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In 2017 an outbreak of Mycoplasma bovis (M. bovis), an infectious agent of cattle,

was identified in Aotearoa New Zealand. This study characterizes the genomic

population structure of the outbreak in New Zealand and compares it with the

known global population structure using multilocus sequence typing (MLST)

and genomic analysis. The New Zealand outbreak strain was MLST genotyped

as ST21. A comprehensive collection of 840 genomes from the New Zealand

outbreak showed a pattern of clonal expansion when characterized by MLST,
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core genome MLST (cgMLST) and whole genome MLST (wgMLST). A lineage of

genomes was found with no in silico identifiable pta2 locus, a housekeeping

gene used in the MLST scheme. We compared a sample set of 40 New Zealand

genomes to 47 genomes from other countries. This group had 79 ST21 genomes

and eight genomes that were single nucleotide polymorphism (SNP) variants

within the MLST loci of ST21. Two of the 47 international genomes showed signs

of extensive unique recombination. Unique alleles in six genes were identified

as present only in the New Zealand genomes. These novel variants were in the

genes; haeIIIM encoding for cytosine-specific methyltransferase, cysC encoding

for cysteinyl tRNA synthetase, era encoding for GTPase Era, metK encoding for

S-adenosylmethionine synthase, parE encoding for DNA topoisomerase, and

hisS encoding for histidine-tRNA ligase. This finding could be due to a population

bottleneck, genetic drift, or positive selection. The same sample set of 40 New

Zealand genomes were compared using MLST to 404 genomes from 15 other

countries and 11 genomes without a known country. A FastBAPS analysis of 455

genomes showed a global population structure with 11 clusters. Some countries,

such as Canada, Denmark and Australia contained both internally closely related

genomes and some genomes that were more closely related to genomes found

in other countries. Our results support the need for Whole Genome Sequencing

(WGS) as well as MLST genotyping in M. bovis outbreaks. They also support the

importance of understanding the national and international movement patterns

of cattle and their genetic material, as possible routes of transmission, when

managing the spread of M. bovis.

KEYWORDS

Mycoplasma bovis, multilocus sequence typing (MLST), whole genome MLST, core
genome MLST, outbreak, genomic epidemiology

1 Introduction

Mycoplasma bovis (M. bovis) is an important pathogen of
cattle. While mainly associated with respiratory disease, it can
also cause mastitis, arthritis, and otitis media (Perez-Casal, 2020).
Resistance to current antibiotic therapy is increasing in M. bovis
and without an effective vaccine any plan to treat and control is
difficult to implement (Gautier-Bouchardon et al., 2014). M. bovis
is widespread and considered a significant burden on the cattle
industry in Europe and North America, causing economic losses
due to reduced milk production, treatment costs, and animal deaths
(Maunsell et al., 2011; Calcutt et al., 2018).

M. bovis was first discovered in the USA as a cause of bovine
mastitis in 1961 (Hale et al., 1962). Since then, M. bovis appears
to have spread around the world, reaching Australia in 1970,
Europe in the mid-1970s, South America and Japan in the 1980s,
and Ireland in 1994 (Doherty et al., 1994; Nicholas and Ayling,
2003; Dudek et al., 2020). With the advent of more sensitive
molecular diagnostic tools in the following decades, these fastidious
mycoplasmas were also detected in China, India and Africa (Dudek
et al., 2020). Currently, M. bovis is considered to appear world-
wide with differing prevalences. In New Zealand, M. bovis was
first reported in July 2017 on a farm in the South Island (Jordan
et al., 2021), prior to this it had been considered free of the disease
(McDonald et al., 2009).

New Zealand is geographically isolated and most of the species
used in modern agriculture were only introduced in the last

250 years (Binney et al., 2014). After M. bovis was detected in
New Zealand in 2017, an eradication program was implemented in
2018 (Jordan et al., 2021). This program involved extensive testing
to detect M. bovis and included depopulation of cattle from infected
properties.

Despite its small genome (∼1 Mbp), M. bovis shows significant
variation particularly in some regions, such as variable membrane
surface lipoprotein (vsp) genes, integrative conjugative elements
(ICE) and insertion sequences (IS) (Aebi et al., 2012; Qi et al., 2012;
Tardy et al., 2015). Recombination events, including Mycoplasma
chromosomal transfer (MCT), contribute to the diversity which
is reflected by having an open pangenome (Dordet-Frisoni
et al., 2014; Garcia-Galan et al., 2022). Some genes thought
essential in other Mycoplasma species, e.g., DnaJ, have been
shown to be “dispensable genes” in the M. bovis genome (Sharma
et al., 2014). There is evidence of strain variation in new hosts,
such as North American bison (Bison bison) and American
pronghorn (Antilocapra americana) (Register et al., 2018;
Malmberg et al., 2020).

The global population structure of M. bovis is influenced by
numerous factors (Kumar et al., 2020; Tardy et al., 2020; Yair
et al., 2020). The potential routes of animal-to-animal transmission
are: colostrum, milk, semen, airborne droplets, and intrauterine
transmission (Dudek et al., 2020), with the potential inclusion of
transmission by fomites (Piccinini et al., 2015). On farm practices
like animal husbandry (Pfützner and Sachse, 1996; Spergser et al.,
2013) and the widespread use of antibiotics (Becker et al., 2015;
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Tardy et al., 2020) can also have an effect. The international
movement of live cattle and breeding material has a role (Haapala
et al., 2018; Dudek et al., 2020; Yair et al., 2020). Transmission
by infected semen has been reported (Haapala et al., 2018), but
recent work suggests transmission from infected embryos presents
a low-level risk (Pohjanvirta et al., 2023).

Previous genomic studies support cattle movement, and
management practices as affecting the population structure of
M. bovis. An investigation into the effect of the international cattle
trade on M. bovis entering Israel found genomes from Europe
formed a separate cluster to those from Australia and China, while
genomes from Israel and the USA were found in both clusters (Yair
et al., 2020). Yair et al. (2020) considered the clustering of China and
Australia was a result of the export of live cattle from Australia to
China. Kumar et al. (2020) suggested the shared genomic diversity
between Canada and the USA isolates was due to shared cattle
movements (Kumar et al., 2020). Most of the currently published
Australian genomes are from a single widely distributed strain
(Parker et al., 2016). On a global scale, the correlation between
country and genotype is poor (Garcia-Galan et al., 2022). Genomic
analysis in some Nordic countries and genotyping in France,
suggest emerging dominant strains driven by antibiotic resistance
(Becker et al., 2015; Tardy et al., 2020). In Austria, a strain caused
an outbreak in 2007 and then re-emerged in 2009; this was related
to the practice of shared grazing by different species (Spergser et al.,
2013).

Since its inception in 1998, the MLST genotyping of bacteria
has been widely used in strain identification and reconstruction
of clonal relationships (Maiden et al., 2013; Jolley et al., 2018).
The approach indexes a section of sequence from a housekeeping
gene (a locus). A set of housekeeping genes produce multiple loci.
The combined loci indexes create unique profiles called sequence
types (ST). The housekeeping genes are used as they are considered
essential genes that are related to basic cellular functions. They
are highly conserved, giving the MLST approach stability as a
typing system, but still provide enough sequence variation to be
informative. The exact number of housekeeping genes (loci) used
for a bacterial species MLST scheme can vary, but it is often seven
loci. In our analysis we used the seven loci MLST scheme developed
and updated by Register et al. (2015); Register et al. (2020) for
M. bovis and available on PubMLST,1 although other systems exist
(Rosales et al., 2015; Bell-Rogers et al., 2018; Jolley et al., 2018).
This approach has also been expanded to include MLST of the
core genome (cgMLST) (Menghwar et al., 2022) and MLST of the
core genome and accessory genes (whole genome MLST/wgMLST)
(Uelze et al., 2020).

This study provides a comprehensive analysis of the genomic
population structure of M. bovis, both global strains and those
within the 2017 New Zealand outbreak. We identify and discuss
the genomic variations in New Zealand M. bovis compared to
genomes from other countries of the same MLST (or one SNP
variants). Finally, using a substantial genomic dataset from the 2017
outbreak we show how an outbreak of M. bovis behaves in a naive
population when national eradication, by testing and herd culling,
is undertaken rather than attempting to control it with animal
husbandry techniques and antibiotics.

1 https://pubmlst.org/organisms/mycoplasma-bovis

2 Methods and materials

2.1 Sample collection

2.1.1 Sample collection in New Zealand
Samples were collected from infected cattle using swabs from

a range of anatomical sites including nasal and oropharyngeal
cavities, pharyngeal tonsils, as well as samples from synovial fluid,
lung tissue and milk.

We analyzed the genomes (n = 840) from the New Zealand
Mycoplasma bovis ST21 outbreak. Samples were collected between
19 July 2017 and 17 February 2022 from 14 of the 27 regions
around New Zealand viz. Canterbury, Nelson, North Canterbury,
Northland, Otago Lakes, South Canterbury, Southland, Taranaki,
Taupo, Waikato, Wairarapa, Whanganui, Wellington, and
Westland. By January 2022, there had been a total of 272 confirmed
infected properties. We have one genome from each of 111 infected
properties, with some properties contributing multiple genomes.

2.1.2 Collection and processing of samples from
outside of New Zealand

444 genomes were obtained from outside of New Zealand. Of
these, 163 genomes were from samples or sequences collected in
10 countries and 281 sequences were downloaded from NCBI’s
sequence read archive (SRA).2 The 163 genomes came from a range
of sampled anatomical sites included upper and lower respiratory
sites, as well as synovial fluids, and milk from infected cattle.
The methods used to culture and sequence these isolates are
summarized in Supplementary Table 3 (Sulyok et al., 2014; Haapala
et al., 2018; Zhu et al., 2018; Tardy et al., 2020; Triebel et al., 2023).
Information on all 444 sequences and their availability from NCBI
is in Supplementary Table 8.

2.2 Culture of New Zealand isolates

Samples were inoculated in Friis broth (FB) and processed
through a series of serial dilutions, filtrations (0.45 µm) and
inoculations onto Friis agar (FA), at 3–4 days intervals to isolate
single colonies. Samples were incubated at 37◦C, 5% CO2. A single
isolated colony of M. bovis was chosen and inoculated in FB, then
the DNA was extracted after 3–4 days incubation. Jaramillo et al.,
2023 describe the preparation methods of the FB and FA (Jaramillo
et al., 2023).

2.3 Whole genome sequencing of
New Zealand Mycoplasma bovis isolates

For New Zealand isolates of M. bovis, DNA was extracted from
2 to 3 mL of the culture using the QIAmp DNA Mini Kit (QIAGEN,
Hillden, Germany) according to the manufacturer’s instruction
(extraction from tissue protocols).

For all isolates extracted DNA concentration was measured
by Qubit dsDNA High Sensitivity (HS) Assay kit (Thermo

2 https://www.ncbi.nlm.nih.gov/sra/
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Fisher Scientific, Eugene, Oregon, United States) and the quality
was assessed by NanoDrop spectrophotometer (Thermo Fisher
Scientific, Wilmington, Delaware, United States). qPCR was
performed on the samples using the VetMaxTM M. bovis kit
(Life Technologies, Carlsbad, CA, United States) to confirm the
presence of M. bovis DNA. DNA libraries were prepared using
1 ng of M. bovis DNA with the Nextera XT DNA Library
Preparation Kit (Illumina, San Diego, CA, United States) following
the manufacturer’s protocol. The concentrations and quality of
the purified libraries were assessed using the Qubit dsDNA HS
Assay kit and HS DNA kit on an Agilent 2100 Bioanalyzer or
the HS D5000 ScreenTape kit on the 4200 TapeStation (Agilent
Technologies, Waldbronn, Germany). Each DNA library was
normalized and then pooled to an equimolar concentration of
2 nM. Following denaturation using 0.2 N NaOH, the pooled
libraries were diluted further to 10 pm and spiked with 15%
PhiX Sequencing Control V3 (Illumina) following Illumina’s
recommendation for low diversity libraries. Sequencing was
performed on the spiked libraries on an Illumina MiSeq using the
MiSeq reagent Kit v2 (500 cycles) (Illumina).

2.4 Bioinformatic analysis

The genomic data was divided into 3 datasets (see 4.3 for
details), which were each analyzed separately. The workflows used
in this paper are outline in Figure 1.

2.4.1 Initial sequencing quality check and in silico
genotyping

First, the raw sequences were checked for bacterial
contamination by phyloFLASH v3.31b1 (Gruber-Vodicka et al.,
2020). Trimmomatic v0.39 trimmed nucleotides at both ends with
a Phred score < 15 and removed any detected Illumina adapters
(Bolger et al., 2014). A sliding window approach was used to find
consecutive 4 bp segments with an average quality score < 15, at
which point the reads were trimmed. Reads shorter than 100 bp
after trimming were removed by Trimmomatic v0.39 (Bolger
et al., 2014). The resulting files were evaluated by FastQC v0.11.9
(Andrews, 2010) and reviewed using MultiQC v1.8 (Ewels et al.,
2016). Multilocus Sequence Typing (MLST) was undertaken using
SRST2 v0.2.0 (Inouye et al., 2014). The pubMLST (Jolley et al.,
2018) profiles were downloaded on 21 July 2022 for this study
(Register et al., 2020). New alleles and profiles were submitted
to pubMLST for naming. The results of the MLST analysis were
visualized in grapetree (Zhou et al., 2018). All the genomic data
was assessed for quality and genotyped as summarized in Figure 1
as Stage 1.

2.4.2 Genome assembly
The Nullarbor v2.0.20191013 pipeline assembled all the

sequences into draft genomes (Seemann et al., 2019). The Nullarbor
pipeline performs an array of analyses, but only the draft genome
assemblies produced by SKESA v2.4.0 were used (Souvorov et al.,
2018). The genome assembly is summarized as Stage 2 in Figure 1.

2.4.3 Genome datasets
The draft genomes were grouped into three genomic

datasets, and each were analyzed separately to compare distinct
characteristics of the outbreak.

The first dataset initially contained international genomes
(n = 484) from 16 countries including 11 from unknown countries
and a sample set of 40 genomes from New Zealand. The dataset
was checked for quality then MLST genotyped (Figure 1, Stage 1),
investigated for population structure (Figure 1, Stages 2b) and for
virulence genes (Figure 1, Stage 2d).

The second dataset (n = 87) was a subset of the international
dataset containing only ST21 and one SNP variants of this ST
(Supplementary Table 4). There are 40 New Zealand genomes, 47
from 9 countries, and one without a known source country. The
genes in the core genome were also compared to identify allelic
variants specific in the New Zealand genomes and examined for
recombination events (Figure 1, Stages 2a, 2b without FastBAPS
and 2c).

The third dataset was the New Zealand genomes (n = 840)
(Supplementary Table 2), which were characterized using MLST,
cgMLST and wgMLST analysis (Figure 1, Stage 1, 2b Panaroo only,
and 2c).

2.4.4 Core-genome MLST and whole genome
MLST

The assembled draft genomes were annotated in Prokka v1.14.6
(Seemann, 2014) using Translation table 4, then a pangenome
was generated in Roary v3.13.0 (Tange, 2011; Page et al., 2015).
The Roary pangenome was checked for quality and some genes
were discarded by roProfile v1.4.5 (Mendes, 2016). Then roProfile
made a core genome multilocus sequence type (cgMLST) and a
whole genome multilocus sequence type (wgMLST). The cgMLST
and wgMLST were visualized in grapetree v2.2 as minimum
spanning trees (MST) using the MSTreeV2 algorithm (Zhou
et al., 2018). The preceding steps are represented in Stage 2c
in Figure 1. Using the cgMLST profiles, six allelic variants
in the New Zealand genomes were identified, the sequence
alignments were checked in Jalview v2.11.1.4 (Waterhouse et al.,
2009) and the genes confirmed by UniProt (Zaru et al.,
2023).

2.4.5 Core gene alignment analysis
The Prokka annotated genomes were used in Panaroo v1.2.10

(Tonkin-Hill et al., 2020) to make an alignment of the core genes
using default settings. Panaroo identified a set of core genes defined
as those genes present in 99-100% of the genomes in the dataset.
Panaroo also made a pangenome from the dataset. A distance
matrix based on the number of sites with a base pair difference
(SNP) in the core gene alignment was estimated and made into a
neighbor joining tree using R v4.1.2 package ape v5.7-1 (Paradis
et al., 2004; R Core Team, 2023). The results of the analysis of the
core genes were also used to identify the sequence variant alleles in
the New Zealand M. bovis genomes. This workflow is included in
Stage 2b in Figure 1.

2.4.6 Population structure
FastBAPS v1.0.8 (Tonkin-Hill et al., 2019) was used for

clustering the core gene alignment for the dataset of international
genomes. FastBAPS identified an approximate fit to a Dirichlet
process mixture model for clustering using the optimized
symmetric prior. This is an option in Stage 2b in Figure 1 of the
workflow.
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FIGURE 1

Workflow of Bioinformatic analysis. The workflows followed in analyzing the three genomic datasets. All samples followed Stage 1 for sequencing
quality checks and MLST genotyping. In the second Stage, the 2a workflow is for SNP variance and recombination analysis. The 2b workflows
includes core gene alignment analysis with the option of using FastBAPS for population structure. Stage 2c produces the core genome MLST and
whole genome MLST. Stage 2d uses Abricate to check the genomes for putative adhesion- and virulence-related genes.

2.4.7 SNP and recombination analysis
The ST21 dataset (87 genomes) was examined to estimate

genomic recombination and SNP variants. Snippy v4.4.33 is a

3 https://github.com/tseemann/snippy

pipeline that used the Burrows-Wheelers Aligner v0.7.17-r1188
(Li, 2013) and SAMtools v1.9 (Danecek et al., 2021) to align
reads from draft genomes to the New Zealand reference genome;
NZ_B0132. Snippy also includes FreeBayes v1.3.2 (Garrison and
Marth, 2012) to identify variants among the alignments. Gubbins
v2.3.4 estimated the number and position of recombination events
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and used RAxML to make a maximum likelihood tree (Stamatakis,
2014; Croucher et al., 2015). In R v4.1.2 using a script with RCandy
v1.0.0 (Chaguza et al., 2022; R Core Team, 2023) the positions of
the recombination events estimated by Gubbins were represented
along each genome (Figure 1, Stage 2a workflow).

2.4.8 Detection of putative adhesion- and
virulence-related genes

A bespoke database was made for Abricate v1.0.1 (https://
github.com/tseemann/abricate) using the 91 putative adhesion-
and virulence-related genes identified in M. bovis by Josi et al.
(2019). The genes present in the ST21 dataset (n = 87) were
compared to those found in the rest of the international dataset.
The presence or absence of the sequences from Josi et al. (2019) in
each genome is listed in Supplementary Table 7 (Figure 1, Stage 2d
workflow).

2.4.9 Generation of a complete reference
genome

A reference genome was chosen by sequencing a representative
New Zealand isolate NZ_B0132 (NCBI CP192245.1). M. bovis
was pelleted from 1 L of 3–4 days old culture in FB by
centrifugation at 3,000 × g for 30 min at 4◦C. Genomic DNA
was extracted using the method described above for the other
New Zealand isolates but with the addition of 28 U RNase A
(Qiagen) at room temperature for 5 min during the lysis stage. To
meet the sample requirements for PacBio long-read sequencing,
an additional isopropanol precipitation step was performed to
concentrate the eluted genomic DNA. Sodium acetate was added
to a final concentration of 0.3 M (pH 5.2), followed by 0.7 volumes
of room-temperature isopropanol. The mixture was centrifuged
immediately at 15,000 × g for 30 min at 4◦C. The supernatant
was carefully removed, and the DNA pellet was washed with room-
temperature 70% ethanol to remove residual salts and facilitate
resuspension. A second centrifugation was performed at 15,000 × g
for 15 min at 4◦C, after which the ethanol was decanted and the
pellet air-dried for 20 min. The DNA was then resuspended in
10 mM Tris-HCl, pH8.0 (Fisher Scientific, Fair Lawn, New Jersey,
United States).

Sample quality was assessed as described above, with the
addition of genomic integrity analysis using pulsed-field gel
electrophoresis (PFGE). High molecular weight genomic DNA was
confirmed using the Bio-Rad CHEF Mapper XA system, following
the PacBio protocol “Using the BIO-RAD CHEF Mapper XA
Pulsed Field Electrophoresis System”.4

The purified DNA was sequenced on a Pacific Biosciences,
Inc., RS II platform using P6-C4 chemistry according to the
20 kb Template Preparation and the BluePippin DNA Size
Selection system protocol (Pacific Biosciences, Inc.). Assembly of
the complete genome of NZ_B0132 was performed using SMRT
analysis system v2.3.0.140936 (Pacific Biosciences). Raw sequence
data were de novo assembled using the HGAP3 protocol with
a minimum seed read length of 1 kb, a minimum read quality
of 0.80, predicted genome size of 5 Mb, target coverage of 10

4 https://www.pacb.com/wp-content/uploads/Procedure-Checklist-
Using-the-BIO-RAD-CHEF-Mapper-XA-Pulsed-Field-Electrophoresis-
System.pdf

and over-lapper error rate of 0.04. Polished contigs were further
error corrected using Quiver v1. The read alignments were visually
assessed and ordered contigs joined in Geneious v8.1.5.5 The final
assembly structure was checked by mapping raw reads against the
alignment with BridgeMapper v1 in the SMRT analysis system.

3 Results

3.1 Global population structure of
Mycoplasma bovis

The genomes of M. bovis isolates (n = 484) were collected from
16 different countries and n = 11 M. bovis genomes without known
countries of origin. They were assembled using the Nullarbor 2
pipeline. Within this dataset was a subset of 40 genomes from the
New Zealand outbreak. Note that 29 draft genomes were excluded
from additional analysis because when assembled they had 300 or
more contigs, or they did not contain between 680 and 850 genes
when annotated. A core gene alignment of 455 M. bovis isolates
revealed a core genome length of 695,994 bp containing 563 genes.

Initially, the sequences for n = 484 isolates from the
international dataset were genotyped for their MLST sequence type
(ST) but n = 40 isolates were removed from the final analysis as they
either lacked an identifiable locus (n = 11) or their draft genome
was not of sufficient quality (n = 29). A full profile with all 7 loci
is needed for a complete sequence type identity. The distribution of
the remaining 444 STs by country is shown as a minimum spanning
tree (Figure 2).

The population structure shown by the FastBAPS analysis
of the core gene alignment for 455 genomes divided them into
11 clusters spread around the neighbor-joining tree (Figure 3).
Several countries with larger sample sizes were distributed around
the tree and between FastBAPS clusters. We identified five
genomes, separate from the main Australian grouping (n = 82) in
cluster 9, which are mainly ST52. There were two ST12 genomes
(AUS_3-1355_TV10, AUS_Purrawunda_QLD_AUS_2003)
in cluster 2. Cluster 4 contained two ST271 (AUS_99-
193731_TV7, AUS_Bowen_QLD_AUS_1993) and one ST274
(AUS_Willowbank_QLD_AUS_2001). All five genomes were
separate from the previously described Australian outbreak
of ST52 by MLST profile and WGS (Parker et al., 2016). The
Danish genomes divided into two large FastBAPS clusters, cluster
7 (n = 41) with mainly ST29 genomes and cluster 2 (n = 16)
containing mainly ST12 genomes. The Canadian genomes (n = 94)
were spread across seven clusters (3, 5, 6, 8, 9, 10, 11). Consistent
with their MLST profiles, all five Canadian ST67 genomes were in
cluster 5 and separate from the ST24 genomes (n = 12) in cluster
11. Cluster 9 includes ST52 from Canada (n = 3), Israel (n = 52)
and Australia (n = 74).

Overall, when the core gene alignment SNP differences were
visualized as a neighbor-joining tree and the FastBAPS clustering
analysis included (Figure 3 and Supplementary Table 1) the results
were consistent with the pattern seen in using MLST profiles
(Figure 2)—where countries with larger sample sizes contained

5 https://www.geneious.com
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FIGURE 2

Minimum spanning tree of the MLST distribution of M. bovis by country. The MST of the 7-gene MLST scheme developed by Register et al. (2020)
showed the ST distribution for 444 genomes across 16 countries and 10 from an unknown country. Each of the STs are represented as a node, and
each node is colored in proportion to the number present from each country. The legend has a tally in square brackets of the total genomes from
each country. Several countries (including Australia, Denmark, and Canada) have STs that are quite different to each other, e.g., Denmark has ST29
and ST12 genomes. The branch length between nodes represents the number of loci that differ between each ST node. The scale bar shows the
distance for differences at three of the 7-loci.

TABLE 1 The six genes in the ST21 (n = 87) dataset of core genes with
unique sequences for New ZealandM. bovis genomes.

Gene Protein name Enzyme
commission

number

haeIIIM Cytosine-specific
methyltransferase

2.1.1.37

cysC Cysteinyl tRNA synthetase 6.1.1.16

Era GTPase Era

metK S-adenosylmethionine synthase 2.5.1.6

parE DNA topoisomerase 5.6.2.2

hisS Histidine-tRNA ligase 6.1.1.21

both closely and distantly related genomes. This pattern of within
country diversity also shows some genomes being more closely
related to genomes in another country.

A comparison was made of the putative adhesion- and
virulence-related genes found by Abricate in the international
dataset (n = 455) to see if there was a difference between the
ST21 dataset (n = 87) and the rest. Altogether, 89 of the 91
genes in the M. bovis Abricate database were found. The 2 genes
that were missing from both groups were IS1634AV transposase
proteins. Four genes were found only in the non-ST21 group,
but they occurred very infrequently (<10×); three were IS1634AV
transposase proteins and one was a variable surface protein G (vsp).

One gene, a variable surface protein antigen, was only present in
the ST21 group but it was only present in 1 genome. The genes as
identified by Josi et al. (2019) are listed in Supplementary Table 7.

3.2 Comparison of ST21 and closely
related genomes

There were 87 genomes included in this analysis: 40 from
New Zealand, 47 from nine other countries and one with an
unknown country of origin. This group included n = 79 ST21
genomes and eight genomes that varied from ST21 by only one
SNP across all loci in the 7-gene MLST scheme (Supplementary
Table 4). The isolates (STs) that are one SNP variants to ST21 are
NZ_M0102 (ST251), NZ_0U036 (ST256), BEL_Mb31 (ST262),
BEL_Mb177 (ST264), HUN_BM632 (ST267), BEL_Mb205
(ST270), HUN_BM621 (ST272), and NZ_E0029 (ST273).

The core gene alignment identified in Panaroo for the 87
genomes was 777,194 bp long and contained 577 core genes.
The wgMLST generated in roProfile contained 1004 loci, and the
Panaroo generated pangenome contained 921 genes.

Examination of the wgMLST and core gene alignment revealed
that the New Zealand M. bovis genomes had unique allelic variants
in six genes (Table 1). The different alleles identified in each genome
are shown in Figure 4.

Overall, at the genomic level the New Zealand M. bovis were
genetically very similar to each other, and to a lesser extent similar
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FIGURE 3

The population structure of 455 M. bovis genomes using FastBAPS clustering. A FastBAPS clustering analysis was made using the international
dataset core gene alignments for 455 genomes from 16 countries and 11 from an unknown country of origin (Supplementary Table 1). The tips of the
neighbor-joining tree are color-coded according to the country in which the genomes were found. The branch lengths are all equivalent. The
FastBAPS clusters are in the outer ring and divide the genomes into 11 clusters. The FastBAPS cluster for each genome is designated by a color in the
ring and aligns to the genome at the tip of the rooted neighbor joining tree. Some of the FastBAPS clusters, e.g., 5 and 1 are in a single clade, while
some, e.g., 10 and 11 are not. The countries with larger sample sizes tend to have genomes more widely spread around the tree, e.g., Australia and
Canada. The neighbor-joining tree is based on a distance matrix derived from SNP differences in the core gene alignment.

to the other genomes in the 87-genome dataset. However, there
is evidence of significant amounts of recombination (Figure 5) in
the genomes of Bel_Mb192 (ST21) and Hun_BM632 (ST267, a one
SNP MLST variant of ST21). The genes at the fully or partially
affected loci when Bel_Mb192 and Hun_BM632 are aligned to
NZ_B0132 by snippy are reported in Supplementary Tables 5, 6.
There is a concentration of putative recombination events toward
the end of the genomes (between 999,298 to 999,332 bp), the gene
immediately prior to this was identified in UniProt as a variable
surface protein (vsp).

3.3 Characterization of the New Zealand
ST21 Outbreak

The accumulation of changes in the 840 New Zealand M. bovis
genomes can be seen in the MST of the MLST, cgMLST and
wgMLST profiles which are visualized in Figures 6–8, respectively.

Each showed evidence of new alleles emerging and radiating out
from more central nodes.

During in silico genotyping for the MLST, 34 genomes were
removed from the original 840 genomes, leaving n = 806, because
we were unable to fully identify all seven loci in the MLST profile
(Supplementary Table 2). Most (n = 777) genomes were ST21, and a
small number of genomes (n = 29) showed SNP variations to ST21
in the seven MLST loci (Figure 6). There was a total of 13 new STs
identified in this analysis of the New Zealand genomes, including
the three mentioned above in the ST21 and close variants dataset.
Most of the variants (n = 26) vary by one SNP from ST21 (ST249,
ST250, ST251, SR252, ST253, ST254, ST255, ST256, ST257, ST258,
ST260, ST273). Three genomes were ST259 and showed two SNP
changes, one in each locus (dnaA, gltX). ST259 shares the same SNP
in the gltX loci as ST273. This pattern is consistent with the clonal
expansion of the ST21 during the outbreak in New Zealand.

The wgMLST for the 840 New Zealand genomes included more
loci and therefore it had more opportunity to identify differences
and divergence than the cgMLST (1340 vs 386 loci). Panaroo
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FIGURE 4

Comparison of 87 of M. bovis genomes (ST21 and one SNP variants) and six genes with allelic variants. A comparison of ST21 (n = 79) and one SNP
variants of ST21 (n = 8) from a dataset composed of 40 NZ genomes and 47 other country genomes. The neighbor-joining tree was made from a
distance matrix based on SNP differences between the core gene alignments. The branch lengths are equal. Six genes (era, hisS, cysC, parE, haeIIIM,
and metK) were identified as showing one or more sequence variants (alleles) present only in the New Zealand genomes and different to the
sequences found in the ST21 overseas genomes.

produced a core genome (689 genes) and a pangenome (811
genes). roProfile made a cgMLST (386 loci) and the wgMLST
profiles (1,340 loci).

Using the MST format, we reviewed the distribution of
mutations within the MLST sequences when each genome of this
outbreak is represented by a cgMLST (Figure 7) and wgMLST
(Figure 8) profile. While a new mutation may occur anywhere
in a genome sequence, genomes with the same change in their
MLST sequences tend to cluster together e.g., ST259. The most
frequent change detected within the MLST sequence shown in
the cgMLST and the wgMLST were 29 genomes without an
in silico detectable pta2 locus. Examination of the Prokka annotated
genomes showed that 39 genomes had truncated pta2 genes
(Supplementary Table 2). In contrast, the SRST2 software, which
was used for MLST genotyping, uses a different approach involving
mapping the FASTQ files and identified 10/39 as having a full pta2
locus. The 29 genomes with this feature formed two close clusters
in Figures 7, 8 suggesting this change could form lineages and may
be an inherited feature.

4 Discussion

Our genomic analysis of the 2017 Mycoplasma bovis outbreak
in New Zealand shows that the outbreak was caused by genotype

ST21. Over a 4 1/2 year period (2017–2022) of the outbreak the
genomes reveal evidence of clonal expansion, when examining the
MLST, cgMLST and wgMLST MSTs. Our analysis of the ST21
dataset reveals allelic variants in six of the core genes unique
to the New Zealand genomes. The six genes that had different
sequences in New Zealand genomes are haeIIIM: encoding for
cytosine-specific methyltransferase; cysC: encoding for cysteinyl
tRNA synthetase; era: encoding for GTPase Era; metK: encoding
for S-adenosylmethionine synthase; parE: encoding for DNA
topoisomerase; and hisS: encoding for histidine-tRNA ligase. The
presence of these alleles only in the New Zealand genomes,
could be due to a simple population bottleneck in the original
transmission event into New Zealand. Alternatively, it could be
the result of selection or genetic drift in the initial stages of the
outbreak expansion.

We successfully used the MLST scheme for M. bovis from
pubMLST and developed by Register et al. (2020), to define and
monitor the 2017 ST21 outbreak in New Zealand (Jolley et al., 2018;
Register et al., 2020). Although, it is notable that 39 of the 840
New Zealand genomes had a truncated pta2 gene when annotated
by Prokka, in comparison the SRST2 approach found only 29 did
not have a full pta2 locus. pta2 is a housekeeping gene that is
part of the M. bovis MLST scheme, so lineages with an undefined
in silico MLST locus will potentially compromise the utility of the
scheme. Previously, with the pubMLST legacy system for M. bovis,
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FIGURE 5

Estimated recombination events in of 87 M. bovis genomes (ST21 and one SNP variants). The putative recombination events detected by Gubbins in
87 genomes, is visualized by aligning the genomes against a reference genome on the right and comparing them in a phylogenetic tree on the left.
The New Zealand reference genome (NZ_B0132) is 1,064,188 bp. The size and position of recombination events are in red and blue. Red indicates
the recombination event was found in multiple genomes and blue signals the recombination event was limited to one genome that is present. There
is variation in the position and size of estimated recombination events across the group of genomes. Two genomes (HUN_BM632, BEL_Mb192)
show large areas of their genome are affected by these putative unique recombination events. The phylogenetic tree on the left is a maximum
likelihood tree produced in Gubbins, and it shows the sample of 40 NZ genomes are closely related and have few identified recombination events.

there were occasionally reported difficulties in detecting the adh1
locus (Josi et al., 2018; Tardy et al., 2020). We suggest that further
work is required to investigate what affects some of the M. bovis
housekeeping genes, and how the genome is affected as a whole.
One possible cause is ICE or MCT which has been previously cited
as a mechanism for the exchange of housekeeping genes between
M. bovis isolates (Tardy et al., 2015; Garcia-Galan et al., 2022). Many
features in the M. bovis genome generate variation and plasticity,
and our results support the need to use both an MLST scheme
and whole genome sequencing when examining an outbreak to
investigate in depth any anomalies that arise.

Our results showed a greater difference than might be expected
between the size of the core genome (n = 689 genes) and
pangenome (n = 811 genes) produced by Panaroo, when compared
to the size of the cgMLST (n = 386 loci) and wgMLST profiles
(n = 1340 loci) produced in roProfile, for the 840 New Zealand

genomes. The size of the core genome is much larger than the
cgMLST (689 > 386), and the pangenome much smaller than
the wgMLST (811 < 1,340). While not the same measurements,
it would be expected that the sizes of the core genome and
cgMLST should be similar, and the size of the pangenome and
wgMLST should be similar. In our smaller dataset for ST21 (n = 87
genomes), the Panaroo pangenome size (n = 921 genes) is closer
to the roProfile wgMLST size (n = 1,004 loci). These differences in
outcome could be due to the different methods used by Panaroo
compared to roProfile to calculate their results, each goes through
multiple different steps to calculate these values e.g., roProfile uses
Roary to calculate the initial pangenome and Panaroo does not. It
is also possible that the effect of these different approaches is not as
pronounced when comparing a smaller number of genomes.

The international dataset of genomes when characterized using
MLST genotyping or FastBAPS clustering, showed countries with
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FIGURE 6

Minimum-spanning tree of the M. bovis multilocus sequence types found in the New Zealand ST21 Outbreak. The MST based on the 7-gene MLST
profiles for 806 New Zealand genomes shows most are ST21 (n = 777) with 29 variants. There are 13 new STs, most of these variants (n = 26) are one
SNP changes within the MLST loci. Three genomes shared the same one SNP change in the gltX loci with ST273 (n = 10) and have another one SNP
change in the dnaA loci to become ST259. Overall, this pattern is consistent with a clonal expansion of the ST21 outbreak in New Zealand.

large sample sizes like Canada, Australia, and Denmark, had
within each country both closely related and distinctly different
genomes. Some of these genomes were closely related to genomes
present in other countries. For example, we found ST21 in
10 countries, this global spread has shown ST21 as present in
North America, Europe, Asia and now New Zealand in the
Southern hemisphere. The genomic evidence shows M. bovis
is spreading between countries and hemispheres, and just as
moving infected cattle between farms can spread this infection,
it is possible the international movement of live cattle and/or
using imported semen may have a role (Haapala et al., 2018;
Yair et al., 2020); although transmission by fomites cannot be ruled
out (Piccinini et al., 2015).

Modern agriculture is dependent on the regular movement of
livestock. As these movements are a key factor in the dissemination
of M. bovis, it follows that any national control program must
understand these movements to control M. bovis and other
infectious diseases of cattle. If we cannot rely upon antibiotics or
effective vaccines (Lysnyansky and Ayling, 2016), then control and
management options become limited to strict hygiene standards
and movement restrictions of the infected animals, both with and
without clinical signs (Pfützner and Sachse, 1996). We support

the view any attempt at a national control plan must address all
the sources of transmission. To better understand the containment
and control of endemic M. bovis, a network analysis of cattle
movements should be considered by researchers and such data
included when modeling potential control methods (Gates and
Woolhouse, 2015). An example of how cattle movement data
can be used to model disease risk was described by Hay et al.,
2014, who showed the lifetime moving and mixing history of
Australian cattle (n = 35,131) can affect their risk of being
treated for bovine respiratory disease in feedlots (Hay et al.,
2014). Exposure to M. bovis was shown to be an important risk
factor for bovine respiratory disease within the same population
(Schibrowski et al., 2018).

Two genomes, BEL_Mb192 and Hun_BM632, showed marked
variation to other genomes in the ST21 subset of 87 genomes.
This suggests significant genomic variation can accumulate outside
of the seven MLST housekeeping loci, in this case, likely due to
recombination events. MCT can produce mosaicism in the M. bovis
genome resulting in different areas of the genome having different
phylogenetic histories (Garcia-Galan et al., 2022). If mosaicism
is a common event in M. bovis, SNP-based WGS analysis as
well as allele-based MLST genotyping are needed to understand

Frontiers in Microbiology 11 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1600146
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1600146 July 23, 2025 Time: 15:47 # 12

Binney et al. 10.3389/fmicb.2025.1600146

FIGURE 7

Minimum-spanning tree of the cgMLST for New Zealand M. bovis. A MST of the cgMLST for M. bovis genomes in New Zealand (n = 840). The size of
each node represents the number of genomes with the same cgMLST profile made from the 386 shared loci. The 7-loci MLST ST21 dominates
(n = 777), and the most common variant (n = 29) lacks a in silico detectable pta2 locus (NF_pta2). Most genomes with this variant cluster together.
Genomes lacking a tdk locus (n = 5) are called NF_tdk. Each new variant with a full MLST profile makes a new ST. The new STs appear to be
randomly spread across the MST. But when there is more than one of the same sequence variation or new ST, they tend to cluster together
suggesting a lineage. The legend shows how the nodes are colored by the 7-gene MLST scheme developed by Register et al. (2020). The legend has
a tally of the total number of genomes for each ST, which are shown in square brackets. The total number of allele differences between each node
are represented by the branch length. The scale bar shows the length for a branch with eight allelic differences.

an outbreak. Future work is required to evaluate how common
recombination events are in M. bovis, particularly those involving
MCT and IS. Research is needed into when, and how, housekeeping
gene detection is affected. As well as the extent that genome
plasticity (in M. bovis) will affect genomic epidemiology, and
our understanding of transmission events during an outbreak.
This knowledge could inform the sustainable use of antimicrobial
treatments, and the composition and deployment of vaccines,
should they become available, for M. bovis in control and/or
eradication programs. Recombination events may or may not
impact the efficacy of live attenuated vaccines against M. bovis or
compromise the accuracy of current diagnostic tools used for its
detection. For example, the successful control of M. gallisepticum
in the poultry sector used several live attenuated vaccines effectively
for decades, despite variations in outbreak strains and geographical
regions (Bíró et al., 2005; Noormohammadi and Whithear, 2019).
Current diagnostic tools for detecting M. bovis have proven highly

effective across different geographic regions and strain variations,
regardless of differences from the original strain used to identify the
target gene or protein (Petersen et al., 2018; Wisselink et al., 2019;
Salgadu et al., 2025).

The pangenome size for the ST21 dataset of 87 genomes is 921
genes but the NZ dataset of 840 genomes has a smaller pangenome
of 811 genes. The ST21 group, although a smaller sample size,
is taken from the widely spread global population of ST21. The
global population of ST21 has been around for a long period
(collected from 2007 to 2020) and accumulating mutations and
recombinations, i.e., creating diversity in the pangenome. The large
recombination events found in two of the ST21 indicate how
these changes are accumulating and adding to the pangenome. The
overseas samples of ST21 have the opportunity to recombine with
more diverse M. bovis, while the NZ M. bovis when undergoing
intra-species recombination events were limited to within its own
clonal expansion. The 840 NZ M. bovis are considered to be the
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FIGURE 8

Minimum-spanning tree of the wgMLST for New Zealand M. bovis. A MST of the wgMLST for M. bovis in New Zealand (n = 840). Each node
represents a genome with a unique wgMLST profile made from 1340 loci. The wgMLST includes more loci than the cgMLST (1,340 > 386 loci),
enabling more variation between the genomes to be shown by including accessory loci that are not present in all the genomes. The occurrence of a
new variant sequence within the MLST loci appear to be randomly spread across the MST but when there is more than one of the same new ST
variants, they tend to cluster together. The most common variant (n = 29) in the 7-gene MLST scheme lacks an in silico detectable pta2 locus
(NF_pta2). Most genomes with this variant cluster together. Genomes lacking a pta2 locus are called NF_pta2 and those lacking a tdk locus are
called NF_tdk. The legend shows the nodes are colored by the 7-gene MLST scheme developed by Register et al. (2020). The legend has a tally of
the total number of genomes for each ST, which shown in square brackets. The total number of allele differences between each node are
represented by the branch length. The scale bar shows the length for a branch with 20 allelic differences.

result of clonal expansion in a recently introduced bacterium,
which probably bottled necked and expanded only for a few years
(suggested arrival date 2015–2022). Another contributing factor
could have been the nature of the NZ eradication scheme, which
was to cull entire infected herds. This meant that while clonal
expansion was accumulating changes over a few years, lineages
were being pruned as herds were culled.

In conclusion, our study provides insights into the population
structure of M. bovis at the global level based on 455 genomes
from 16 countries. We found two patterns, one of local propagation
within a country, and one of international propagation with the
same sequence types (ST) shared between geographically distant
countries which is consistent with previous findings (Yair et al.,
2020). An understanding of the movement patterns of cattle and
semen movement nationally and internationally would enable
better M. bovis disease control and management. There was a clonal
expansion of M. bovis ST21 in New Zealand. In New Zealand,
the cattle population was naïve to M. bovis, and an eradication
response was undertaken using culling, rather than containment
and treatment. This contrasts with the results from France and
Denmark showing the emergence of a dominant strain (Tardy et al.,
2020; Thézé et al., 2023). In these countries farm husbandry and
antibiotics were used to control the infection. Our results suggests
that epidemiological evaluations of M. bovis requires MLST in

combination with WGS analysis to account for the effects of
genomic plasticity and mosaicism, which can affect housekeeping
loci used in the MLST scheme.
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