadota abundances increased with
Glu concentration, peaking at the G5 treatment. This threshold
concentration correlated with significantly elevated total bacterial
abundance in G5 compared to other treatments.

To identify differential communities driving treatment
variations, three analytical approaches—Kruskal-Wallis test,
ANOVA, and LEfSe—were applied (Figure 3b). Absolute
quantification detected 32, 35, and 38 differential communities via
these methods, respectively; relative quantification identified 36,
37, and 34.

An upset plot visualized intersecting differential communities,
revealing 24 taxa consistently identified across all methods
(Figure 3c). These taxa clustered into three abundance trends:
Cluster 1: Taxa in this group exhibited minimal changes under
low Glu concentrations (G0–G2), followed by a sharp increase
at G5 and G10. This suggests that these microbes may require a
threshold level of Glu to activate growth or metabolic functions,
potentially indicating specialization in amino acid assimilation
under high nitrogen availability. Cluster 2: These taxa showed
a complex abundance pattern, with peaks at G2 and G5 but a
decline at G10. This fluctuation may reflect competitive dynamics
or niche partitioning along the Glu gradient, suggesting that
moderate concentrations may favor their activity, while excess
nitrogen could inhibit or shift community interactions. Cluster 3
is similar with Cluster 2 but with attenuated responsiveness to
low-concentration stimuli (G0–G2), this functional group reached
maximal abundance at G5 followed by progressive attenuation
through G10. It is worth noting that across all clusters, a marked
shift in abundance occurred between G5 and G10 treatments.

3.5 Correlation of differential phyla and
soil nutrients and enzyme activities

Correlation analysis between the 24 identified phyla and soil
nutrients/enzyme activities revealed that most phyla were strongly
associated with soil N, and P dynamics (Figure 4). Specifically,
20 phyla (excluding GAL15, Entotheonellaeota, Dadabacteria,
and Bacillota) exhibited significant positive correlations with
SOC. Similarly, 19 phyla (excluding GAL15, Entotheonellaeota,
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FIGURE 1

Bacterial community alpha diversity under different treatments. Uppercase letters denote statistical differences between absolute quantification
treatments (P < 0.05); lowercase letters indicate differences between relative quantification treatments (P < 0.05).

FIGURE 2

Bacterial β-diversity under different treatments. (a) Depicts Principal Coordinate Analysis (PCoA) of treatment groups based on absolute
quantification; (b) Illustrates PCoA under relative quantification. The straight lines between samples represent connectivity links; they do not possess
statistical significance.

Elusimicrobiota, Dadabacteria, and Bacillota) showed positive
correlations with TN, while 21 phyla (excluding Entotheonellaeota,
Elusimicrobiota, and Dadabacteria) were positively linked to
TP. For AP and DON, 21 phyla (excluding Elusimicrobiota,
Dadabacteria, and Bacillota) demonstrated significant positive
associations. Conversely, Ure activity displayed an inverse pattern,
with 21 phyla (excluding Hydrogenedentes, Dadabacteria, and
Bacillota) showing significant negative correlations. These results
underscore the prevalence of nutrient-driven phylum responses,
contrasting sharply with the inhibitory relationship observed
between phyla and Ure activity.

3.6 Glutamate promotes the nitrogen
cycle

To clarify the functional roles of the 24 differential phyla
driving treatment variations, functional prediction analysis was
conducted using PICRUSt2. Given Glu’s role as a nitrogen source,
the investigation focused exclusively on nitrogen cycling gene
abundance differences (Figure 5). Results revealed an overall trend
of initial increase followed by decline in gene abundance. Genes
associated with nitrogen fixation, nitrification (excluding hao),
assimilatory nitrate reduction, denitrification (excluding napB,
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FIGURE 3

Community composition and differences under different treatments. (a) Left panel depicts bacterial community composition under relative
quantification; right panel illustrates absolute quantification results, both analyzed at the phylum level. (b) Upset plot of differential phyla identified
across absolute and relative quantification methods. (c) Temporal trend analysis of common differential phyla highlighted in (b).

napC, nirS, norB, norD, norE, norF, and norQ), dissimilatory nitrate
reduction to ammonium (excluding nrfB and nrfD), and organic
nitrogen degradation (excluding gudB and glsA) all peaked in
abundance under the G5 treatment.

3.7 The driving factors of bacteria
diversity change

To more clearly elucidate the effects of Glu on rhizosphere
soil microbial diversity, a structural equation model (SEM)
was constructed (Figure 6). The PLS algorithm estimated path

coefficients, demonstrating strong model explanatory power with
a global GOF index of 0.69 (Akter et al., 2011). The results indicate
that most manifest variables have been correctly assigned to their
corresponding latent variable modules (Supplementary Tables 1,2).
Notably, the latent variable representing pH is unique in exhibiting
negative correlations with all associated explicit variables. Glu
exerted the strongest positive effect on bacterial alpha diversity
(coefficient = 1.09, P < 0.05), while soil nutrient levels showed the
most pronounced negative effect (coefficient = -0.38, P > 0.05).
Notably, Glu demonstrated a substantial positive influence on soil
nutrient levels (coefficient = 0.88, P < 0.05). In contrast, soil
enzyme activity exhibited only a minimal positive effect on bacterial
alpha diversity (coefficient = 0.18, P > 0.05). Soil enzyme activity
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FIGURE 4

Correlation of differential communities with soil environmental factors. The phyla correspond to those exhibiting inter-treatment differences in
Figure 3b. Color gradients denote correlation coefficients between phyla, where ∗ indicates significance at P < 0.05, ∗∗ at P < 0.01, ∗∗∗ at P < 0.001.

was also directly enhanced by Glu (coefficient = 1.11, P < 0.05)
but negatively impacted by soil nutrient levels (coefficient = -0.44,
P > 0.05).

Glu contributed 0.88, 0.73, and 0.89 to Soil_nutrient,
Soil_enzyme, and Bacterial alpha diversity, respectively; while the
contributions of Soil_nutrient and Soil_enzyme to Bacterial alpha
diversity were -0.46 and 0.18, respectively (Supplementary Table 3).

In summary, bacterial alpha diversity was primarily influenced
by Glu. Specifically, Glu concentration directly affected alpha
diversity and indirectly modulated it through its impact on soil
nutrient dynamics.

4 Discussion

This study demonstrated that exogenous Glu application
under drought conditions predominantly altered nitrogen

dynamics in the rhizosphere soil of Camellia oil tree,
with DON being the most significantly impacted fraction.
Bacterial community diversity trends were largely consistent
between absolute and relative quantification methodologies.
However, relative abundance quantification failed to reflect the
pronounced inter-treatment disparities in Acidobacteriota and
Pseudomonadota abundances. Functional prediction analysis
further revealed that the observed inter-treatment differences
were principally linked to nitrogen fixation, nitrification, and
denitrification processes.

Discrepancies were observed between absolute and relative
quantitative results for alpha and beta diversity. Relative
quantification largely aligned with absolute quantification in
treatments exhibiting pronounced differences, such as between
G5 and G10 (Figures 2a,b). However, it inadequately resolved
subtle differences between treatments with smaller variations,
such as G0, G1, and G2. Additionally, relative quantification

Frontiers in Microbiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1598000
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1598000 June 9, 2025 Time: 17:36 # 9

Lu et al. 10.3389/fmicb.2025.1598000

FIGURE 5

The differences in nitrogen-related genes of the differential communities predicted by PICRUST2. Values represented by different colors have been
normalized (Log2 transformation).

failed to capture changes in total bacterial community abundance
under G5 and G10 treatments in analyses of community diversity
(Figure 3a). These findings suggest that absolute quantification
may be preferable when analyzing microbial datasets with minor
inter-treatment differences.

This study demonstrated that increasing Glu application
induced progressive soil acidification—a finding contrary to
previous reports suggesting rhizosphere alkalization from
exogenous arginine, proline, glutamine, or Glu due to ammonia

accumulation (Liu et al., 2023). This discrepancy may stem from
differences in rhizosphere microbiota between Camellia oil tree
and model plants (e.g., Arabidopsis) or cultivation substrates
(soil vs. artificial media). The acidic red soil used in this study,
characteristic of subtropical monsoon regions, is non-calcareous
with lower CaCO3 content compared to temperate calcareous
soils. Consequently, its reduced acid-buffering capacity results in
heightened sensitivity to nitrogen inputs and predisposition to
acidification (Dong et al., 2025; Hao et al., 2022). Additionally,

Frontiers in Microbiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1598000
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1598000 June 9, 2025 Time: 17:36 # 10

Lu et al. 10.3389/fmicb.2025.1598000

FIGURE 6

Structural equation model between environmental factors and
bacterial diversity. The blue and red lines represent the positive and
negative contributions between variables, respectively.

the molecular structure of Glu (two carboxyl groups and one
amino group) may further exacerbate acidification through proton
release during dissociation under acidic conditions (Bolan and
Hedley, 2003). Despite decreasing pH trends, DON, NH4

+-N,
and NO3

−-N concentrations increased proportionally with Glu
dosage. As a plant-available nitrogen source, Glu supplementation
through irrigation directly elevates soil nitrogen levels. However,
TN content showed no significant variation between G5 and
G10 treatments, potentially due to counterbalancing trends
among other nitrogen pools—a phenomenon requiring further
investigation.

Soil enzymes serve as critical biocatalysts in soil ecosystems,
with their activity closely associated with nutrient availability
(Aransiola et al., 2022). CAT and βG are centrally involved in the
soil carbon cycle. CAT mitigates hydrogen peroxide accumulation,
reducing its toxic effects on soil organisms while catalyzing
biochemical reactions linked to microbial decomposition and
metabolic processes. βG, a key component of the cellulase family,
primarily facilitates the degradation of lignin and cellulose (Chen
et al., 2022; Kou et al., 2022). Consistent with prior studies,
CAT and βG activities decreased under low soil moisture but
increased with exogenous nitrogen inputs (Bogati and Walczak,
2022; Dong et al., 2022). This phenomenon may be attributed to
Glu’s role as a free amino acid, which is readily assimilated by
soil microorganisms, enhancing nitrogen and carbon availability
and stimulating microbial activity. Ure and LAP are integral to
soil nitrogen dynamics: Ure regulates nitrogen availability through
urea hydrolysis, while LAP releases leucine via protein hydrolysis
(Chen et al., 2018). However, this study observed reduced Ure and
LAP activities with increasing Glu concentrations, contrasting
previous findings (Chen et al., 2018; Dong et al., 2022). This
divergence likely stems from differences in nitrogen sources—
high-purity Glu here versus mixed-form fertilizers in prior studies.
Furthermore, direct rhizospheric application of dissolved Glu
may have promoted preferential root uptake, limiting substrate
availability for Ure and LAP and thereby suppressing enzymatic
activity. Phy and ACP activities remained stable across treatments,
likely due to the absence of phosphorus in Glu, precluding direct
influence on soil phosphorus cycling.

To date, no studies have explicitly examined the effects
of exogenous Glu on plant rhizosphere microbiota. This study
observed increased Shannon and Chao1 index with escalating Glu
dosage. SEM revealed that Glu exerted positive effects on both
soil nutrients and bacterial alpha diversity, while soil nutrients
demonstrated a negative regulatory effect on bacterial alpha
diversity. A meta-analysis indicates that exogenous N application
under field conditions reduces soil microbial Shannon and Chao1
index (Wang C. et al., 2018). This divergence may be attributable
to three interrelated mechanisms: first, interference from co-
occurring nitrogen sources. Prior meta-analyses predominantly
derived data from fertilized agroecosystems or forests, where
nitrogen inputs arise from anthropogenic activities or sustained
organic matter decomposition (Wang C. et al., 2018). In this
study, soil was sourced from an unfertilized Camellia oil tree
plantation with surface litter removed, yielding nutrient-poor
conditions. Consequently, limited nitrogen availability may have
amplified microbial proliferation following Glu supplementation.
Second, disparate research objectives: agricultural and forest
studies typically prioritize yield enhancement and economic
trait optimization through nitrogen addition, whereas this work
focused on drought resilience—a distinction that likely influenced
microbial community responses. Thirdly, the application of Glu
concentrations significantly altered soil pH, which may negatively
regulate bacterial alpha diversity through modified soil nutrient
profiles. This finding suggest that Glu may play a dual role in
the soil microbial environment. In addition to functioning as
a nitrogen source, Glu likely contributes to enhanced bacterial
diversity by fulfilling microbial nutritional demands through amino
acid metabolic pathways. However, direct experimental evidence
supporting the role of Glu as an amino acid modulator of microbial
diversity remains lacking. Future work will focus on disentangling
the causal relationships among Glu, pH, and bacterial community
structure.

Concurrently, we hypothesize that beyond serving as a
nitrogen source, Glu may directly promote bacterial diversity
by meeting microbial nutritional requirements through amino
acid metabolic pathways. However, this study does not provide
direct evidence supporting the role of Glu as an amino acid in
modulating bacterial diversity. Further experimental investigations
are planned to elucidate the causal relationships among Glu, pH,
and bacterial diversity.

This study identified Acidobacteriota, Pseudomonadota,
Chloroflexota, and Actinomycetota as the dominant rhizosphere
bacterial phyla, aligning with prior research (Wang C. et al.,
2018; Weng et al., 2023). Glu supplementation significantly
increased the absolute abundance of Acidobacteriota and
Pseudomonadota. Acidobacteriota, ubiquitous across diverse
ecosystems, exhibit metagenomic-level functional traits linked to
amino acid and carbohydrate metabolism, indirectly modulating
plant growth. Additionally, they demonstrate enzymatic activity in
degrading cellulose, dextran, starch, and peptidoglycan (Gonçalves
et al., 2024). Soil pH is a critical regulator of Acidobacteriota
dynamics, with their abundance inversely correlated with pH
(Chen et al., 2024). The observed abundance increase may
stem from Glu-induced soil acidification via hydrogen ion
release during hydrolysis. Furthermore, Acidobacteriota’s strong
association with nitrogen cycling suggests Glu-mediated nitrogen
enrichment likely enhanced their competitiveness (Gonçalves et al.,
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TABLE 3 Prices of different types of nitrogen fertilizers.

Glu Ammonium
bicarbonate

Ammonium
sulfate

Ammonium
chloride

Urea

Nitrogen content % 9 17 20 24 46

Price USD/ton 2,050 480 590 560 710

2024). Pseudomonadota exhibited parallel abundance trends to
Acidobacteriota, reflecting shared sensitivities to pH and nitrogen
availability. Previous studies have established Pseudomonadota’s
responsiveness to irrigation and nitrogen inputs, irrespective of
nitrogen form (Zhang et al., 2014). Notably, absolute quantification
revealed Glu-driven increases in total bacterial biomass across
treatments, contrasting with the relative abundance trade-offs
observed in compositional analyses.

Previous studies have demonstrated that nitrogen
supplementation elevates soil inorganic nitrogen leaching,
nitrification, nitrous oxide emissions, and denitrification (Lu
et al., 2011), a pattern corroborated by this study. Notably, total
bacterial abundance, trends in differentially abundant phyla, and
the expression profiles of most nitrogen cycle genes peaked at the
G5 treatment before declining. This implies that the benefits of Glu
supplementation to soil systems are subject to diminishing returns,
likely governed by a concentration-dependent threshold (Zhang
et al., 2017). In this study, 5 mmol/L Glu appears to delineate
this threshold, where maximal increases in nitrogen fixation-,
nitrification-, and denitrification-associated gene abundances
occurred. It should be noted that PICRUSt2 functional predictions
depend on phylogenetic extrapolation from 16S rRNA data to
annotated reference genomes (Douglas et al., 2020). In our analysis,
33% of ASVs were mapped to reference genomes with an NSTI
value ≤ 0.2 (threshold: 2), while 75% of ASVs were mapped to
those with an NSTI ≤ 0.5. These results suggest that a substantial
proportion of the microbial community is phylogenetically
closely related to sequenced taxa in reference databases. These
methodological constraints must be explicitly acknowledged
during ecological interpretation, particularly for nitrogen cycling
processes given their enzymatic complexity, through either
undetected functional contributions or distortion of predicted
gene abundance ratios. Its accuracy exhibits reduced reliability
in ecologically complex or poorly characterized ecosystems;
consequently, metagenomic approaches remain the preferred
methodology for detecting authentic gene abundance variations.

As an amino acid and nitrogen source, Glu can be efficiently
utilized by plants; however, its cost about three–four times that of
traditional nitrogen fertilizers (Table 3, data sourced from https:
//www.1688.com, with price fluctuations recorded as of 4/18/2025).
Although less cost-effective, Glu offers advantages in water-soluble
application and superior plant uptake efficiency compared to
conventional nitrogen fertilizers, making it particularly suitable for
rapid nitrogen supplementation during plant nitrogen deficiency.

This study offers insights into rhizosphere microbial
community dynamics following root application of Glu as an
exogenous N/amino acid in Camellia species (or analogous crops)
in agricultural production, while also providing guidance on
optimal application concentrations.

Notably, this study has several limitations. First, the study
revealed a significant decrease in soil pH after Glu application,

suggesting that prolonged use of Glu may accelerate soil
acidification. Co-application with quicklime and other alkaline
matter or implementation in alkaline soil conditions (pH > 7.5)
may constitute a preferable approach. Second, the 30-day pot
experiment captured short-term microbial responses, which may
reflect transient adaptation fluctuations, and further temporal
variations cannot be excluded. Third, the study did not assess
the effects of Glu on Camellia oil tree growth. Future field-
based studies should investigate the long-term impacts of Glu
on rhizosphere microorganisms and plant development, clarifying
whether short-term microbial fluctuations persist and whether
adverse effects on plants emerge. Such work could explore broader
applications of Glu in agroforestry systems, establishing a robust
theoretical foundation for developing precise and sustainable
agricultural practices.

5 Conclusion

This study demonstrated that Glu supplementation
significantly altered soil available nitrogen dynamics, including
DON, ammonium NH4

+-N, and NO3
−-N. Absolute quantification

revealed that escalating Glu concentrations enhanced the
abundance of Acidobacteriota and Pseudomonadota, resulting
in a unimodal trend of total bacterial abundance (initial
increase followed by decline). The 5 mmol/L Glu treatment
emerged as a critical threshold, beyond which bacterial
abundance and nitrogen cycle-related gene expression in
differential taxa declined. These findings collectively suggest
that 5 mmol/L Glu represents a pivotal concentration influencing
rhizosphere bacterial community dynamics in Camellia oil tree
under drought stress.
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