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Background: Recent studies have highlighted the presence of intratumoral 
bacteria in hepatocellular carcinoma (HCC), yet their contribution to 
immunotherapy resistance remains largely unexplored. This study investigates 
the mechanisms by which bacterial infection reshapes tumor metabolism to 
undermine the efficacy of anti-PD-1 therapy.

Methods: We conducted 16S rRNA gene sequencing on 29 HCC clinical 
samples and integrated the data with single-cell RNA sequencing of 12,487 
cells to map microbial, metabolic, and immune interactions within the tumor 
microenvironment. Functional validation was performed using orthotopic HCC 
mouse models (n = 8 per group), coupled with flow cytometry-based immune 
profiling.

Results: Enrichment of Streptococcaceae was strongly associated with 
upregulation of key glycolytic enzymes (LDHA, PKM2; p < 0.001) and 
dysfunction of natural killer cells (reduced CD56dim/CD16bright populations; hazard 
ratio = 2.15, 95% CI: 1.34–3.42). Mechanistically, bacterial colonization induced 
peroxiredoxin 1 (PRDX1) expression via the NF-κB pathway. This led to excessive 
lactate production, which suppressed CD8+ T cell cytotoxicity (p = 0.003) and 
increased the expression of immune checkpoint molecules (TIM-3: 2.7-fold; 
LAG-3: 1.9-fold). In vivo, bacterial infection decreased the antitumor efficacy of 
PD-1 blockade by 43% (tumor volume vs. control; p = 0.008), an effect that was 
reversed upon PRDX1 inhibition.

Conclusion: Our findings identify PRDX1 as a central node in bacteria-driven 
metabolic reprogramming that facilitates immune evasion and resistance to PD-1 
therapy in HCC. These findings provide the first evidence linking intratumoral 
bacteria to PD-1 resistance via redox-regulated metabolism, proposing dual 
targeting of PRDX1 and gut microbiota as a novel combinatorial immunotherapy 
strategy.
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Introduction

Hepatocellular carcinoma (HCC) is among the most prevalent 
and lethal malignancies worldwide, with persistently high incidence 
and mortality rates (Wang and Deng, 2023; Jiang et al., 2023; Ioannou, 
2021). Although advances in treatment modalities—such as surgical 
resection, radiotherapy, chemotherapy, and targeted therapy—have 
improved clinical outcomes, long-term survival in HCC remains 
unsatisfactory. In recent years, immunotherapy has emerged as a 
promising strategy for HCC by mitigating pro-tumor immune effects 
or enhancing anti-tumor immunity. Within the unique immune 
microenvironment of HCC, targeting immune cells can induce diverse 
functional changes, making the tumor immune microenvironment 
(TIME) an attractive therapeutic target (Pan et al., 2024). Immune 
checkpoint inhibitors, in particular, have shown clinical benefit in 
some patients (Chen et al., 2024; Sirera et al., 2025; Pfister et al., 2021); 
however, a substantial proportion of patients still fail to respond 
significantly (Ji et al., 2024). The limited efficacy of immunotherapy is 
thought to be  closely associated with the regulatory influence of 
non-tumor cells within the tumor microenvironment (TME) (Lee 
et al., 2024; Di Marco et al., 2025). This microenvironment consists of 
a complex interplay among various cellular components, extracellular 
matrix elements, and cytokines, collectively modulating tumor 
progression and treatment responses (Liu H. et  al., 2024; Liu 
P. et al., 2024).

Among these non-tumor elements, tumor-associated bacteria 
have garnered increasing attention for their roles in modulating tumor 
biology (Peng et al., 2022). These microbial communities, residing 
within the tumor or originating from the gut, can alter host 
metabolism and gene regulation (Guan et al., 2024a, 2024b), thereby 
contributing to HCC development and progression. Recent studies 
have reported that bacterial communities residing in the gut and 

tumor tissues can modulate host immune responses and metabolic 
pathways, thereby affecting tumor growth and treatment efficacy 
(Zhou et al., 2024; Galeano Niño et al., 2022). For example, certain 
bacteria promote tumor cell survival and proliferation by altering local 
pH or producing specific metabolic byproducts. Moreover, bacteria 
can modulate the host immune system (Du et al., 2025), including 
through the regulation of cytokine and chemokine expression within 
the TME (Yang C. et al., 2024; Yang L. et al., 2024), thereby affecting 
immune cell recruitment and activation (Sun et  al., 2024). These 
findings underscore the intricate interactions between bacteria and 
tumor cells and suggest novel therapeutic targets (Koelsch et al., 2024).

Peroxiredoxin 1 (PRDX1), a redox-regulating antioxidant enzyme, 
has been implicated in various cancer-related processes (Guan et al., 
2024a, 2024b; Song et al., 2024; Min et al., 2018). In particular, PRDX1 
plays pivotal roles in maintaining redox homeostasis and modulating 
key signaling pathways (Sun et al., 2023). In HCC, elevated PRDX1 
expression is associated with enhanced glycolytic activity. Glycolysis, 
a hallmark metabolic pathway in cancer, serves as the principal source 
of energy and biosynthetic precursors necessary for rapid tumor 
proliferation (Kang et al., 2020; Li et al., 2022; Wang et al., 2022a, 
2022b). Furthermore, increased glycolysis leads to the acidification of 
the TME, which in turn impairs immune cell function and facilitates 
immune evasion (Bader et al., 2024; Chang et al., 2015).

In this study, we sought to investigate the regulatory role of gut 
microbiota in HCC glycolysis, with a particular focus on PRDX1 and 
its impact on immunotherapy outcomes. By integrating single-cell 
transcriptomics and functional genomics analyses, we compared the 
microbial compositions of HCC patients and healthy individuals, and 
examined how bacterial differences influence tumor glycolytic 
pathways and the immune microenvironment. Our findings reveal 
that PRDX1 is a key mediator of bacteria-induced glycolysis in HCC 
and is closely associated with patient survival and immune cell 
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infiltration. These results provide critical insights into how microbiota-
driven metabolic reprogramming shapes the immunological 
landscape of HCC, highlighting PRDX1 as a potential therapeutic 
target. This study offers a scientific rationale for novel combination 
strategies aimed at improving immunotherapy efficacy in HCC by 
disrupting the bacteria-metabolism-immune axis, with substantial 
implications for both research and clinical practice.

Materials and methods

16S rRNA sequencing data acquisition

Relevant datasets were identified in the EMBL-EBI database1 
using the keyword “Liver cancer.” Phenotypic information for all 
samples within the selected project (BioProject ID: PRJNA1127013) 
was retrieved. The study included 17 HCC samples (tumors graded as 
stage III or above) and 12 healthy control samples. Corresponding 16S 
rRNA sequencing data were downloaded from the NCBI Sequence 
Read Archive (SRA) database.2

Microbial relative abundance analysis

Sample quality was assessed using MultiQC (Ewels et al., 2016) 
and KneadData.3 MultiQC provided sequencing quality control 
metrics, while KneadData was used to filter out host-derived and 
contaminant sequences. Taxonomic profiles and phylogenetic 
relationships among microbial species were visualized and annotated 
using GraPhlAn (Bai et  al., 2015), allowing the determination of 
microbial relative abundance. Alpha diversity (within-sample 
diversity) was evaluated using the Inverse Simpson index, while beta 
diversity (between-sample diversity) was assessed through principal 
coordinate analysis (PCoA). Statistical comparisons of microbial 
diversity and abundance were conducted using Wilcoxon rank-sum 
tests and Welch’s t-tests. Differential abundance analysis between 
groups was performed using the edgeR package in R, and the results 
were visualized using volcano plots and Manhattan plots. To further 
identify significantly different taxa, we applied the Linear Discriminant 
Analysis Effect Size (LEfSe) method (Erawijantari et al., 2020), with 
an LDA score cutoff of 2.0. Taxa with higher LDA scores indicated 
stronger group-specific enrichment. Significant findings were 
illustrated using bar plots that summarized differential 
taxonomic abundance.

Microbial functional composition

Functional predictions of microbial communities were performed 
using the FAPROTAX database and software,4 a manually curated 
taxonomy-function mapping tool for prokaryotes. Data pre-processed 
via QIIME were converted using R packages and further analyzed 

1 https://www.ebi.ac.uk/ena/browser/search

2 https://www.ncbi.nlm.nih.gov/sra/

3 https://huttenhower.sph.harvard.edu/kneaddata/

4 http://www.loucalab.com/archive/FAPROTAX/

with PICRUSt, which infers metagenomic functional content based 
on community phylogeny. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database was utilized to predict functional 
pathways corresponding to each primer set. Statistical analyses and 
visualization of unstratified results were conducted using STAMP 
(v2.1.3), and Welch’s t-test was used to compare functional differences 
between groups.

Data acquisition and processing

Single-cell RNA sequencing (scRNA-seq) data for HCC were 
obtained from the publicly available dataset GSE189903. This dataset 
includes tumor samples from four HCC patients (GSM5709317, 
GSM5709326, GSM5709327, and GSM5709336) and adjacent 
non-tumor liver tissue samples from three patients (GSM5709316, 
GSM5709324, and GSM5709329). Data processing was performed 
using the Seurat package in R. Quality control criteria were set as 
follows: 200 < nFeature_RNA < 5,000 and percent.mt < 20. The 
top 2,000 most variable genes, determined by variance, were selected 
for downstream analyses.

All datasets used in this study were obtained from publicly 
accessible databases. Therefore, ethical approval and informed consent 
were not required.

Single-cell transcriptomic analysis

To reduce the dimensionality of the scRNA-seq dataset, principal 
component analysis (PCA) was performed based on the top 2,000 
highly variable genes identified by variance. The first 20 principal 
components (PCs) were selected for downstream analysis, as 
determined by the ElbowPlot function in the Seurat package. Major 
cell subpopulations were identified using the FindClusters function 
(resolution = 1, default setting) in Seurat, followed by nonlinear 
dimensionality reduction via the Uniform Manifold Approximation 
and Projection (UMAP) algorithm. Marker genes for distinct cell 
populations were identified using Seurat’s built-in functions. Cell 
types were annotated by integrating known lineage-specific markers 
with references from the CellMarker database5 and the SingleR 
package in R. Intercellular communication networks were inferred 
using the CellChat R package.

Differentially expressed genes (DEGs) were identified using the 
Limma package in R. Genes were considered differentially expressed 
if they met the criteria of |log2 fold change| >0.5 and p < 0.05.

Gene Ontology and KEGG enrichment 
analysis

Functional enrichment analysis was performed to explore the 
biological relevance of DEGs. Genes were first mapped to Gene 
Ontology (GO) terms using the org.Hs.eg.db annotation package 
(version 3.1.0). Enrichment analysis was carried out with the 

5 http://xteam.xbio.top/CellMarker/
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clusterProfiler package (version 4.0; PMID: 34557778). For pathway 
analysis, KEGG gene annotations were retrieved via the KEGG REST 
API,6 and KEGG enrichment analysis was similarly performed using 
clusterProfiler. Parameters were set to a minimum gene set size of 5 
and a maximum gene set size of 5,000, with a p-value threshold of 
<0.05 and a false discovery rate (FDR) of <0.25. Data visualization was 
performed using the ggplot2 package.

Venn diagram

To identify genes associated with glycolysis, the GeneCards 
database7 was queried using the keyword “Glycolysis.” Genes with a 
relevance score >1 were retained, yielding a total of 1,829 genes. The 
overlap between gene sets was visualized using the VennDiagram 
package in R (version 1.6.20).

Protein–protein interaction network 
construction and core factor identification

Protein–protein interaction (PPI) networks of intersecting gene 
sets were constructed using the STRING database.8 Network 
visualization was conducted in Cytoscape software (version 3.7.2). 
Core functional proteins, or “hub genes,” were identified through 
centrality analysis, with node degree used as the primary metric to 
evaluate the relative importance of each node in the network.

Analysis using Xiantao Academic platform

The Xiantao Academic platform was employed to analyze PRDX1 
expression differences between tumor and normal tissues, its 
prognostic significance, and its correlation with 24 immune cell types 
using data from the TCGA-LIHC cohort.

RNA-seq data in FPKM format and corresponding clinical 
information were obtained from the TCGA portal9 and processed 
using the STAR alignment pipeline.

Statistical comparisons of PRDX1 expression between tumor and 
normal groups were performed using the Wilcoxon rank-sum test, 
with results visualized via the ggplot2 package in R. Survival analysis 
was carried out using the survival and survminer packages, 
incorporating proportional hazards assumption testing and Cox 
regression modeling.

Immune infiltration analysis was conducted using the single-
sample gene set enrichment analysis (ssGSEA) algorithm implemented 
in the GSVA package. Immune cell signatures for 24 cell types were 
used to quantify infiltration scores. Correlation between PRDX1 
expression and immune cell infiltration was assessed, and the results 
were visualized using lollipop charts generated with ggplot2.

6 https://www.kegg.jp/kegg/rest/keggapi.html

7 https://www.genecards.org/

8 https://string-db.org/

9 https://portal.gdc.cancer.gov

Cell and bacterial culture

Huh7 human hepatoma cells (HB-8065, ATCC® HTB-96™, 
United  States) were obtained from the American Type Culture 
Collection (ATCC) and maintained in high-glucose DMEM medium 
(11965092, Gibco, United States) supplemented with 10% fetal bovine 
serum (FBS) (A5670801, Gibco, United States) and 1% penicillin–
streptomycin (15070063, Solarbio, China). Cells were cultured at 37°C 
in a 5% CO2 humidified incubator (Thermo Fisher Scientific, 
United States), and the medium was refreshed regularly to maintain 
optimal cell viability. When cultures reached 70–80% confluence, cells 
were subcultured using 0.25% trypsin-EDTA (R001100, Gibco, 
United States). Cell morphology and contamination were monitored 
using an inverted microscope (Leica Microsystems, Germany) to 
ensure culture integrity (Zhao et al., 2021).

Streptococcus anginosus (ATCC 33397) was purchased from the 
American Type Culture Collection and cultured on BHI agar plates 
(CM1136B; Thermo Fisher Scientific). For liquid culture, bacteria 
were grown in BHI broth (CM1135B; Thermo Fisher Scientific) at 
37°C under aerobic conditions overnight.

Cell transfection

Huh7 cells were seeded in 6-well plates at a density of 5 × 105 cells 
per well and cultured until reaching 50–60% confluence. Transfection 
was performed using Lipofectamine 3000 (L3000150, Thermo Fisher 
Scientific, United States). Plasmid DNA and Lipofectamine 3000 were 
diluted in Opti-MEM medium (31985070, Gibco, United States) and 
incubated for 15 min to allow formation of transfection complexes, 
which were then added to each well. Cells were incubated at 37°C with 
5% CO2 to facilitate transfection. Four experimental groups were 
established: Vector group: Huh7 cells were transfected with an empty 
vector (Vector, GenePharma, China); OE-PRDX1 group: Huh7 cells 
were transfected with a PRDX1 overexpression plasmid (OE-PRDX1, 
GenePharma, China); sh-NC group: Huh7 cells were transfected with 
a negative control plasmid (sh-NC, GenePharma, China); sh-PRDX1 
group: Huh7 cells were transfected with a PRDX1 knockdown plasmid 
(sh-PRDX1-1 or sh-PRDX1-2, GenePharma, China). The sequences 
for sh-PRDX1 plasmids were as follows: sh-PRDX1-1: 
5′-ATGCCAGATGGTCAGTTTAAA-3′, sh-PRDX1-2: 5′-GTGATAG 
GGCAGAAGAATTTA-3′.

After 48 h, cells were harvested for RT-qPCR, western blot, and 
other functional assays to evaluate PRDX1 expression levels and 
downstream effects. All transfection experiments were performed in 
biological triplicates to ensure data reproducibility and reliability.

RT-qPCR

Huh7 cells were harvested 48 h post-transfection, and total RNA 
was extracted using TRIzol reagent (Invitrogen, United  States) in 
accordance with the manufacturer’s protocol. Cells from each well 
were lysed in 1 mL of TRIzol, and RNA was isolated through 
isopropanol precipitation and ethanol washing. RNA purity and 
concentration were assessed using a NanoDrop  2000 
spectrophotometer (Thermo Fisher Scientific, United States), ensuring 
an A260/A280 ratio between 1.8 and 2.0. cDNA synthesis was 
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performed immediately using the PrimeScript RT reagent kit (Takara, 
Japan), and the resulting cDNA was stored at −20°C for subsequent 
analysis. Quantitative PCR was conducted using SYBR Green PCR 
Master Mix (Roche, Switzerland) on a LightCycler 480 system (Roche, 
Switzerland). Cycle threshold (Ct) values were generated using 
LightCycler 480 software. The ΔΔCT method was used to calculate 
relative mRNA expression levels of PRDX1, normalized to GAPDH 
as an internal control. Primer sequences were as follows:

PRDX1: (Forward: 5′-TGGGCAGCCATGAGAACAAA-3′, 
Reverse: 5′-GAAAGGCTGGTCTCTCCACC-3′).

GAPDH: (Forward: 5′-GTCTCCTCTGACTTCAACAGCG-3′, 
Reverse: 5′-ACCACCCTGTTGCTGTAGCCAA-3′).

Western blot

Cells were washed twice with PBS (P1020, Solarbio, China) and 
lysed in RIPA buffer (R0020, Solarbio, China) supplemented with 
protease inhibitor cocktail (78442, Thermo Fisher Scientific, 
United States). A lysis volume of 100 μL per 1 × 106 cells was used. 
Lysates were incubated on ice for 30 min, followed by centrifugation 
at 12,000 × g for 10 min at 4°C to isolate the protein-containing 
supernatant. Protein concentrations were determined using a BCA 
assay kit (P0012, Beyotime, China) and normalized to 2 mg/mL across 
all samples. Proteins (30 μg per sample) were separated by SDS-PAGE 
on 12% resolving gels and 5% stacking gels, using a PageRuler™ 
protein ladder (26617, Thermo Fisher Scientific, United States) as 
molecular weight reference. Electrophoresis was carried out at 100 V 
for stacking and 120 V for resolving. Proteins were transferred to 
0.45 μm PVDF membranes (88585, Thermo Fisher Scientific, 
United States) using a wet transfer system at 300 mA for 90 min at 
4°C. Membranes were blocked with 5% nonfat milk in TBST (T1085, 
Solarbio, China) for 1 h at room temperature, then incubated 
overnight at 4°C with the following primary antibodies (diluted in 5% 
milk/TBST): PRDX1 (ab257040, 1:1000, Abcam, United Kingdom), 
Bcl-2 (15071, 1:1000, CST, United States), Bax (2772, 1:1000, CST, 
United States), Caspase-3 (9662, 1:1000, CST, United States), HIF-1α 
(3716, 1:1000, CST, United  States), LDHA (2012, 1:1000, CST, 
United States), PKM2 (4053, 1:1000, CST, United States), and GAPDH 
(2118, 1:2000, CST, United States, internal control). After primary 
antibody incubation, membranes were washed three times with TBST 
(10 min each), followed by incubation with HRP-conjugated 
secondary antibody (31460, 1:1000, Thermo Fisher Scientific, 
United  States) for 1 h at room temperature. Following additional 
washes, protein bands were visualized using ECL substrate (P0018S, 
Beyotime, China) and imaged with the ChemiDoc MP system (Bio-
Rad, United States). Band intensities were quantified using Image Lab 
software (Bio-Rad, United States) and normalized to GAPDH levels.

CCK-8 assay

Huh7 cells were seeded in 96-well plates at a density of 5 × 103 
cells per well, with six replicates per group. Blank wells containing 
only medium and CCK-8 reagent (no cells) were included as controls. 
After allowing 4 h for cell attachment, the baseline optical density 
(OD450) was recorded at 0 h. At 0, 24, 48, and 72 h, 10 μL of CCK-8 

reagent (96992, Sigma-Aldrich, United States) was added to each well. 
Plates were gently mixed and incubated at 37°C for 2 h. Absorbance 
at 450 nm was measured using a multifunctional microplate reader 
(Thermo Fisher Scientific, United States).

Colony formation assay

To assess the clonogenic potential of Huh7 cells following 
transfection, 500 cells per well were seeded into 6-well plates, with 
three technical replicates per group. Cells were cultured in high-
glucose DMEM supplemented with 10% FBS and 1% penicillin-
streptomycin under standard conditions (37°C, 5% CO2). The 
medium was refreshed every 3 days to maintain optimal nutrient 
levels. After 10 days of incubation, cells were gently washed twice with 
PBS (P1020, Solarbio, China) to remove non-adherent cells and 
debris. Colonies were then fixed with 4% paraformaldehyde (P1110, 
Solarbio, China) for 15 min at room temperature, followed by two PBS 
washes to eliminate residual fixative. Cells were stained with 0.1% 
crystal violet solution (G1063, Solarbio, China) for 20 min, and excess 
stain was removed by rinsing under running water. The plates were 
air-dried at room temperature. Stained colonies, visible as purple 
clusters, were imaged using an inverted microscope (Olympus, Japan). 
Colony numbers were quantified using ImageJ software.

Transwell migration assay

Cell migratory capacity was evaluated using a 24-well Transwell assay 
(8 μm pore size; 3422, Corning, United States). Inserts were pre-wetted 
with 200 μL serum-free high-glucose DMEM for 30 min, then the 
medium was discarded. Transfected Huh7 cells were suspended in serum-
free medium at a density of 2 × 105 cells/mL, and 200 μL of the suspension 
was added to the upper chamber of each insert. The lower chamber was 
filled with 600 μL DMEM containing 10% FBS as a chemoattractant. 
Chambers were incubated at 37°C in a 5% CO2 incubator for 24 h to allow 
migration. Following incubation, non-migrated cells on the upper 
membrane surface were gently removed with PBS. Migrated cells on the 
underside of the membrane were fixed with 4% paraformaldehyde for 
15 min, washed twice with PBS, and stained with 0.1% crystal violet for 
20 min. Excess dye was removed with running water, and membranes 
were air-dried. Stained cells were observed under an inverted microscope 
(Olympus, Japan), and five random fields were selected per well for cell 
counting. Images were analyzed using ImageJ software. Each experimental 
condition was tested in triplicate, and the experiment was independently 
repeated three times for reproducibility.

Matrigel invasion assay

To assess cell invasiveness, a Matrigel-coated Transwell invasion 
assay was performed. Matrigel matrix (356234, BD Biosciences, 
United  States) was thawed on ice and diluted 1:8  in serum-free 
DMEM. A volume of 50 μL diluted Matrigel was applied evenly to the 
upper surface of the Transwell insert, which was then incubated at 37°C 
for 1 h to allow solidification. Once solidified, 2 × 104 transfected Huh7 
cells in 200 μL serum-free DMEM were added to the upper chamber, 
and 600 μL DMEM containing 10% FBS was added to the lower chamber 

https://doi.org/10.3389/fmicb.2025.1599691
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2025.1599691

Frontiers in Microbiology 06 frontiersin.org

to serve as a chemoattractant. Cells were allowed to invade through the 
Matrigel for 24 h at 37°C in a 5% CO2. After incubation, non-invading 
cells were removed from the upper chamber with PBS. Invaded cells on 
the underside of the membrane were fixed with 4% paraformaldehyde 
for 15 min, washed twice with PBS, and stained with 0.1% crystal violet 
for 20 min. Membranes were then rinsed under running water and 
air-dried. Invasive cells were visualized using an inverted microscope 
(Olympus, Japan), and five random fields per membrane were analyzed 
using ImageJ software. Each group included three technical replicates, 
and the assay was independently repeated three times.

Flow cytometry for apoptosis detection

Apoptosis was evaluated in Huh7 cells 48 h post-transfection. 
Cells were gently washed twice with PBS and resuspended to form a 
single-cell suspension. Apoptotic cells were stained using the Annexin 
V-FITC/PI apoptosis detection kit (C1062S, Beyotime, China). 
Stained cells were analyzed using a BD FACSCanto II flow cytometer 
(BD Biosciences, United States). FITC and PI fluorescence signals 
were excited at 488 nm, with emissions detected at 530 nm (green) 
and 617 nm (red), respectively. A minimum of 10,000 cells per group 
was acquired. Flow cytometry data were analyzed using FlowJo 
software (TreeStar, United States). Apoptotic stages were defined as 
follows: early apoptosis (Annexin V+/PI−), late apoptosis (Annexin V+/
PI+), and live cells (Annexin V−/PI−).

Lactate secretion assay

To assess lactate production, transfected Huh7 cells were seeded into 
6-well plates (Corning, United States) at a density of 2 × 105 cells per well 
and cultured for 48 h. Culture supernatants were collected into sterile 
centrifuge tubes and centrifuged at 13,000 × g for 10 min at 4°C to 
remove cell debris. The cleared supernatants were then used to measure 
lactate levels using a Lactate Assay Kit (S0208S, Beyotime, China). For 
each sample, 50 μL of supernatant was transferred into a 96-well plate, 
followed by the addition of 50 μL of assay reagent mixture. After mixing 
thoroughly, the reaction was incubated at room temperature for 30 min. 
A standard curve was prepared using lactate standards at final 
concentrations of 0, 2, 4, 6, 8, and 10 μL. Upon completion of the 
reaction, absorbance was measured at 570 nm using a Multiskan FC 
microplate reader (Thermo Fisher Scientific, United States).

ATP content assay

ATP levels were measured in Huh7 cells 48 h post-treatment. Cells 
were washed twice with PBS, and ATP extraction buffer (provided with 
the kit) was added at a volume of 100 μL per well. Cells were lysed on ice 
for 5 min, and lysates were transferred to centrifuge tubes and spun at 
12,000 × g for 5 min. Supernatants were collected for ATP quantification. 
ATP content was determined using an ATP Assay Kit (S0026, Beyotime, 
China). For each sample, 10 μL of supernatant was added to a 96-well 
plate, followed by 90 μL of detection working solution. After thorough 
mixing, the plate was incubated in the dark at room temperature for 
5 min. Luminescence was detected using a Multiskan FC microplate 
reader (Thermo Fisher Scientific, United States).

Glucose uptake assay

Huh7 cells were assigned to three experimental groups: Vector, 
sh-PRDX1, and sh-PRDX1 + Glu. After 48 h of culture, the culture 
medium was collected to measure glucose concentration, and the cells 
were harvested for protein extraction. Glucose levels were quantified 
using a glucose assay kit (361500, Rsbio, China). Glucose uptake was 
normalized to total protein content, which was determined using a 
BCA protein assay kit (23225, Thermo Fisher Scientific, United States).

Peripheral blood mononuclear cell 
isolation and co-culture

Peripheral blood samples from healthy donors were diluted 1:1 
with PBS and carefully layered onto a Ficoll density gradient solution 
(P4350, Solarbio, China). Samples were centrifuged at 2,000 rpm for 
20 min at room temperature, and the peripheral blood mononuclear 
cell (PBMC) layer was collected. PBMCs were washed twice with PBS 
and resuspended in RPMI-1640 medium (11875093, Gibco, 
United  States) supplemented with 10% FBS and IL-2 (500 U/mL; 
200-02-50UG, PeproTech, United States). Cells were activated in a 
humidified incubator at 37°C with 5% CO2 for 48 h. Following 
activation, natural killer (NK) cell suspensions were prepared and 
co-cultured with Huh7 cells at an effector-to-target (E:T) ratio of 1:10 
for 12 h. Huh7 cells were maintained under the same three conditions 
(Vector, sh-PRDX1, and sh-PRDX1 + Glu) in high-glucose DMEM 
medium containing 10% FBS and 1% penicillin-streptomycin.

Lactate dehydrogenase release assay

Lactate dehydrogenase (LDH) activity in the culture supernatant 
was assessed using a LDH release assay kit (C0016, Beyotime, China). 
LDH release was expressed as a percentage of total LDH activity, 
calculated by comparing supernatant levels with total LDH measured 
in lysed cell controls.

NK cell activity assay

Following co-culture, NK cells were collected and adjusted to an 
appropriate concentration. Cells were stained with anti-CD107a-FITC 
antibody (328605, BioLegend, United  States) and anti-IFN-γ-PE 
antibody (502508, BioLegend, United States) and incubated at 37°C 
in the dark for 30 min. After staining, cells were fixed in 75% ethanol, 
washed twice with PBS, and resuspended as a single-cell suspension. 
Fluorescence signals were measured using a BD FACSCanto II flow 
cytometer (BD Biosciences, United  States). Expression levels of 
CD107a and IFN-γ were quantified to assess NK cell activation.

ELISA for inflammatory cytokines

After 12 h of co-culture, supernatants were collected and 
centrifuged at 1,200 × g for 5 min to remove cellular debris. Samples 
were stored at −80°C until analysis. Concentrations of IL-6 and 
TNF-α were measured using ELISA kits (IL-6: SEKH-0013; TNF-α: 
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SEKH-0047; Solarbio, China), following the manufacturer’s protocols. 
Briefly, 100 μL of standards and diluted samples were added to ELISA 
plate wells and incubated at 37°C for 1 h. After three washes, biotin-
labeled antibody working solution was added and incubated at room 
temperature for 30 min. After another wash, enzyme-labeled 
conjugate was added and incubated for 15 min at room temperature. 
Substrate solution was then added and incubated in the dark for 
15 min, followed by addition of stop solution. Absorbance at 450 nm 
(OD450) was measured using a Multiskan FC microplate reader 
(Thermo Fisher Scientific, United States).

NKG2D ligand detection

To assess the surface expression of NKG2D ligands, Huh7 cells 
were harvested and stained with the following antibodies: anti-MICA/
B-FITC (MA5-38727, Thermo Fisher Scientific, United States) and 
ULBP1/2-PE (ULBP1: FAB1380P; ULBP2: FAB1298P, Bio-Techne, 
United States). Cells were incubated with antibodies for 30 min at 
room temperature, followed by two washes with PBS. A single-cell 
suspension was prepared, and fluorescence intensity was measured 
using a flow cytometer. The expression levels of NKG2D ligands were 
quantified accordingly.

Immunofluorescence assay

Cells were washed twice with PBS and fixed with 4% 
paraformaldehyde (P1110, Solarbio, China) for 15 min at room 
temperature. After fixation, cells were washed three times with PBS 
and permeabilized with 0.3% Triton X-100 (T8200, Solarbio, China) 
for 10 min. Non-specific binding was blocked using 5% bovine serum 
albumin (BSA) (A8010, Solarbio, China) for 1 h at room temperature. 
Cells were then incubated overnight at 4°C with the primary antibody 
against PRDX1 (ab266842, 1:200, Abcam, United  Kingdom). The 
following day, after three PBS washes, cells were incubated with a 
FITC-conjugated secondary antibody (ab6785, 1:500, Abcam, 
United Kingdom) for 1 h at room temperature in the dark. Nuclei 
were stained with DAPI (ab104139, 1:200, Abcam, United Kingdom) 
for 5 min in the dark at room temperature. After three additional PBS 
washes, coverslips were mounted using antifade mounting medium 
(S2110, Solarbio, China). Fluorescence images were captured using a 
Leica SP8 confocal microscope (Leica Microsystems, Germany) with 
appropriate excitation/emission settings. Five random fields per 
sample were selected for imaging, and fluorescence intensity was 
quantified using ImageJ software (NIH, United States).

Establishment of a subcutaneous 
tumor-bearing mouse model

Female BALB/c-nu/nu nude mice (4 weeks old, 18–20 g) were 
purchased from Beijing HFK Bioscience Co., Ltd. Mice were housed 
in a sterile environment with a controlled temperature (22–24°C), 
humidity (50–60%), and a 12-h light/dark cycle, with free access to 
sterile food and water. Huh7 cells in the logarithmic growth phase 
were resuspended in PBS (pH 7.4) at a concentration of 2 × 106 
cells/100 μL. A total of 100 μL of cell suspension was subcutaneously 

injected into the right dorsal flank of each mouse using a sterile 
syringe. Mice were randomly divided into five groups (n = 8 per 
group): Control group: Tumor-bearing mice without Bacilli 
(Streptococcus anginosus) infection; Bacilli group: Tumor-bearing 
mice infected with Bacilli (Streptococcus anginosus) at a multiplicity of 
infection (MOI) of 10; Bacilli + sh-PRDX1 group: Tumor-bearing 
mice infected with Bacilli and transduced with PRDX1 shRNA; Bacilli 
+ 2-deoxy-D-glucose (2-DG) group: Tumor-bearing mice infected 
with Bacilli and treated with the glycolysis inhibitor 2-DG (10 mg/kg, 
D8375, Sigma-Aldrich, United States); Bacilli + PD-1 group: Tumor-
bearing mice infected with Bacilli and treated with the PD-1 inhibitor 
(10 mg/kg, HY-134886, MCE, United States). Tumor length and width 
were measured every 3 days using a Vernier caliper, and tumor volume 
was calculated using the formula: Tumor volume (mm3) = 0.5 × length 
(mm) × width2 (mm). Tumor growth was monitored over a 28-day 
period (Nakatake et al., 2018).

Data analysis

Data were analyzed using SPSS software (version 27, IBM, 
United States). Independent sample t-tests were conducted to compare 
EPDS and NRS scores between the two groups. Chi-square tests were 
used to analyze differences in adverse event incidence between groups. 
Statistical significance was set at p < 0.05.

Results

Changes in gut microbiota characteristics 
and their potential biological significance 
in HCC patients

Emerging evidence indicates that the gut microbiome plays a 
pivotal role in the progression of liver diseases, including the 
development of HCC (Yu and Schwabe, 2017). To explore the 
molecular mechanisms by which gut microbiota contribute to HCC 
pathogenesis, we  first compared the gut microbiota composition 
between patients with HCC and healthy individuals.

We retrieved the 16S rRNA sequencing dataset PRJNA1127013 
from the SRA database, which comprises 17 HCC samples (all 
classified as grade III or higher) and 12 healthy control samples. 
Rarefaction curve analysis indicated that microbial richness plateaued 
as sampling depth increased in both groups 
(Supplementary Figure S1A), suggesting sufficient sequencing 
coverage to capture the majority of microbial species present.

Alpha diversity metrics—including Chao1, Inverse Simpson, 
Richness, Shannon, Simpson, and ACE indices—were employed to 
assess within-sample diversity. No statistically significant 
differences in species richness were observed between the HCC 
and healthy groups (Supplementary Figures S1B–G). However, 
Venn diagram analysis of operational taxonomic units (OTUs) 
revealed distinct microbial compositions, with 66 OTUs unique to 
the HCC group and 109 OTUs unique to the Healthy group 
(Figure 1A).

To examine intergroup variation, we performed PCoA based on 
beta diversity, which revealed a moderate degree of spatial separation 
between HCC and healthy samples, particularly along principal 
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components 1 and 2 (Supplementary Figure S1H). Differential 
abundance analysis was conducted using the edgeR package in R. At 
the phylum level, Manhattan plots illustrated significant OTU-level 
differences between groups (Supplementary Figure S1I). A volcano 
plot further identified 68 significantly downregulated and 57 

significantly upregulated OTUs in the HCC group relative to controls 
(Figure 1B).

We next assessed microbial composition at multiple taxonomic 
levels—phylum, class, order, family, and genus—using stacked bar 
plots. At the phylum level, both groups were predominantly composed 

FIGURE 1

Differential analysis of gut microbiota composition at various taxonomic levels in the HCC and Healthy groups. (A) Venn diagram showing the 
intersection of OTUs between the HCC and Healthy groups. (B) Volcano plot comparing abundance differences between the HCC and Healthy 
groups. (C–F) Stacked bar charts of relative abundance at the class, order, family, and genus levels, with groups on the x-axis. Different colors represent 
gut microbiota at different phyla levels. The lower panels show species abundance difference analysis at the class, order, family, and genus levels; 
Healthy: n = 12; HCC: n = 17.
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of Firmicutes, Bacteroidetes, and Proteobacteria, with no significant 
group-wise differences (Supplementary Figure S1J). At the class level, 
Clostridia, Bacteroidia, and Negativicutes dominated; however, the 
relative abundance of Bacilli was significantly elevated in the HCC 
group (Figure 1C). At the order level, most taxa were assigned to 
Clostridiales, Bacteroidales, and Veillonellales, with a marked increase 
in Lactobacillales in HCC (Figure  1D). At the family level, 
Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae were most 
abundant overall, while Streptococcaceae was significantly enriched 
in the HCC group (Figure 1E). At the genus level, Streptococcus was 
significantly upregulated in HCC, whereas Anaerotaenia, 
Anaerobutyricum, and Merdimonas were more prevalent in healthy 
individuals (Figure 1F).

Collectively, these findings demonstrate substantial alterations in 
gut microbial diversity and composition in HCC patients, implicating 
microbial dysbiosis as a potential contributor to HCC progression.

To contextualize these findings within the broader scope of our 
research, we created an integrated schematic diagram outlining the 
full analytical workflow—from public database mining and 16S rRNA 
sequencing to single-cell transcriptomics and functional validation 
(Supplementary Figure S2). This overview provides a conceptual 
bridge between microbiota profiling and subsequent 
mechanistic investigations.

We further employed LEfSe analysis at the genus level to pinpoint 
discriminatory taxa. Using an LDA score threshold of log10 > 2, 
we  found that Bacilli, Lactobacillales, and Streptococcaceae were 
significantly enriched in HCC fecal samples, whereas Selenomonadales 
and Sporomusaceae were more abundant in healthy controls 
(Figures 2A,B).

In summary, our comprehensive multi-level analysis revealed 
distinct gut microbial signatures in HCC patients, especially notable 
increases in Bacilli, Lactobacillales, and Streptococcaceae.

Gut microbiota-associated metabolic 
pathways in HCC patients are enriched in 
pyruvate metabolism and glycolysis

Following the identification of distinct gut microbiota 
compositions between HCC patients and healthy individuals, 
we further explored the functional implications of these microbial 
differences by assessing associated metabolic pathways and 
biochemical activities. Functional predictions were performed using 
PICRUSt, followed by KEGG pathway enrichment analysis. In the 
HCC group, several pathways were significantly upregulated, 
including Selenocompound metabolism, Taurine and hypotaurine 
metabolism, and the RIG-I-like receptor signaling pathway. In 
contrast, pathways such as Isoflavonoid biosynthesis and Novobiocin 
biosynthesis were markedly downregulated (Figure 3A). To investigate 
the metabolic relevance of key bacterial taxa, we  queried the 
gutMGene database10 for metabolites associated with Bacilli, 
Lactobacillales, and Streptococcaceae. A total of 320 metabolites were 
associated with Bacilli and 332 metabolites with Streptococcaceae. No 
metabolite data were available for Lactobacillales. After removing 

10 http://bio-computing.hrbmu.edu.cn/gutmgene/#/home

overlaps, we obtained 339 unique metabolites collectively linked to 
Bacilli and Streptococcaceae.

To assess the functional relevance of these metabolites, enrichment 
analysis was conducted using the MetaboAnalyst platform.11 SMPDB-
based analysis revealed that the identified metabolites were primarily 
enriched in pathways such as the Warburg effect, glutamate 
metabolism, glycine and serine metabolism, methionine metabolism, 
and pyruvate metabolism (Figure  3B). Similarly, KEGG pathway 
analysis indicated significant enrichment in glyoxylate and 
dicarboxylate metabolism, alanine, aspartate, and glutamate 
metabolism, pyruvate metabolism, the citrate cycle (TCA cycle), and 
glycolysis/gluconeogenesis (Figure 3C).

By integrating microbiota-derived functional predictions with 
metabolic pathway analysis, our study revealed that HCC-associated 
microbial taxa were closely linked to alterations in host metabolic 
pathways. In particular, enrichment in glycolytic and pyruvate-related 
pathways, as well as the Warburg effect, underscores the potential role 
of microbial metabolites in reprogramming tumor energy metabolism. 
These altered metabolic routes may provide both bioenergetic support 
and molecular cues to promote HCC development and immune 
modulation. Overall, these findings suggest a mechanistic link 
between microbial dysbiosis and host metabolic 
reprogramming in HCC.

Reduced proportion of NK cells and 
reconstruction of the immunosuppressive 
network in the HCC microenvironment

Building upon the observed alterations in gut microbiota in HCC 
patients, we next investigated the cellular architecture and intercellular 
interactions within the HCC microenvironment using single-cell 
transcriptomic data. Data were obtained from the GEO database 
(GSE189903), including tumor core tissue samples from four HCC 
patients (each with >8,000 cells) and adjacent non-tumor tissue from 
three individuals (also with >8,000 cells). Data preprocessing and 
integration were conducted using the Seurat package in R. High-
quality cells were filtered using the following criteria: nFeature_
RNA < 5,000, nCount_RNA < 20,000, and percent.mt < 20%. This 
yielded a final expression matrix consisting of 18,228 genes across 
98,343 cells (Supplementary Figure S3A). Correlation analysis 
revealed a strong positive correlation (r = 0.91) between nCount_RNA 
and nFeature_RNA, and a negligible correlation (r = −0.02) between 
nCount_RNA and percent.mt (Supplementary Figure S3B), indicating 
high-quality single-cell data suitable for downstream analysis.

Following data normalization and selection of highly variable 
genes, we  performed PCA for linear dimensionality reduction 
(Supplementary Figure S3C). Visualization along PC_1 and PC_2 
revealed the presence of batch effects (Supplementary Figure S3D).

To address this, the Harmony algorithm was applied for batch 
correction, and ElbowPlot was used to rank principal components by 
standard deviation (Supplementary Figures S3E,F). Post-correction, 
batch effects were largely eliminated (Supplementary Figure S3G), 
validating the integration process. Subsequently, nonlinear 

11 https://www.metaboanalyst.ca/
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dimensionality reduction using the UMAP algorithm was applied to 
the top 20 PCs. Cell clustering at multiple resolutions was visualized 
using the clustree package, and the final UMAP projection delineated 
34 distinct cell clusters (Supplementary Figures S4A–C).

These clusters were annotated using the SingleR package in 
conjunction with manual curation, resulting in the identification of 13 
distinct cell types (Figure  4A). A heatmap displaying the top five 
marker genes for each cell type supported the accuracy of the 
clustering (Figure 4B).

To evaluate intercellular communication, we used the CellChat 
package. Compared to adjacent normal tissue, the HCC group 
exhibited markedly reduced immune cell interactions, indicative of a 
globally immunosuppressive microenvironment (Figure 4C). Notably, 
hepatocytes in HCC displayed enhanced interactions with NK cells 
and B cells, but reduced interactions with tumor-associated 
macrophages (TAMs) and T cells (Figure 4D). Quantitative analysis 
of immune cell proportions revealed a statistically significant 

reduction in NK cell populations within the HCC samples 
(Figures 4E,F).

Overall, our single-cell transcriptomic analysis provides a high-
resolution map of the cellular and functional immune landscape in 
HCC. The reduction in NK cell abundance, combined with altered 
intercellular signaling patterns, highlights the reconstruction of an 
immunosuppressive network that may contribute to immune evasion 
and tumor progression in HCC.

PRDX1 promotes immune evasion via 
glycolytic pathways and reduces NK cell 
infiltration

To further elucidate the molecular mechanisms underlying 
immune evasion in HCC, we  performed differential expression 
analysis on hepatocyte clusters extracted from scRNA-seq data. A total 

FIGURE 2

LEfSe-based analysis of gut microbiota composition and functional characteristics in HCC patients. (A) LDA value distribution bar chart of species 
abundance in the HCC and Healthy groups. (B) Phylogenetic tree of species abundance in the HCC and Healthy groups. Circles radiating from the 
center represent taxonomic levels from phylum to genus. The circle diameter corresponds to relative abundance, with yellow nodes indicating species 
with no significant differences, red nodes representing microbial groups with higher abundance in the HCC group, and green nodes representing 
those with higher abundance in the Healthy group; Healthy: n = 12; HCC: n = 17.
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of 94 DEGs were identified, including 50 upregulated and 44 
downregulated genes in hepatocytes from HCC tissues compared to 
non-tumor controls (Figure 5A).

KEGG pathway enrichment analysis revealed that these DEGs 
were significantly enriched in metabolic pathways, oxidative 
phosphorylation, PPAR signaling, and glycolysis/gluconeogenesis 
(Figure 5B).

In GO enrichment, biological process (BP) terms included 
establishment of localization, immune response, and leukocyte-
mediated immunity (Supplementary Figure S5A); cellular component 
(CC) terms were enriched in the extracellular region, extracellular 

space, and extracellular vesicles (Supplementary Figure S5B); and 
molecular function (MF) terms included oxidoreductase activity, 
enzyme inhibitor activity, and lipoprotein particle receptor binding 
(Supplementary Figure S5C).

Integration of 16S rRNA microbiome sequencing and scRNA-seq 
transcriptomic data consistently highlighted glycolysis as a key 
pathway enriched in HCC. Functional predictions using PICRUSt 
indicated that microbial communities in HCC patients possess 
elevated glycolytic potential. Moreover, MetaboAnalyst-based 
enrichment analysis of 339 metabolites associated with Bacilli, 
Lactobacillales, and Streptococcaceae also demonstrated enrichment 

FIGURE 3

Functional pathway analysis of HCC based on microbiota metabolism characteristics. (A) KEGG functional enrichment prediction performed using 
PICRUSt. (B,C) Functional enrichment analysis results from the MetaboAnalyst database. (B) Shows the SMPDB pathways. (C) Shows the KEGG 
pathways.
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in glycolysis, pyruvate metabolism, and the TCA cycle. These findings 
were consistent with KEGG analysis of DEGs from tumor hepatocytes, 
which showed upregulation of glycolytic signaling pathways.

Glycolysis is a hallmark of tumor metabolism (Chelakkot et al., 
2023), fueling rapid proliferation by supplying ATP and biosynthetic 
precursors. Importantly, glycolytic byproducts such as lactate 

FIGURE 4

Single-cell transcriptomic analysis of immune microenvironmental cell communication and functional changes in HCC patients. (A) Visualization of 
cell annotations based on UMAP clustering results. (B) Correlation heatmap of the top five genes expressed in 13 cell types. (C) Cell communication 
circle plot, with the left panel representing pathway quantity (line thickness), and the right panel representing interaction strength (line thickness). 
(D) Detailed interactions between hepatocytes and other cell types. (E) Proportional distribution of 13 cell types in each sample. (F) Differential analysis 
of NK cell abundance between the two groups, with * indicating p < 0.05. Normal: n = 3; HCC: n = 4.
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FIGURE 5

Role of PRDX1-mediated glycolytic pathways in immune evasion in HCC based on single-cell multiomics. (A) Volcano plot of differential analysis in 
hepatocytes from the scRNA-seq dataset, with red indicating significantly upregulated genes, green indicating significantly downregulated genes, and 
gray indicating genes with no significant change. (B) KEGG functional enrichment analysis of DEGs. (C) Venn diagram of glycolysis-related genes and 
DEGs. (D) PPI analysis of the 31 intersecting genes. (E) Differential expression analysis of PRDX1 and TPI1 in HCC and normal tissues from the scRNA-
seq dataset. (F) Differential expression analysis of PRDX1 in the TCGA-LIHC dataset, *** indicating p < 0.001. (G) Survival analysis of PRDX1 in the TCGA-
LIHC dataset. (H) Correlation analysis of PRDX1 with 24 immune cell types in the TCGA-LIHC dataset, represented by a lollipop plot.

https://doi.org/10.3389/fmicb.2025.1599691
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2025.1599691

Frontiers in Microbiology 14 frontiersin.org

contribute to immune evasion by suppressing NK cell cytotoxicity, in 
part by downregulating NKG2D receptor expression (Guo et al., 2022; 
Brand et  al., 2016). Collectively, these findings suggest that gut 
microbiota-mediated metabolic reprogramming may enhance 
glycolysis in hepatocytes, thereby reshaping the TIME to favor 
immune evasion.

To explore key glycolysis-related regulators, we  retrieved 
glycolysis-associated genes from the GeneCards database and 
intersected them with our DEGs, yielding 31 overlapping genes 
(Figure  5C). PPI network analysis using the STRING database 
identified PRDX1 and TPI1 as central hub genes with the highest 
degree of interaction (Figure 5D). Further analysis of scRNA-seq data 
showed that both genes were significantly upregulated in hepatocytes 
from the HCC group, with PRDX1 exhibiting the most pronounced 
differential expression (Figure 5E).

Validation using the Xiantao Academic platform based on 
TCGA-LIHC RNA-seq data confirmed that PRDX1 expression was 
markedly higher in tumor tissues compared to adjacent normal liver 
tissues (Figure 5F). Moreover, patients with high PRDX1 expression 
had significantly worse overall survival (Figure  5G). Immune 
infiltration analysis revealed that PRDX1 expression negatively 
correlated with NK cell infiltration, among other immune cell types 
(Figure 5H).

Taken together, this multi-omics integration highlights the pivotal 
role of PRDX1-mediated glycolytic activity in promoting immune 
evasion in HCC. Elevated PRDX1 expression is associated with poor 
prognosis and reduced NK cell infiltration, indicating that PRDX1 
may serve as a key regulator of tumor immune evasion and represents 
a promising therapeutic target in HCC.

Validation of PRDX1’s role in modulating 
HCC cell phenotypes in vitro

To elucidate the functional role of PRDX1 in HCC progression, 
we assessed its effects on cell proliferation, migration, invasion, and 
apoptosis in Huh7 hepatocellular carcinoma cells. PRDX1 was either 
overexpressed or silenced in Huh7 cells, as outlined in the 
experimental workflow (Figure 6A). To verify the efficiency of genetic 
modulation, RT-qPCR and western blotting were performed. As 
expected, PRDX1 mRNA and protein levels were markedly increased 
in the PRDX1 overexpression group (OE-PRDX1) compared to the 
Vector control (Supplementary Figure S6A). Among the two shRNA 
constructs tested, sh-PRDX1-1 exhibited superior silencing efficiency 
compared to sh-PRDX1-2, and was therefore selected for subsequent 
experiments (Supplementary Figure S6B).

Cell proliferation was measured using the CCK-8 assay. 
OE-PRDX1 cells demonstrated significantly enhanced proliferation 
compared to the Vector group, with OD450 values increasing by 
approximately 1.5-, 1.8-, and 2.2-fold at 24, 48, and 72 h, respectively. 
In contrast, PRDX1 knockdown (sh-PRDX1) significantly suppressed 
cell proliferation (Figure 6B).

Consistent with these findings, the colony formation assay showed 
a notable increase in colony numbers in the OE-PRDX1 group (92 ± 7 
colonies), while the sh-PRDX1 group exhibited significantly fewer 
colonies (36 ± 5 colonies) (Figure 6C), supporting PRDX1’s role in 
promoting HCC cell proliferation.

The effects of PRDX1 on cell migration and invasion were 
evaluated using Transwell assays. In the migration assay, the number 
of migrating cells was significantly higher in the OE-PRDX1 group, 
whereas sh-PRDX1 reduced migration (Figure 6D). In the Matrigel 
invasion assay, PRDX1 overexpression markedly enhanced invasion, 
while knockdown of PRDX1 resulted in an invasion rate that was only 
31% of that observed in control cells (Figure 6E), suggesting a strong 
role of PRDX1 in facilitating tumor cell invasiveness.

To evaluate the impact of PRDX1 on apoptosis, we employed 
Annexin V-FITC/PI dual staining followed by flow cytometry in an 
H2O2-induced apoptosis model. The apoptosis rate was significantly 
lower in OE-PRDX1 cells than in the control group, indicating a 
protective anti-apoptotic effect (Figure 6F).

Western blot analysis further supported these findings: the anti-
apoptotic protein Bcl-2 was significantly upregulated in the 
OE-PRDX1 group, whereas pro-apoptotic proteins Bax and cleaved 
Caspase-3 were markedly downregulated. Conversely, sh-PRDX1 
reduced Bcl-2 expression and increased Bax and cleaved Caspase-3 
levels (Figure 6G).

These results demonstrate that PRDX1 significantly enhances the 
proliferation, migration, and invasion of HCC cells while 
suppressing apoptosis.

In vitro validation of PRDX1-mediated 
regulation of glycolytic pathways and its 
impact on NK cell cytotoxicity

To determine whether silencing PRDX1 enhances NK cell 
cytotoxicity and reverses immune evasion by inhibiting glycolysis in 
HCC cells, we  conducted a series of in  vitro experiments. The 
following three experimental groups were established: Vector group 
(Huh7 cells transfected with an empty vector), sh-PRDX1 group 
(Huh7 cells transfected with sh-PRDX1), and sh-PRDX1 + Glu group 
[Huh7 cells transfected with sh-PRDX1 with exogenous addition of 
high-concentration glucose (25 mM) to restore glycolysis]. A 
schematic of the experimental design is presented in Figure 7A.

Using an enzymatic lactate assay, we found that lactate secretion 
was significantly reduced in the sh-PRDX1 group to approximately 
40–50% of the Vector group. Lactate levels were partially restored in 
the sh-PRDX1 + Glu group (Figure 7B).

Intracellular ATP levels, quantified via an ATP assay kit, showed 
a significant reduction in the sh-PRDX1 group, reaching approximately 
30–50% of control levels. ATP production was partially restored in the 
sh-PRDX1 + Glu group (Figure 7C).

Glucose uptake was also significantly suppressed in the sh-PRDX1 
group and partially recovered in the glucose-rescue group, as 
measured by a glucose assay (Figure 7D). Western blot analysis further 
confirmed the glycolytic suppression, with marked downregulation of 
HIF-1α, LDHA, and PKM2 proteins in the sh-PRDX1 group, while 
their expression partially returned to baseline levels in the 
sh-PRDX1 + Glu group (Figure 7E).

NK cells were isolated from healthy donor PBMCs using Ficoll 
gradient centrifugation, followed by IL-2 (500 U/mL) stimulation for 
48 h. Activated NK cells were co-cultured with Huh7 cells at an 
effector-to-target (E:T) ratio of 1:10 for 12 h. LDH release assays 
demonstrated a significantly higher NK cell-mediated lysis rate in the 
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FIGURE 6

Effects of PRDX1 on proliferation, migration, invasion, and apoptosis in Huh7 cells. (A) Diagram illustrating the experimental workflow. (B) CCK-8 assay 
to assess the effect of OE-PRDX1 and sh-PRDX1 on Huh7 cell proliferation. (C) Clonogenic assay to evaluate the effect of OE-PRDX1 and sh-PRDX1 on 
Huh7 cell clonogenicity. (D) Transwell assay to assess the effect of OE-PRDX1 and sh-PRDX1 on Huh7 cell migration (scale bar = 50 μm). (E) Matrigel-
coated Transwell assay to evaluate the effect of OE-PRDX1 and sh-PRDX1 on Huh7 cell invasion (scale bar = 50 μm). (F) Annexin V-FITC/PI double-
staining flow cytometry to examine the impact of OE-PRDX1 and sh-PRDX1 on Huh7 cell apoptosis rates. (G) Western blot analysis to determine the 
effect of OE-PRDX1 and sh-PRDX1 on the expression of anti-apoptotic protein Bcl-2 and pro-apoptotic proteins Bax and activated Caspase-3. All cell 
experiments were performed in triplicate, with * indicating p < 0.05, ** indicating p < 0.01, and *** indicating p < 0.001.
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FIGURE 7

In vitro validation of PRDX1-mediated regulation of the glycolysis pathway and its effect on NK cell cytotoxicity. (A) Diagram illustrating the 
experimental workflow. (B) Lactic acid levels in the culture supernatant of sh-PRDX1 and sh-PRDX1 + Glu Huh7 cells, measured using a lactic acid 
assay kit (enzymatic method). (C) ATP content in sh-PRDX1 and sh-PRDX1 + Glu Huh7 cells, measured using an ATP assay kit. (D) Glucose uptake in 
sh-PRDX1 and sh-PRDX1 + Glu Huh7 cells, measured using a glucose assay kit. (E) Western blot analysis of HIF-1α, LDHA, and PKM2 protein expression 
in sh-PRDX1 and sh-PRDX1 + Glu Huh7 cells. (F) LDH release assay to assess the effect of sh-PRDX1 and sh-PRDX1 + Glu on NK cell-mediated lysis of 
Huh7 cells. (G) Flow cytometry analysis to evaluate the expression of NK cell activation markers CD107a and IFN-γ in sh-PRDX1 and sh-PRDX1 + Glu 
NK cells. (H) Flow cytometry analysis of NKG2D ligands (MICA/B and ULBP1/2) expression in Huh7 cells after sh-PRDX1 and sh-PRDX1 + Glu. (I) ELISA 
to measure the levels of inflammatory cytokines (IL-6 and TNF-α) in the supernatant of co-culture systems with sh-PRDX1 and sh-PRDX1 + Glu. All cell 
experiments were performed in triplicate, with * indicating p < 0.05, ** indicating p < 0.01, and *** indicating p < 0.001.
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sh-PRDX1 group, which was partially attenuated in the glucose-
rescued condition (Figure 7F).

To further assess NK cell activation, flow cytometry was 
performed to detect CD107a and IFN-γ expression. Both markers 
were significantly upregulated in the sh-PRDX1 group, indicating 
enhanced cytotoxic function, and partially restored to baseline levels 
in the sh-PRDX1 + Glu group (Figure 7G). Additionally, NKG2D 
ligand expression was analyzed by flow cytometry. MICA/B and 
ULBP1/2 surface expression levels were significantly elevated in the 
sh-PRDX1 group and partially decreased following glucose 
supplementation (Figure 7H).

Finally, ELISA quantification of inflammatory cytokines in the 
co-culture supernatant revealed significantly reduced IL-6 and TNF-α 
levels in the sh-PRDX1 group, with partial recovery observed in the 
sh-PRDX1 + Glu group (Figure 7I).

These findings collectively demonstrate that PRDX1 knockdown 
suppresses glycolytic metabolism, enhances NK cell cytotoxicity, 
upregulates NKG2D ligands, and reduces inflammatory cytokine 
production. This provides mechanistic insight into the link between 
tumor glycolysis and immune evasion in HCC.

Bacilli infection promotes immune evasion 
in HCC by mediating glycolytic pathways 
through upregulation of PRDX1

Bioinformatic analyses revealed a significant enrichment of Bacilli 
and Streptococcaceae in HCC patients (Figures 2A,B). These bacterial 
taxa may modulate glycolytic pathways and the TIME through their 
metabolic byproducts, with PRDX1 and glycolysis acting as key 
functional nodes. To further elucidate the interactions among specific 
bacterial infections, PRDX1 expression, glycolysis, and 
immunotherapeutic response, we conducted both in vitro and in vivo 
studies using Huh7 cells.

Huh7 cells were infected with Bacilli or Streptococcaceae following 
the experimental workflow shown in 
Supplementary Figure S7A. RT-qPCR analysis demonstrated a 
significant upregulation of PRDX1 mRNA levels following Bacilli 
infection, whereas Streptococcaceae infection induced no significant 
changes (Supplementary Figure S7B). Western blotting confirmed 
these findings at the protein level, with Bacilli infection markedly 
increasing PRDX1 protein expression, in contrast to the 
Streptococcaceae-infected and control groups, which showed no 
substantial difference (Supplementary Figure S7C).

Flow cytometry analysis revealed that Bacilli infection led to a 
62% reduction in mean fluorescence intensity (MFI) of the NKG2D 
ligand MICA/B and a 47% decrease in ULBP1/2 expression on the 
surface of Huh7 cells. Conversely, Streptococcaceae infection only 
modestly reduced MICA/B and ULBP1/2 expression by 21 and 15%, 
respectively (Supplementary Figure S7D).

Immunofluorescence staining further indicated that in the Bacilli 
infection group, PRDX1 was predominantly localized in the 
cytoplasm, with fluorescence intensity increasing by 4.6-fold 
compared to the control (p < 0.001). In contrast, Streptococcaceae 
infection did not significantly alter PRDX1 fluorescence intensity 
(Supplementary Figure S7E).

To investigate whether Bacilli infection promotes immune evasion 
via PRDX1 upregulation and activation of glycolytic pathways, 

we  established four experimental groups: (1) Control: uninfected 
Huh7 cells; (2) Bacilli: Huh7 cells infected with Bacilli (MOI = 10); (3) 
Bacilli + sh-PRDX1: Bacilli-infected cells with PRDX1 knockdown; 
(4) Bacilli + 2-DG: Bacilli-infected cells treated with 2-deoxy-D-
glucose (2-DG, 10 mM), a glycolysis inhibitor (Figure 8A).

RT-qPCR and western blot analyses confirmed that PRDX1 
expression was significantly elevated in the Bacilli group and was 
partially reversed in the sh-PRDX1 group and the Bacilli + 2-DG 
group (Figure 8B). Measurements of lactate secretion and intracellular 
ATP levels revealed significant increases in the Bacilli group, both of 
which were partially reversed in the Bacilli + sh-PRDX1 and Bacilli + 
2-DG groups. Glucose uptake followed a similar pattern, being 
enhanced by Bacilli infection and attenuated in the Bacilli + sh-PRDX1 
and Bacilli + 2-DG groups (Figure 8C).

To assess NK cell cytotoxicity, activated NK cells were co-cultured 
with Huh7 cells from the various treatment groups at an effector-to-
target (E:T) ratio of 1:10 for 12 h. An LDH release assay revealed a 
marked reduction in NK cell-mediated lysis in the Bacilli group 
(Figure 8D). Flow cytometry analysis using anti-CD107a and anti-
IFN-γ antibodies showed decreased expression of both markers in the 
Bacilli-infected cells (Figure  8E). Additionally, Bacilli infection 
significantly downregulated NKG2D ligands (MICA/B and ULBP1/2) 
on Huh7 cells, as assessed by flow cytometry (Figure  8G). These 
immunosuppressive effects were partially alleviated in the Bacilli + 
sh-PRDX1 and Bacilli + 2-DG groups (Figures 8D–F).

Cytokine analysis using ELISA indicated that secretion of IL-6 
and TNF-α was significantly increased in the Bacilli group, whereas 
both cytokines were significantly reduced in the Bacilli + sh-PRDX1 
and Bacilli + 2-DG groups (Figure 8H).

Collectively, these findings demonstrate that Bacilli infection 
promotes immune evasion in HCC cells by upregulating PRDX1, 
which in turn activates glycolytic pathways. This metabolic 
reprogramming suppresses NK cell cytotoxicity and downregulates 
NKG2D ligands, facilitating tumor immune evasion.

In vivo validation of Bacilli 
infection-induced PRDX1 upregulation and 
glycolytic activation driving immune 
evasion in HCC

To validate the role of Bacilli infection in promoting tumor 
progression and immune evasion via PRDX1-mediated glycolytic 
activation, an in vivo xenograft model was established using Huh7 
cells in nude mice. The mice were divided into five groups: Control 
(uninfected), Bacilli infection (Bacilli), Bacilli infection with PRDX1 
knockdown (Bacilli + sh-PRDX1), Bacilli infection with glycolysis 
inhibition (Bacilli + 2-DG), and Bacilli infection with PD-1 blockade 
(Bacilli + PD-1). The experimental design is summarized in Figure 9A.

Tumor growth was monitored over time. The Bacilli-infected 
group exhibited a significant increase in tumor volume compared to 
the Control group. Notably, tumor growth was markedly suppressed 
in the Bacilli + sh-PRDX1, Bacilli + 2-DG, and Bacilli + PD-1 groups, 
with final tumor volumes comparable to those observed in the Control 
group (Figure 9B).

Metabolic profiling revealed that lactate production and 
intracellular ATP levels were significantly elevated in tumor tissues 
from the Bacilli group, indicating enhanced glycolytic activity. These 
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FIGURE 8

Bacilli infection promotes immune evasion in liver cancer by upregulating PRDX1 and activating glycolytic pathways. (A) Experimental workflow 
diagram. (B) RT-qPCR and Western blot analysis of PRDX1 mRNA and protein expression in Huh7 cells. (C) Lactic acid assay and ATP assay measuring 
lactate concentration in Huh7 cell culture supernatant and intracellular ATP levels, respectively. (D) Glucose uptake measured using a glucose assay kit 
in Huh7 cells. (E) LDH release assay to determine Huh7 cell lysis rate. (F) Flow cytometry analysis of NK cell activation markers CD107a and IFN-γ. 
(G) Flow cytometry analysis of NKG2D ligands (MICA/B, ULBP1/2) expression on the surface of Huh7 cells. (H) ELISA to measure the concentrations of 
IL-6 and TNF-α in the co-culture supernatant. All cell experiments were performed in triplicate, with * indicating p < 0.05, ** indicating p < 0.01, and *** 
indicating p < 0.001.
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FIGURE 9

Bacilli infection alters tumor growth, metabolism, immune microenvironment, and glycolytic markers in a nude mouse xenograft model. (A) Animal 
model and experimental workflow diagram. (B) Tumor volume monitoring showing differences in tumor size between treatment groups. (C) Lactic 
acid and ATP assays to measure lactate concentration and ATP levels in tumor tissue. (D) Flow cytometry analysis of NK cell activation markers 
(CD107a and IFN-γ). (E) Flow cytometry analysis of NKG2D ligands (MICA/B, ULBP1/2) expression on the surface of tumor cells. (F) ELISA to assess the 
levels of IL-6 and TNF-α in the tumor microenvironment. Animal experiments were conducted with N = 6, with * indicating p < 0.05, ** indicating 
p < 0.01, and *** indicating p < 0.001.
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elevations were substantially reversed in the Bacilli + sh-PRDX1 and 
Bacilli + 2-DG groups, while the Bacilli + PD-1 group showed partial 
restoration toward baseline levels (Figure 9C).

Flow cytometry analysis of intratumoral immune markers 
revealed a significant reduction in NK cell activation in the Bacilli 
group, as evidenced by decreased expression of CD107a and IFN-γ. 
These markers were significantly restored in the Bacilli + sh-PRDX1 
and Bacilli + 2-DG groups, and partially restored in the Bacilli + PD-1 
group (Figure 9D).

Consistent with these findings, expression of the NK cell-
activating ligands MICA/B and ULBP1/2 on tumor cells was markedly 
downregulated in the Bacilli group. However, expression was 
substantially restored in the Bacilli + sh-PRDX1 and Bacilli + 2-DG 
groups, with partial improvement in the Bacilli + PD-1 group 
(Figure 9E).

ELISA assays performed on tumor-associated immune cell 
supernatants revealed that IL-6 and TNF-α secretion was significantly 
increased in the Bacilli group. These proinflammatory cytokines were 
significantly reduced in the Bacilli + sh-PRDX1 and Bacilli + 2-DG 
groups, and partially suppressed in the Bacilli + PD-1 group 
(Figure 9F).

Collectively, these in vivo findings confirm that Bacilli infection 
enhances PRDX1 expression and glycolytic reprogramming in HCC, 
leading to suppression of NK cell-mediated cytotoxicity and 
promoting tumor immune evasion. Targeting PRDX1, inhibiting 
glycolysis, or applying immune checkpoint blockade (anti-PD-1) can 
effectively counteract these immunosuppressive effects and restore 
antitumor immune activity.

Discussion

With advances in cancer biology, growing attention has been 
directed toward the role of the TME—particularly the microbial 
component—in influencing tumor progression and therapeutic 
outcomes (Yu et al., 2024; Sepich-Poore et al., 2021). HCC, a leading 
cause of cancer-related mortality worldwide (Liu H. et al., 2024; Liu 
P. et al., 2024; Kudo et al., 2025), presents substantial challenges in 
immunotherapy efficacy. These challenges are multifactorial, with 
emerging evidence suggesting a critical yet incompletely understood 
role of the microbiome in modulating immune responses (Zhang 
et  al., 2024; Jin et  al., 2025). While most previous studies have 
primarily focused on the link between gut microbiota and tumor 
initiation or progression (Huo et al., 2024), our study advances the 
field by integrating single-cell multi-omics data to elucidate how 
specific microbial taxa influence immunotherapy responses in HCC 
through metabolic pathways, particularly glycolysis. This novel 
approach offers critical insights into the dynamic crosstalk between 
the microbiota and tumor metabolism, providing a foundation for 
more personalized and precise therapeutic strategies.

In our analysis comparing the gut microbiota of HCC patients and 
healthy controls, we  identified a significant enrichment of Bacilli, 
Lactobacillales, and Streptococcaceae in HCC patients. This microbial 
signature appears distinct from those reported in other malignancies, 
suggesting a tumor-type-specific microbiome profile. Prior studies 
have largely focused on the impact of individual bacterial species on 
tumor biology (Aslam et  al., 2024), demonstrating that certain 
microbes can enhance antitumor immunity by promoting the 

recruitment and activation of dendritic cells, CD8+ T cells, and NK 
cells, thereby augmenting the efficacy of immune checkpoint 
inhibitors (Yang C. et al., 2024; Yang L. et al., 2024). In contrast, our 
study shifts the focus from individual species to the broader functional 
consequences of microbial community shifts, particularly how these 
changes influence immune evasion mechanisms in the liver TME. This 
distinction underscores the importance of considering patient-specific 
microbial alterations when designing immunotherapeutic strategies 
for HCC.

A central finding of this study is the role of the glycolytic pathway 
in mediating immune evasion in HCC, with PRDX1 emerging as a key 
regulatory node. We observed a marked upregulation of PRDX1 in 
response to Bacilli infection, along with enhanced glycolytic activity. 
PPI network analysis revealed that PRDX1 is closely connected to 
other glycolysis-related proteins, suggesting a central role in metabolic 
reprogramming. Unlike prior research that has largely emphasized 
cytokine signaling or general inflammatory responses, our study 
probes deeper into how metabolic alterations at the cellular level 
directly affect immune cell function—particularly NK cell surveillance. 
The growing recognition of the TME’s complexity, including the 
influence of infiltrating immune and stromal cells, has underscored its 
significance in determining clinical outcomes in malignant tumors 
(Wang et  al., 2022a, 2022b). Our findings contribute to this 
understanding by providing new evidence that links metabolic 
reprogramming—specifically glycolysis—to the suppression of 
antitumor immunity, highlighting a previously underappreciated axis 
of immune evasion regulated by microbial-metabolic interactions.

To reinforce the logical foundation of our multi-omics approach, 
we adopted a stepwise mechanistic strategy that traces the progression 
from gut microbiota alterations to metabolic reprogramming, 
immune modulation, and ultimately the identification of core 
regulatory factors. We first used 16S rRNA sequencing data to identify 
characteristic microbial taxa enriched in HCC patients. Functional 
prediction using PICRUSt and enrichment analysis revealed that these 
taxa were strongly associated with glycolysis and other metabolic 
pathways. Next, we analyzed scRNA-seq data and observed immune-
suppressive features within the HCC microenvironment, including 
reduced NK cell infiltration and impaired intercellular 
communication—changes potentially driven by microbiota-associated 
metabolic rewiring. Building on these findings, we  integrated 
transcriptomic data from the TCGA-LIHC cohort and performed 
differential expression analysis, PPI network construction, and 
pathway enrichment intersection. This integrative analysis identified 
PRDX1 as a key regulatory gene that links glycolysis with immune 
modulation. This “microbiota-metabolism-immunity-core gene” 
framework offers a coherent and biologically grounded model to 
explain the interplay between microbial composition and tumor 
immune evasion, and it sets the stage for future validation using 
matched multi-omics datasets.

By analyzing gene expression alterations induced by bacterial 
infection in hepatocytes through single-cell transcriptomics, our study 
achieves a high-resolution view of cellular heterogeneity and uncovers 
how bacterial influences reshape tumor cell metabolism and immune 
evasion mechanisms. Unlike traditional bulk transcriptomic or 
proteomic analyses, which average signals across diverse cell types, 
this single-cell approach enables precise dissection of cell-type-specific 
responses and allows for the identification and mechanistic validation 
of key modulators such as PRDX1.
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Given the shared metabolic pathways between tumor cells and 
immune cells, targeting tumor metabolism can unintentionally affect 
immune function. Therefore, understanding how tumor metabolic 
reprogramming modulates the immune microenvironment is essential 
for the development of therapeutic strategies that maximize antitumor 
efficacy while preserving immune cell activity. Achieving this balance is 
crucial, as it may open new avenues for metabolic targeting within the 
TME (Song et al., 2025). Our findings show that bacterial infection 
activates glycolysis and the NF-κB signaling pathway, significantly 
impairing the efficacy of anti-PD-1 therapy. This provides clear evidence 
that microbial signals can modulate immunotherapy outcomes through 
both metabolic and inflammatory mechanisms. These insights 
underscore the potential clinical relevance of manipulating microbiota 
or targeting specific metabolic pathways to enhance the therapeutic 
benefit of immune checkpoint inhibitors in HCC.

From the perspective of microbiome-metabolism-immune 
interactions, this is the first study to reveal the role of the gut 
microbiota-PRDX1-glycolysis axis in mediating immune evasion 
in HCC. We propose a novel mechanism by which gut microbiota 
influence both tumor metabolism and immunity. The upregulation 
of PRDX1 and enhanced glycolytic activity provide not only the 
energy required for tumor proliferation but also 
immunosuppressive signals that facilitate tumor immune evasion. 
These results identify PRDX1 as a critical mediator bridging 
glycolytic metabolism and immune suppression, thereby offering 
new insights into HCC pathophysiology. Moreover, targeting 
PRDX1 or modulating the gut microbiota may represent promising 
strategies for improving the effectiveness of immunotherapy and 
developing precision treatments for HCC.

This study has several limitations that warrant consideration. 
First, it primarily focuses on Bacilli and does not fully capture the 
complexity and diversity of the gut microbiota in HCC. Second, 
while PRDX1 was identified as a key regulator of glycolysis and 
immune modulation, the precise molecular mechanisms through 
which PRDX1 governs glycolytic flux and immune suppression 
were not comprehensively dissected. Furthermore, the study does 
not evaluate the universality of PRDX1 expression or function 
across various HCC subtypes or disease stages. Additionally, the 
long-term efficacy and combinatorial potential of PD-1 immune 
checkpoint inhibitors in the context of Bacilli-induced metabolic 
reprogramming require further investigation. Given the distinct 
origins of the 16S and scRNA-seq datasets, this study proposes 
only a mechanistic hypothesis based on indirect evidence, and 
future studies integrating matched multi-omics data from the same 
cohort are warranted for validation. Expanding the sample size and 
incorporating advanced multi-omics platforms, including 
metabolomics and proteomics, alongside single-cell analyses will 
allow for a more detailed exploration of PRDX1’s regulatory 
network and the broader immunometabolic impact of the gut 
microbiota. Moreover, therapeutic strategies combining PRDX1 
inhibitors, glycolytic pathway inhibitors, and immune checkpoint 
blockade should be  systematically evaluated. Innovative 
microbiome-based therapies, such as probiotics or fecal microbiota 
transplantation, also hold promise for modulating the TIME and 
improving clinical outcomes in HCC.

To further contextualize our findings, it is important to 
acknowledge previous studies that have explored similar immune-
metabolic regulatory mechanisms or microbial involvement in tumor 

progression. For example, Li et  al. reported that Fusobacterium 
nucleatum promotes oral squamous cell carcinoma proliferation via the 
E-cadherin/β-catenin pathway (Li et al., 2024), highlighting the broader 
role of bacteria in modulating cancer signaling. Similarly, Wan et al. 
(2024) and Wang et  al. (2024) applied multi-omics and machine 
learning approaches to dissect immune-related signatures and 
metabolic pathways in gastric and brain cancers, respectively. These 
works support our strategy of leveraging multi-omics data to identify 
immunotherapeutic targets. Moreover, recent single-cell analyses by Ye 
et  al. (2023) and Zhang et  al. (2023) revealed distinct tumor cell 
subpopulations linked to clinical prognosis across pancreatic and breast 
cancers. Finally, Li et al. (2023) demonstrated the prognostic relevance 
of ferroptosis-related genes in head and neck squamous cell carcinoma 
using a similar multi-omics pipeline. These studies collectively 
underscore the importance and generalizability of microbiota- and 
metabolism-centered frameworks in understanding tumor immune 
evasion. Our study builds upon and differentiates from these efforts by 
specifically elucidating the PRDX1-driven glycolytic axis in HCC.

Conclusion

Through integrative multi-omics analysis, this study reveals a 
novel mechanism by which the gut microbiota—particularly Bacilli—
contributes to immune evasion in HCC. We demonstrate that Bacilli 
infection leads to the upregulation of PRDX1, which activates 
glycolytic pathways and suppresses NK cell activity, thereby facilitating 
tumor immune evasion. Comparative microbiota profiling showed a 
significant enrichment of Bacilli and Streptococcaceae in HCC patients 
relative to healthy controls. Functional prediction indicated that 
microbial metabolic products influence both glycolytic metabolism 
and the immune microenvironment. PRDX1 was found to be markedly 
upregulated in both HCC patient samples and Bacilli-infected tumor 
models. Its expression correlates with elevated levels of key glycolysis-
associated genes, including HIF-1α, LDHA, and PKM2, leading to 
increased lactate accumulation and impaired NK cell cytotoxicity. 
Functional validation using in vitro and in vivo models confirmed that 
PRDX1 knockdown or pharmacological inhibition of glycolysis via 
2-DG effectively restored NK cell-mediated antitumor activity and 
reversed immune suppression. Moreover, PD-1 immune checkpoint 
blockade showed partial restoration of immune function within the 
infection model. In summary, this study identifies PRDX1 as a critical 
mediator of immune evasion in HCC via the glycolytic pathway, acting 
downstream of specific microbial stimuli. These findings underscore 
the importance of tumor-microbiota-metabolism crosstalk in shaping 
immune responses and highlight PRDX1 and glycolysis as promising 
targets for therapeutic intervention. Furthermore, modulation of the 
gut microbiota may represent a novel and complementary strategy for 
enhancing the efficacy of immunotherapy in HCC (graphical abstract).
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SUPPLEMENTARY FIGURE S1

Analysis of gut microbiota species diversity in fecal samples from HCC patients 
and healthy individuals. (A) Rarefaction curve of gut microbiota α-diversity in 
the HCC and Healthy groups. (B–G) Alpha diversity analysis of gut microbiota 
in the HCC and Healthy groups. (B) Shows the Chao1 index. (C) Shows the 
Invsimpson index. (D) Shows the Richness index. (E) Shows the Shannon 
index. (F) Shows the Simpson index. (G) Shows the ACE index. (H) Beta 
diversity analysis of gut microbiota in the HCC and Healthy groups using 
PCoA. (I) Manhattan plot comparing abundance differences between the 
Healthy and HCC groups. (J) Stacked bar chart showing the relative abundance 
of gut microbiota at the phylum level, with different colors representing 
different phyla; Healthy: n = 12; HCC: n = 17.

SUPPLEMENTARY FIGURE S2

Schematic overview of multi-omics integration and experimental validation 
strategy. This diagram illustrates the integrative workflow of 16S rRNA sequencing 
and scRNA-seq analyses used to uncover microbiota-driven immunometabolic 
alterations in HCC. Signature microbiota were identified from public 16S datasets 
and linked to glycolysis-related metabolic pathways via PICRUSt analysis. 
Concurrently, scRNA-seq data from HCC samples revealed immunosuppressive 
features and impaired intercellular communication using Seurat analysis. 
Combined with TCGA transcriptomic data and PPI network analysis, PRDX1 was 
identified as a key glycolysis-associated immunoregulatory target.

SUPPLEMENTARY FIGURE S3

Quality control, filtering, and PCA of scRNA-seq data. (A) Violin plots of gene 
count (nFeature_RNA), mRNA molecule count (nCount_RNA), and 
mitochondrial gene percentage (percent.mt) for each cell in the scRNA-seq 
data. (B) Correlation scatter plots between filtered data for nCount_RNA vs. 
percent.mt, and nCount_RNA vs. nFeature_RNA. (C) Heatmap of the top 20 
genes most strongly correlated with PC_1-PC_6  in PCA, where yellow 
indicates upregulated expression and purple indicates downregulated 
expression. (D) Distribution of cells in PC_1 and PC_2 before batch correction 
(left), with each point representing a cell, and violin plots of the distribution in 
PC_1 and PC_2 (right). (E) Batch correction process using Harmony, where 
the x-axis represents the number of interaction iterations. (F) Standard 
deviation distribution of PCs, with more important PCs showing larger 
standard deviations. (G) Distribution of cells in PC_1 and PC_2 after Harmony 
batch correction (left), with each point representing a cell, and violin plots of 
the corrected distribution (right); Normal: n = 3; HCC: n = 4.

SUPPLEMENTARY FIGURE S4

Cell clustering analysis of scRNA-seq data. (A) Clustering results at different 
resolutions using the Clustree package. (B) UMAP visualization of clustering 
results, showing cell aggregation and distribution, where each color represents 
a distinct cluster. (C) UMAP clustering results visualized in two dimensions, 
displaying cell aggregation and distribution for Normal and HCC samples. Blue 
represents Normal samples, and red represents HCC samples. Normal: n = 3; 
HCC: n = 4.

SUPPLEMENTARY FIGURE S5

GO functional enrichment analysis of DEGs. (A) BP analysis. (B) CC analysis. 
(C) MF analysis.

SUPPLEMENTARY FIGURE S6

Verification of PRDX1 overexpression and knockdown efficiency. (A) RT-qPCR 
analysis of PRDX1 mRNA expression levels in Huh7 cells for the overexpression, 
knockdown, and control groups. (B) Western blot analysis of PRDX1 protein 
expression levels in Huh7 cells for the overexpression, knockdown, and 
control groups. All cell experiments were triplicate, with ** indicating p < 0.01 
and *** indicating p < 0.001.

SUPPLEMENTARY FIGURE S7

Effects of specific bacterial infections on PRDX1 expression and immune-
related molecules in HCC cells. (A) Experimental workflow diagram. (B) RT-
qPCR analysis of the effect of Bacilli and Streptococcaceae infections on PRDX1 
mRNA expression in Huh7 cells. (C) Western blot analysis of the effect of Bacilli 
and Streptococcaceae infections on PRDX1 protein expression in Huh7 cells. 
(D) Flow cytometry analysis of the effect of Bacilli and Streptococcaceae 
infections on the surface expression of NKG2D ligands MICA/B and ULBP1/2 in 
Huh7 cells, measured by MFI. (E) Immunofluorescence staining to assess the 
effect of Bacilli and Streptococcaceae infections on PRDX1 protein localization 
and fluorescence intensity in Huh7 cells. All cell experiments were triplicate, 
with ** indicating p < 0.01 and *** indicating p < 0.001.
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Glossary

ATCC - American Type Culture Collection

BP - Biological process

CC - Cellular component

DEGs - Differentially expressed genes

FBS - Fetal bovine serum

FDR - False discovery rate

GO - Gene Ontology

HCC - Hepatocellular carcinoma

LDA - Linear discriminant analysis

LEfSe - Linear Discriminant Analysis Effect Size

LDH - Lactate dehydrogenase

MFI - Mean fluorescence intensity

MF - Molecular function

MOI - Multiplicity of infection

NK - Natural killer

OD - Optical density

PCA - Principal component analysis

PCoA - Principal coordinate analysis

PPI - Protein–protein interaction

PRDX1 - Peroxiredoxin 1

PBMC - Peripheral blood mononuclear cell

TAMs - Tumor-associated macrophages

UMAP - Uniform Manifold Approximation and Projection

OTUs - Operational taxonomic units

SRA - Sequence Read Archive
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