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Introduction: Chinese rose powdery mildew, caused by Podosphaera pannosa,

is a devastating disease which has a significant impact on plants’ ornamental

and economic value. Strain KMR13, which exhibited pronounced mycoparasitic

activity against P. pannosa, was isolated during the initial phase of this study;

however, the underlying mechanism remains to be elucidated.

Methods: In order to analyze the biological control and mycoparasitism

mechanisms, the present study was carried out to sequence the whole genome

of strain KMR13 using a combination of second-generation Illumina and third-

generation nanopore platforms, to mine chitinase genes from the KMR13

genome, and to screen for chitinase genes related to mycoparasitism by

detecting the expression of the genes at di�erent time periods of sporulation

induction.

Results: The results revealed a genome size of 33,532,117 base pairs (bp) with

a GC content of 50.97%, encoding 12,545 genes and 379 non-coding RNAs.

Functional annotations using NR, GO, KOG, Pfam, and KEGG databases identified

12,355, 8,208, 1,871, 7,911, and 7,657 genes, respectively. A total of 15 GH18

family genes were mined in KMR13, and a total of 10 chitinase genes were

detected to be expressed in the transcriptome under spore induction, 5 genes

were consistently up-regulated for expression after induction, and 5 genes had

the highest expression at 24h of induction. RT-qPCR analysis of 5 genes with

high expression as well as high fold expression showed significant di�erential

expression for all genes, with the highest expression at 24 h of induction.

Up-regulated expression of KMRChis after induction is likely to play a role in

disrupting the spore wall during mycoparasitic process of strain KMR13. Field

trials demonstrated that KMR13 conidial suspensions significantly suppressed

P. pannosa-induced powdery mildew, although the control e�cacy was lower

than that observed under greenhouse conditions.

Discussion: These findings collectively highlight the potential of KMR13 as a

biological control agent and provide a theoretical foundation for eco-friendly

management of Chinese rose powdery mildew.
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1 Introduction

The Chinese rose, belonging to the genus Rosa in the family
Rosaceae, is one of the most popular species in the world due to
its ornamental and economic value (Feng et al., 2015; Qi et al.,
2018). Known as the queen of flowers (Yu et al., 2023) the Chinese
rose is an economically and culturally important species; it also
has historical significance, appearing as a decoration on 5,000-
year-old Asian pottery (Wang, 2007). The Chinese rose is of
greater economic importance than any other flowering plant, and
it is grown and sold worldwide as a garden plant, in pots, or as
cut flowers, with the latter accounting for approximately 30% of
the flower market (Nybom and Werlemark, 2017). As a popular
ornamental plant, the Chinese rose faces many pathogens during
the planting process, with Podosphaera pannosa, an obligate living
mycoparasitic fungus, being a particularly harmful example (Cook
et al., 1997). The Chinese rose powdery mildew caused by this
pathogen is as a major disease in the global cut rose industry. All
over the globe, Chinese roses, whether cultivated in the open air
or in greenhouses, are susceptible to P. pannosa, which seriously
threatens production and the conservation of resources. Chinese
rose powdery mildew affects the shoots, leaves, and flower buds,
and most of the young leaves are left in a rolled-up state post-
infection. The infection site produces a large amount of white
powder, and in serious cases, the plant’s growth and flowering
are affected, affecting the ornamental effect. Therefore, in-depth
research on Chinese rose powdery mildew and its pathogens, as
well as exploring effective control measures, is of great significance
to the healthy development of the Chinese rose industry.

At present, powdery mildew is generally controlled by planting
resistant varieties and applying chemical fungicides (Kiss et al.,
2004). However, over time, powdery mildew has become less
sensitive to chemical compounds, driving the development of
fungicide resistance in the pathogen population (Vielba-Fernández
et al., 2020). Excessive use of chemical fungicides is also harmful
to the environment and human and animal health. The use
of resistant cultivars is limited. Therefore, it is necessary to
find feasible and effective methods to control Chinese rose
powdery mildew. As science and technology have progressed, the
importance of biological control has become clear. The biological
control method has obvious advantages in terms of safety,
environmental friendliness, and high efficiency, so it is regarded
as an ideal replacement for chemical pesticides which will help
promote the sustainable development of agricultural production.
Biological control agents (BCAs) can provide alternative methods
for preventing or inhibiting powdery mildew for some crops (Kiss,
2003). It is reported that several commercial biological control
agents based on Trichoderma harzianum,Aureobasidium pullulans,
Bacillus subtilis, Streptomyces griseoviridis, and Gliocladium virens

can be used to fight against different plant fungal pathogens
(Spadaro and Droby, 2016; Liu et al., 2013). Biological bactericidal
products such as Ampelomyces quisqualis (AQ10) biological
bactericide, Q-fect, Powdercare R© and Sporodex R© have been
registered and listed in some countries/regions (Park et al., 2010).
In their research, Xie et al. (2021) observed that a concentration
of 4 × 105 CFU/ml of B. subtilis exhibited a significant effect on
wheat powdery mildew caused by Blumeria graminis f. sp. tritici,

inhibiting the germination of conidial germ tubes and the normal
development of appressoria. Newman et al. (1999) demonstrated
that the combined application of Quaternary benzophenanthridine
alkaloids (QBAs) and piperalin significantly enhanced control
efficacy against rose powdery mildew caused by Sphaerotheca

pannosa var. rosae. Sawant et al. (2017) demonstrated that
combining Trichoderma afroharzianum strain NAIMCC-F-01938
with safe fungicides significantly enhanced its efficacy against
grapevine powdery mildew caused by Erysiphe necator Schw.

The biological control mechanisms were comprised of
competition, antagonism, mycoparasitism, inducing plant
to generate resistance and promoting growth of plant.
Mycoparasitism is an important mechanism by which biocontrol
fungi antagonize plant pathogens (Sun et al., 2015). At present,
the research on the mechanism of action of mycoparasitism
mainly includes two aspects of enzyme and toxin, enzyme refers
to mycoparasitic fungus can produce enzymes that degrade the
cell wall of the host fungus, toxin is mycoparasitic fungus interact
with host fungus to produce antimicrobial secondary metabolites,
which are able to kill the host fungus, toxin after the action of the
growth of the pathogenic fungus will be inhibited, but the cell
wall will not be destroyed, but the cell will appear to be deformed,
and the contents will be condensed and overflowed to make the
cell death (Deacon, 2005). Additionally, mycoparasites secrete
cell-wall-degrading enzymes, including chitinase and glucanase
(Almeida et al., 2007), during the process of mycoparasitic activity.
They also produce various secondary metabolites (Khan et al.,
2020), such as polyketides (Kong et al., 2021; Zhao et al., 2020),
melanin, citric acid, and 3-nitropropropionic acid (Li et al., 2022).
Of these, chitinase and β-1,3-glucanase play a crucial role in the
breakdown of mycoparasite cell walls, and toxins such as secondary
metabolites can also kill the host fungus; the mycoparasitic fungus
can then absorb host nutrients. Chitinase, as an important protein
in the interaction between pathogens and host plants, has become
a hot topic in the study of plant resistance to pests and diseases
(Malik, 2019). Chitin, an important component of fungal cell
walls, is a multimer consisting of N-acetylglucosamine units
[N-acety1-D-(+)-glucosamine] linked by β-1,4 glycosidic bonds
(Hossin et al., 2021). Fungi are the major group of chitinase
producers among microorganisms. In fungi, chitinases are
involved in morphogenesis, cytokinesis, autolysis, nutrient uptake
and parasitism, and are also an important mode of biocontrol
(Duo-Chuan, 2006). It has been demonstrated that mycoparasitic
Trichoderma inhibit phytopathogenic fungi by secreting cell wall
degrading enzymes, such as chitinase, and secondary metabolites
(Mohammad Hood et al., 2023).

Thus far, mycoparasitic A. alternata has not been used to
treat P. pannosa-induced Chinese rose powdery mildew. This
study marks the first attempt to use this strain to control this
disease. A strain KMR13 with significant mycoparasitic effect on
P. pannosa was isolated in the early part of this study, but its
mechanism of action is not clear (Tang et al., 2025). Therefore,
whole genome sequencing of strain KMR13 using a combination
of second-generation Illumina and third-generation nanopore
platforms, mining of chitinase genes in strain KMR13, and
screening of mycoparasite associated chitinase genes by combining
the transcriptome and RT-qPCR data will help to better understand
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the mechanism of this disease and provide a theoretical basis for
a deeper understanding of the biocontrol mechanism and efficient
development and utilization of strain KMR13.

2 Materials and methods

2.1 Test material

2.1.1 Pathogen
In 2023, P. pannosa was isolated from diseased Chinese

rose (Rosa chinensis) leaves exhibiting typical powdery mildew
symptoms (characterized by white powdery mildew on the
adaxial surface) collected from greenhouse-grown plants in the
suburban region of Kunming City, Yunnan Province, China
(24◦23′N, 102◦10′E).

2.1.2 Test strains
The mycoparasitic strain KMR13 was isolated and screened

from P. pannosa in our laboratory. It was identified asAlternaria sp.
based on morphological characteristics and ITS sequence analysis
(Tang et al., 2025), and is currently deposited in the Department
of Biochemistry, College of Biological and Food Engineering,
Southwest Forestry University, Kunming, China (Accession No.
SWFU-BC-2023-KMR13). Strain KMR13 was cultured on PDA at
room temperature for 5 days. Sufficient mycelium was collected for
total genomic DNA extraction.

2.1.3 Test medium
We used two media: Potato Dextrose Agar (PDA): (containing

:200 g of potato, 20 g of glucose, 20 g of agar, 1,000mL of sterile
water, adjusted to natural pH), and Potato Dextrose Broth (PDB):
(containing: 200 g of potato, 20 g of glucose, and 1,000mL of sterile
water, adjusted to natural pH).

2.2 Mycoparasitism assay

We began with high-temperature sterilization of a Petri dish
containing filter paper. As mall amount of sterile water was dripped
onto the filter paper in a sterile environment, then the petiole
was wrapped in cotton and sprayed with water to maintain the
humidity. A small pile of P. pannosa (a causal agent of Chinese
rose powdery mildew) spore mass was shaken onto the filter paper,
and the test strains were inoculated with a diameter of about 5mm
on the spore mass. The control sample was one which was not
exposed to P. pannosa. Each treatment was repeated 3 times and
cultivated at 28◦C. Observations were carried out every 2 days and
continuously recorded for 5 days.

2.3 Biosafety assessment

Strain KMR13 was streaked on PDA and incubated at 28◦C
for 3 days. A single colony was aseptically transferred using an
inoculation loop into PDB and cultured at 28◦C with shaking (160

rpm) for 48 h. The resulting fungal culture was then adjusted to a
conidial suspension concentration of 1× 106 CFU/mL using sterile
distilled water. The fungal conidial suspension with a concentration
of 1 × 106 CFU/mL was evenly sprayed onto the seedling leaves
using a handheld sprayer. Seedlings inoculated with sterile water
were used as the control. Each treatment was repeated 3 times,
then covered with plastic film for moisture retention. The disease
symptoms were observed daily. On the 7th day, the incidence rate,
disease index, and safety level were assessed. The disease grading
standards are the same as those in Li et al. (2014), with slight
modifications. Level 1: asymptomatic, with no disease spots on the
plant leaves; Level 2: mild reaction, with scattered disease spots
distributed on the plant leaves; Level 3: moderately susceptible,
where 1/4 to 1/2 of the leaves of the plant are dead and growth
is inhibited; Level 4: seriously susceptible, where 1/2 to 3/4 of
the leaves of the plant are dead and growth is severely inhibited.
When 0 ≤ disease index < 5, the safety level is no symptom (NS);
when 5 ≤ disease index < 10, the safety level is lightly susceptible
(LS); when 10 ≤ disease index < 50, the safety level is moderately
susceptible (MS); when disease index > 50, the safety level is
severely susceptible (SS).

Incidence rate(%) =
number of plants affected

total number of plants surveyed
× 100

Disease index(%)

=

∑
(number of disease− grade plants × number of corresponding plant)

total number of plants surveyed × highest grade index
× 100

2.4 Control e�ect of biocontrol fungus on
Chinese rose powdery mildew

2.4.1 Control e�ect of indoor potted plants
Indoors at 15–20◦C, relative humidity 60–65%, biocontrol

fungus (1 × 106 cfu/mL) was distributed evenly on the upper and
lower surfaces of diseased Chinese rose leaves via spraying until
the conidial suspension dripped onto the leaves. Aseptic water
treatment was used as a control. Each treatment was repeated
3 times, for 5 potted plants. On the 7th day, the control effect
of biocontrol fungus was investigated, and the disease index and
control effect were calculated. Disease grading was conducted
according to Huang (2017). Level 0: no disease or nearly no disease;
Level 1: scattered spots on the leaves; Level 2: more than 1/4 of the
leaves show lesions, and plant growth is suppressed; Level 3: more
than 2/3 of the leaves show lesions, and plant growth is severely
suppressed; Level 4: more than 3/4 of the leaves show lesions, and
the plant is nearly or completely dead.

Control effect(%)

=
control average disease index − treatment average disease index

control average disease index
× 100

2.4.2 Field control e�ect
Field greenhouse control effect tests were conducted at

Yunnan Baihu Horticultural Science and Technology Co., Ltd.
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at daytime temperatures of 23–28◦C and relative humidity of
55%−65%, and at night temperatures of 10–15◦C and relative
humidity of 85%−95%, biocontrol fungus (1 × 106 cfu/mL) was
distributed evenly on the upper and lower surfaces of diseased
Chinese rose leaves via spraying until the conidial suspension
dripped onto the leaves. Aseptic water treatment was used as a
control. Each treatment was applied to 10 Chinese roses twice at
intervals of 7 days and the treatment was repeated thrice. The
control effect of biocontrol fungus was investigated on the 14th
day after application, and the disease index and control effect
were calculated.

2.5 Genome assembly and evaluation

Strain KMR13 was cultured on PDA at room temperature for
5 days, and then the mycelium was scraped off with a scalpel
and snap-frozen in liquid nitrogen and sent to Wuhan Benetech
for whole genome sequencing. The initial genome assembly
was conducted using the NECAT software (https://github.com/
xiaochuanle/NECAT). Two subsequent rounds of three-generation
error correction were performed on the initial assembly results
using three-generation ONT sequencing data; this was achieved
using Racon software (version: 1.4.11). After that, two rounds
of second-generation error correction were conducted on the
initial assembly results after three-generation error correction using
second-generation sequencing data; this was achieved using Pilon
software (version: 1.23). In the case of low heterozygosity species,
the corrected genome represents the final assembly result. In the
case of highly heterozygous species, the final assembly (Draft
Genome) is obtained by de-hybridizing the corrected genome using
the software Purge_hap lotigs (version 1.0.4).

2.6 Gene structure prediction

BRAKER software (version:2.1.4) is mainly used for gene
prediction. First, GeneMark-EX is used to train the model,
and then AUGUSTUS is utilized for prediction. RepeatMasker
(version: open-4.0.9) is used to make repeated comments
based on RepBase library (http://www.girinst.org/repbase). Then,
RepeatModeler (version: open-1.0.11) is used to build a database
for denovo prediction based on its own sequence characteristics,
and RepeatMasker (version: open-4.0.9) also used to compare and
predict repeated sequences. Finally, all the repeated prediction
results are combined to eliminate redundancy, and the final
genome repeated sequence set Combined TEs is obtained. Based
on the structural characteristics of tRNA, tRNAscan-se (version:
1.23) was used to find the tRNA sequence in the genome. The rRNA
database was used to predict rRNA, and INFERNAL (version: 1.1.2)
based on the Rfam database was used to find ncRNA sequences in
the genome, such as snRNA, miRNA, etc.

2.7 Gene function annotation

Functional annotation of genes involves the classification of
gene functions andmetabolic pathways based on existing databases.

This involves the prediction of motifs, structural domains, protein
functions, and themetabolic pathways in which they are located. To
obtain comprehensive gene function information, we performed
gene function annotations of nine databases, including Nr, Pfam,
KOG, Uniprot, KEGG, GO, Pathway, Refseq, and Interproscan.

2.8 Carbohydrate enzyme annotation

The Carbohydrate-Active enZYmes Database (CAZy)
focuses on analyzing genomic, structural, and biochemical
information of carbohydrate-active enzymes. It comprises six
main categories: glycoside hydrolases (GHs), glycosyltransferases
(GTs), polysaccharide lyases (PLs), auxiliary activities (AAs),
carbohydrate esterases (CEs), and non-catalytic carbohydrate-
binding modules (CBMs). Protein sequences were annotated
using HMMER (version: 3.2.1) based on the CAZy database, with
filtering parameters set at E-value < 1e-18 and coverage > 0.35.

2.9 Chitinase gene mining and induced
expression

2.9.1 Chitinase gene mining
Members of the GH18 gene family were screened based on

the results of annotation of available genomic information. The
GH18 gene family members were obtained from the pfam (http://
pfam.xfam.org/) database with sequence number PF00704 (El-
Gebali et al., 2019), and this was used to screen the strain
KMR13 genome to identify GH18 family candidate genes. The
online tools Conserved Domain Database (CDD) (Available online:
http://www.ncbi.nlm.nih.gov/cdd/) (Lu et al., 2020) and SMART
(Available online: http://smart.embl-heidelberg.de/) (Letunic and
Bork, 2018) were used to validate the above candidate genes, screen
the sequences containing the conserved structural domains of the
GH18 gene family, delete the duplicates and deletion of structural
domains, and then take the intersection of the two results to obtain
the candidate genes of the GH18 gene family.

2.9.2 Induced expression of chitinase genes
After the collection of powdery mildew spores, the powdery

mildew spores were repeatedly frozen and thawed at −20◦C, and
then ground with a mortar and pestle, and the ground powdery
mildew spores were collected and observed under a microscope,
and then the powdery mildew spores were sterilized under the
condition of 121◦C for 20min, which were then used as powdery
mildew spore walls of the inducers. After activation of strain
KMR13 on PDA, the second-generation cultured mycelium was
inoculated into 100ml of PDB and incubated in a constant
temperature shaker at 28◦C, 150 r/min for 24 h. The spores were
then induced with 2.5 g/L spores for 0, 24, 48, 72, and 96 h. There
were three biological replicates for each group of treatments. After
the induction was completed, the induced mycelium was taken
out under aseptic conditions, frozen in liquid nitrogen and stored,
and then submitted to Hangzhou Lianchuan Biotechnology Co. for
transcriptome sequencing. The expression of the GH18 gene family
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TABLE 1 RT-qPCR primers.

Gene name Forward primer Reverse primer

KMRChi7 TCGCCAGCTTGATACACACC ACCTCTCACGCTCTCATTGT

KMRChi9 CTTACGCTCCCGCTCCTTAC GTGAACTCCGCTGGCATAGA

KMRChi10 GGGAATTGGATTGGTTCTTCCC AACCAGTCTCACTCTAGCCC

KMRChi12 GTCACATACGATACCCCGCA ATCCTTCTGAGTGAGCGAGC

KMRChi15 CGCCCAATACGACTTCTTTCG CTCGCCTTATTCCTGTGTTGC

was screened for experimental and control groups, then analyzed
and heatmapped using TBtools.

2.9.3 RNA extraction and RT-qPCR
RNA was extracted using the Tengen RNA Extraction Kit,

and the first strand of cDNA was synthesized using the Reverse
Transcription Kit, using a 20 uL reaction system. The target genes
with high expression or large fold difference in expression were
screened for quantitative real-time polymerase chain reaction (RT-
qPCR). cDNA was used as the template and actin as the internal
reference gene, and primers were designed with Primer Primer5
software, and the sequences of the internal reference and gene
primers are shown in Table 1. Relative quantification was calculated
using the 2-11Ct, and the data were analyzed by one-way ANOVA
using SPSS 26.0 software.

3 Results

3.1 Mycoparasitism assay

Mycoparasitism assays revealed that the strain KMR13 could
grow on the P. pannosa spore mass and cover it, as shown in
Figures 1A, B. Microscopic examination of the P. pannosa spore
mass covered by the hyphae revealed disruption to the cell walls,
inducing leakage of intracellular contents. In contrast, the control
group with the P. pannosa spore mass that was not exposed to the
tested strain showed no evidence of broken cell walls, as illustrated
in Figures 1C, D.

3.2 Biosafety assessment

The safety assessment revealed that after the KMR13 fungal
conidial suspensionwas applied for 7 days, there were no changes in
growth and leaf color compared to the control group. The Chinese
rose leaves showed no disease spots, and both the incidence rate and
disease index were 0, resulting in a safety level of NS. The results are
shown in Figure 2.

3.3 Control e�ect of biocontrol fungi on
Chinese rose powdery mildew

3.3.1 Control e�ect of indoor potted plants
The effect of KMR13 fungal conidial suspension on Chinese

rose powdery mildew is shown in Figures 3A, B. The disease index

of Chinese rose powdery mildew after treatment with KMR13
fungal conidial suspension was 32.78, while the disease index of
the control group was 88.33, and the disease index of the KMR13
fungal conidial suspension was significantly lower than that of the
control. The control effect of KMR13 fungal conidial suspension
on Chinese rose powdery mildew was 62.89%, which indicated that
the treatment of KMR13 fungal conidial suspension was successful
at controlling Chinese rose powdery mildew.

3.3.2 Field control e�ect
The field control effect of KMR13 fungal conidial suspension

on Chinese rose powdery mildew was investigated, and the results
are shown in Figures 3C, D. The disease index of KMR13 fungal
conidial suspension was 41.11 in the treated group, while that of
the control group was 92.22, and the control effect of KMR13 on
Chinese rose powdery mildew was 55.42%. The results showed
that KMR13 fungal conidial suspension had a significant inhibitory
effect on Chinese rose powdery mildew, although the control effect
in a field environment was lower than that in the greenhouse. This
proved that KMR13 is a biocontrol fungus that can be used to
control Chinese rose powdery mildew.

3.4 Genome assembly and evaluation

The raw data from the second-generation sequencing, were
filtered and assembled. Eleven coatings were obtained from the
assembled KMR13 genome, with a total genome size of 33.53Mb
and a GC base content of 50.97%, of which the longest sequence
length was 6832736bp and N50 was 3084465bp long. See Table 2
for details.

The genome assembly results were evaluated for continuity,
consistency, and completeness. The N50 of strain KMR13 was
3084465 bp, indicating a high level of continuity. The second-
generation data-matching rate was 98.65%, and the coverage
rate was 100.00%. The second-generation comparison rate and
coverage—generally exceeded 90%, exhibiting better genome
consistency. In BUSCO evaluation, the proportion of Complete
BUSCOs (C) generally surpasses 90%, and the genome integrity is
good. See Table 3 for details.

3.5 Gene structure prediction

After using the Gene Mark-EX training model,
AUGUSTUS was called to predict the pre-obtained
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FIGURE 1

Mycoparasitism assay: (A, B) Colonization of P. pannosa (a causal agent of Chinese rose powdery mildew) spore masses by strain KMR13. (C, D)

Microscopic characterization of spores after treatment of the strain. (A, C) Control, intact spores are circled in red; (B, D): treatment, blue circles

indicate rupture of the spore wall and spillage of the contents.

FIGURE 2

The safety of strain KMR13 on Chinese roses: (A): Control; (B): treatment.

coding genes. The total number of predicted genes was
12,545, the average mRNA length was 2,393.83, and
the average length of CDS was 1,398.91. See Table 4
for details.

Figure 4 illustrates the predictions generated by RepeatModeler
software, which indicate that DNA constitutes 0.69% of the
genome, long scattered repeat sequences account for 0.30% of the
genome, there are no short scattered repeat sequences, and long
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FIGURE 3

Control e�ect of biocontrol fungi on Chinese rose powdery mildew: (A B) control e�ect of biocontrol fungi on Chinese rose powdery mildew in

indoor potted plants; (C, D) control e�ect of biocontrol fungi on Chinese rose powdery mildew in fields. (A, C) Control; (B, D) treatment.

TABLE 2 Essential features of the genome of strain KMR13.

Item Value

Total length (bp) 33,532,117.00

Total number 11.00

GC content (%) 50.97

N50 (bp) 3,084,465.00

N90 (bp) 2,443,235.00

Average (bp) 3,048,374.27

Median (bp) 2,580,072.00

Min (bp) 50,609.00

Max (bp) 6,832,736.00

terminal repeat sequences represent 1.15% of the genome. A total of
379 non-coding RNAs were identified in this genome, comprising
64 rRNAs, 122 tRNAs, and other non-coding RNAs.

TABLE 3 BUSCO evaluation statistics.

Item Number Percent (%)

Complete BUSCOs (C) 756 99.7

Complete and single-copy BUSCOs (S) 755 99.6

Complete and duplicated BUSCOs (D) 1 0.1

Fragmented BUSCOs (F) 1 0.1

Missing BUSCOs (M) 1 0.2

Total BUSCO groups searched 758 100.0

3.6 Gene function annotation

According to the total annotation of genome data, 12,545 genes
were predicted, of which 12,387 genes (98.74%) had at least one
annotation (compared to a database). The Nr database contained
the greatest number of annotated genes (12,355, accounting for
98.49% of the total number of genes). The specific annotation
results of different databases are shown in Table 5, and annotation

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1598458
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tang et al. 10.3389/fmicb.2025.1598458

TABLE 4 Statistics of coding gene prediction results.

Item Number

The total number of genes 12,545

The average of mRNA length (bp) 2,393.83

The average CDS length of per gene (bp) 1,398.91

The average number of exons per gene 2.8

The average exon length (bp) 792.93

The average intron length (bp) 98.36

The total number of exons 35,078

The total number of introns 22,533

The total intron length (bp) 2,216,316

FIGURE 4

Percentage of repeated sequences of various types. DNA, DNA

transposon; LINE, long interspersed repeat sequence (not LTR). One

of non-LTR was recorded: a kind of reverse transcription transposon,

including L1, R2, Jockey, etc. LTR (long terminal repeat): long

terminal repeat sequence. SINE: short interspersed repeat sequence.

One non-LTR was recorded: a kind of reverse transcription

transposon, such as V-SINE, AmnSINE, CORE-SINE, etc.

results from subsequent research are provided to determine the
target functional genes.

3.6.1 Nr annotation results
The results of the annotation are compared with the Nr

database, and the top 10 species with the most comparisons are
classified into other categories. Of the 12,355 annotated genes in
the Nr database, A. alternata accounts for the highest proportion,
59.42%. The species distribution map is shown in Figure 5.

3.6.2 GO Classifieds
The GO annotation information was extracted, and the top

20 secondary classification items with the most annotations

TABLE 5 Functional annotation results of coding genes.

Item Count Percent (%)

All 12,545 100.00

Annotation 12,387 98.74

KEGG 7,657 61.04

Pathway 3,599 28.69

Nr 12,355 98.49

Uniprot 12,294 98.00

GO 8,208 65.43

KOG 1,871 14.91

Pfam 7,911 63.06

Interproscan 11,000 87.68

Refseq 12,297 98.02

Tigerfam 2,668 21.27

were selected. A total of 8,208 annotated genes were identified,
representing 65.43% of the total number of genes. The results of
the gene function analysis, conducted from three perspectives—the
cellular component, molecular function, and biological processes
are presented in Figure 6. The protein encoded by KMR13 is
predominantly associated with a range of biological processes,
including DNA-templated transcription, the carbohydrate
metabolic process, protein hydrolysis, and phosphorylation.
The gene is found to be enriched in cell components, including
the membrane, nucleus, and cytoplasm, as well as in molecular
functions such as ATP binding, metal ion binding, zinc ion
binding, and oxidoreductase activity.

3.6.3 KOG classification
The genes annotated by KOG are classified according to

the KOG group. As shown in Figure 7, 1,871 KMR13 genes
are annotated into 24 corresponding functions, with the largest
number of function categories being general function predictions
only. Secondly, the functional categories involving proteins are
signal transduction mechanisms, post-translational modification,
protein folding and protein turnover, intracellular trafficking,
secretion and vesicular transport, and RNA processing and
modification, though some additional functions are unknown.
The COG annotation results revealed a large number of proteins
with unknown functions in this strain, which are in need of
further investigation.

3.6.4 KEGG annotation
KEGG is an important database for systematic analysis

of gene function and genome information. According to
the KEGG metabolic pathway they participate in, 7,657
genes are annotated, and the results are shown in Figure 8.
According to the global and overview maps (1,983 genes),
carbohydrate metabolism (580 genes) is the most prevalent
function, and amino acid metabolism (454 genes) is the
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FIGURE 5

Species distribution map of sequences aligned to the Nr database. Di�erent colors represent di�erent species.

second most prevalent. Numerous pathways involve a large
number of proteins, including translation (341 genes), folding,
classification, and degradation (306 genes) in genetic information
processing; signal transduction in environmental information
processing (184 genes); transport and catabolism (423 genes)
in cellular processes; and cell growth and death (204 genes).
The KEGG annotation results show that this strain is rich in
carbohydrate metabolism.

3.6.5 Pfam structural domain classification
A total of 7,911 genes were annotated based on the

Pfam structural domain annotation, representing 63.06% of
the total number of predicted genes. The genes annotated
in each structural domain were subjected to statistical
analysis, and the top 20 structural domains with the
largest number of annotations were mapped and displayed.
The results are presented in Figure 9, which depicts372
major facilitator transporter superfamilies (MFS_1), 169
Ankyrin_2(Ank_2), and 167 short-chain dehydrogenases
(adh_short). Furthermore, 150 WD40 structural domains are
involved in signal transduction and regulate the process of fungal
cell differentiation.

3.7 Carbohydrate enzyme annotation

In the fungal strain KMR13, there are 600 genes were annated
in CAZyme database (Table 6). Among these, the gene of 268
GHs exhibited the largest quantity, secondly, there are 151 AAs,88
GTs,53 CEs,25 PLs,15 CBMs. Among these, the GHs family and
AAs family exhibited the largest numbers, account for 44.67%
and 25.17% in overall families. Among these gene families, GH18
and others contain related genes encoding chitinases. From this,

it was determined that strain KMR13 has the potential to degrade
substances such as chitin.

3.8 Chitinase gene expression analysis

A total of 15 GH18 family chitinase genes in strain KMR13 were
screened, ordered and named according to the location of the genes
on the chromosome (KMRChi1-KMRChi15). A total of 10 of the
15 chitinase genes in strain KMR13 were detected to be expressed
in the transcriptome, of which KMRChi3, KMRChi4, KMRChi5,
KMRChi11, and KMRChi14 were not detected to be expressed;
KMRChi9 had the highest FPKM of 123.22 after 24 h of induction,
followed by KMRChi12, which reached a peak of 81.99 after 72 h
of induction. As seen in Figure 10, after spore wall induction,
10 chitinase genes showed expression differences between 0- 96 h
of induction, of which a total of 5 genes, KMRChi2, KMRChi6,
KMRChi8, KMRChi13, and KMRChi15 were up-regulated in 0–
96 h. These genes may play a possible role in the infestation of
P. pannosa KMRChi9 and KMRChi10 were down-regulated in 0–
96 h, which might be induced by the change of carbon source
under induction, and KMRChi12 was up-regulated in 48–72 h,
which indicated that it might be suppressed in the early stage and
functioned in the late stage of infestation.

Five genes with high expression or large fold difference
in expression were screened for RT-qPCR validation, and the
expression trends of the five KMRChis differed somewhat from the
transcriptome results. From Figure 11 it can be seen that almost all
of the chitinase genes were significantly up-regulated in expression
at 24 h after the addition of spore induction, with the highest
expression at 24 h, which showed a trend of induced expression.
Five KMRChis showed significant up-regulation of expression at
24 h after induction, among which KMRChi9 and KMRChi10 were
up-regulated up to 25.09-fold and 7.3-fold, respectively.

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1598458
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tang et al. 10.3389/fmicb.2025.1598458

FIGURE 6

Statistical chart of GO function annotation classification. The horizontal axis represents the various categories of GO, while the vertical axis

represents the number of genes. This figure shows the gene enrichment of each secondary function of GO against the background of all genes,

highlighting the significance of each secondary function in this context.
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FIGURE 7

Statistical chart of KOG function annotation classification. The horizontal axis represents the various categories of KOG, while the vertical axis

represents the number of genes. The proportion of genes in di�erent functional categories reflects the metabolic or physiological trends relevant to

the corresponding time period and environment.

4 Discussion

Based on the data pertaining to the KMR13 genome assembly
size, N50, second- generation alignment rate and coverage, and the
proportion of Complete BUSCOs (C), the KMR13 genome appears
to have good continuity, consistency and integrity, and its data are
rigorous with strong reference value. Mycoparasitism is a common
phenomenon in plant pathogenic fungi in nature, in biological
control with mycoparasitic fungi made of live cell preparation
is different from chemical agents, non-toxic and harmless, will
not have harmful side effects on the target plant, will not affect
the environment, the control effect has a long-lasting, it is the
mainstream direction of biological control (Qiao and Zong, 2002),
more and more by the national plant pathologists, research on the
mechanism of mycoparasitism by means of genome sequencing
has greatly facilitated the application of mycoparasitic fungi in
biological control.

Fungal cell walls aremainly composed of polysaccharides (80%)
and proteins (3%−20%), with lesser amounts of lipids, pigments
and inorganic salts. Filamentous fungal cell walls are made up of

dextran, glycoproteins, proteins and chitin from the outside to
the inside, with β-glucan, chitin (or chitosan in some fungi) and
cellulose microfibrils constituting a scaffolding that is responsible
for the strength and shape of the cell wall (Steyaert et al., 2003).
Cell wall is a necessary condition for the survival of fungal cells.
Cell wall degradation will affect the osmotic pressure balance
of fungal cells; that is, excessive internal swelling pressure will
eventually lead to cell degradation. Therefore, disrupting cell wall
synthesis is a potential antifungal mechanism. Chitinase genes were
mined from the KMR13 genome and screened for mycoparasitism-
associated chitinase genes by detecting the expression of genes at
different time periods of spore induction, and it was found that
the up-regulated expression of KMRChis after induction is likely
to play a role in destroying the spore wall in the mycoparasitism
process of strain KMR13. This strain may catalyze the degradation
of chitin in the cell wall of phytopathogenic fungi by secreting
cell wall degrading enzymes such as chitinase, which results in
inactivation of the cell wall lysis and spillage of inclusions, which
may be one of the mechanisms of mycoparasitism of strain
KMR13. T. brevicompactum DTN19, isolated from the pathogenic
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FIGURE 8

KEGG pathway functional classification map. The horizontal axis represents the number of genes annotated under each pathway category, while the

vertical axis represents the pathway classifications. Di�erent colors indicate the various major classifications to which they belong.

rootstocks of saffron, exerted a good inhibitory effect on the
growth and development of Fusarium oxysporum and contained
a large number of genes encoding proteins related to cellulase,
chitinase, β-glucosidase, iron carrier, nitrogen cycling, and sulfate
transport proteins, as analyzed by genome sequencing (Tian et al.,
2024). This study also confirmed that strain KMR13 has a gene
encoding chitinase. The mycoparasitism of strain KMR13 is similar
to that of Trichoderma, which may be due to the secretion of
spore wall degrading enzymes to hydrolyze the host cell wall,
thus absorbing the host cytoplasm as a nutrient component for
parasitic growth. The microscopic observation of strain KMR13
mycoparasitism assay was consistent with the above, with the spore
cell wall fragmentation and the release of inclusions, and it can be
speculated that its main myoparasitism mechanism may also be for
the secretion of cell wall degrading enzymes.

The expression levels of many genes encoding fungal cell
wall degrading enzymes are significantly regulated during plant
pathogenic fungal infestation, and different species of fungal cell
wall degrading enzymes are involved in this biological process and
in different proportions at different phases of infection, suggesting

that the process of reorganization or modification of the fungal
cell wall is subject to a complex and stringent regulation (Lyu
et al., 2015). In this study, we found that the expression of some
chitinase genes in fungal cell wall degrading enzymes was down-
regulated after spore induction, and it was speculated that the
reason for this might be affected by time and nutrient source on the
one hand, and the study showed that the expression of CAZymes
is complex, and there are different regulatory mechanisms at
different developmental stages of fungal growth, which are affected
by light and temperature in addition to carbon and nitrogen
sources (Donzelli and Harman, 2001); On the other hand, cell wall
degrading enzymes are not only involved in fungal mycoparasitism
or digestion and breakdown of chitin, but the same proteins
involved in fungal mycoparasitism during autolysis and starvation
of aging fungi are also mainly responsible for the breakdown of
exogenous chitin, the recycling of chitin in the fungi’s own cell wall
and the remodeling of the fungal cell wall during growth (Hu and
Leger, 2004; Gruber and Seidl-Seiboth, 2012). MAP kinase cascade
reaction (Zeng et al., 2012), NADPH oxidase (Wei et al., 2016),
oxalate decarboxylase (Zeng et al., 2014), transcription factor (Gao
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FIGURE 9

Pfam functional annotation categorization statistical chart. In the figure, the horizontal axis represents the names of protein families, while the

vertical axis represents the number of genes aligned to each protein family.

TABLE 6 CAZyme annotation statistics in the KMR13 genome.

Category Number of
genes

Percentage of total
genes (%)

GHs 268 44.67

GTs 88 14.67

PLs 25 4.17

CEs 53 8.83

AAs 151 25.17

CBMs 15 2.5

et al., 2016), peroxisome, and heat shock factor have been proven
to participate in the process of mycoparasitism (Hamid et al.,
2013). In addition, the transcription of genes encoding cell wall
degrading enzymes is also related to the regulation of transcription
factors. In the study of Trichoderma reesei degrading cellulose and
hemicellulose, it is shown that transcription activating factors such
as XYR1 and ACE2, as well as CRE1 and ACE1 as inhibitory factors,
participate in the expression of intracellular enzymes (Akimitsu
et al., 2004; Seiboth et al., 2012). Because the mycoparasitism of
strain KMR13 is similar to Trichoderma, transcription factors may
also participate in the mycoparasitism of KMR13, which needs to
be verified later.

Field greenhouse tests showed that a suspension of conidia
of strain KMR13 was less effective in controlling Chinese rose
powdery mildew caused by P. pannosa than under indoor
conditions. Carroll and Wilcox (2003). found that the incidence
and severity of powdery mildew disease increased with increasing
relative humidity, so the present study may be attributed to the
increased probability of infestation by the pathogenic fungi due
to low nighttime temperatures and high relative humidity in field
greenhouses, whereas indoor environments, due to their more
stable temperatures and relative humidity, do not have the potential
for high nighttime relative humidity, resulting in less effective
control in field greenhouses than in indoor conditions. Relative
humidity should be accurately controlled in subsequent studies
of control effects. Biocontrol agents have a good background of
action against host pathogens, but their use and effectiveness in this
area is limited. The lack of field application reliability of biological
control agents and their failure to provide consistent disease
control under field conditions potentially contribute to their low
dissemination on themarket (Spadaro andDroby, 2016; Janisiewicz
and Jeffers, 1997). In addition to the above mentioned problems,
the workflow from the discovery of bioactive compounds to the
effective preparation of final products is still quite complicated;
in most cases, it is a long iterative process involving several steps.
Therefore, it is necessary to improve the regulatory barriers and
workflow-related procedures to overcome the challenges of the
biocontrol agent market. The adoption and widespread use of
biocontrol agents will make it possible to produce more natural,
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FIGURE 10

Expression of the GH18 gene family in strain KMR13 under spore induction.

healthier, and safer foods with no or low chemical residue values
(Abbey et al., 2019; Belinato et al., 2018).

5 Conclusion

KMR13 disrupted the cell wall of P. pannosa spores, inducing
leakage of intracellular content while showing no phytotoxicity to
host plants. Conidial suspension of strain KMR13 had lower field
control efficacy against Chinese rose powdery mildew compared
to its greenhouse pot control efficacy, but it still y suppressed
Chinese rose powdery mildew caused by P. pannosa, supporting

its potential application in agricultural biological control. In this
study, we reported the whole genome sequence information of
strain KMR13 for the first time and analyzed its gene functional
annotation, predicted that the genome of strain KMR13 contains
relevant chitinase genes for degrading the cell wall of pathogenic
fungi, and combined with the transcriptome and RT-qPCR data,
found that the up-regulated expression of KMRChis induced is
likely to play the role of destroying the spore wall in the process
of mycoparasitism of strain KMR13. Therefore, it is speculated
that strain KMR13 may catalyze the degradation of chitin in
the cell wall of phytopathogenic fungi through the secretion of
chitinase, thus causing the cell wall to be inactive and the inclusions
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FIGURE 11

Relative expression of KMRChis under spore wall induction. Internal reference gene: actin; n = 3; *0.01 < P ≤ 0.05; **P ≤ 0.01.

to overflow to achieve the effect of plant disease control. This
provides a theoretical basis for a better understanding of the
exploitation of strain KMR13 for biocontrol and the elucidation of
the mycoparasitic mechanism.
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