
Frontiers in Microbiology 01 frontiersin.org

Transforming non-conventional 
yeasts into key players in 
biotechnology: advances in 
synthetic biology applications
Soo Young Moon 1,2, Nan-Yeong An 1 and Ju Young Lee 1,3*
1 Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 
Daejeon, Republic of Korea, 2 Division of Interdisciplinary Bioscience and Bioengineering, Pohang 
University of Science and Technology (POSTECH), Pohang, Republic of Korea, 3 Graduate School of 
Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic 
of Korea

Non-conventional yeasts exhibit exceptional genetic and functional diversity, 
serving as a largely untapped repertoire for biotechnological applications. Beyond 
the conventional yeast Saccharomyces cerevisiae, non-conventional yeasts are 
naturally more multifaceted, possessing the ability to utilize renewable and low-cost 
carbon sources while exhibiting robust physiology under challenging conditions. 
However, their vast potential remains largely unexplored, encompassing both 
challenges and opportunities for biotechnological advancements. Over the past 
decade, technological advancements in synthetic biology have unlocked new 
opportunities to harness their potential and overcome inherent limitations, enabling 
the full exploitation of their advantages across a broad spectrum of applications. 
In this review, we highlight recent advances in the synthetic biology of non-
conventional yeasts, focusing on the development of new genetic building blocks 
(e.g., promoters and terminators), genome editing tools, and metabolic pathway 
engineering. Through these technologies, non-conventional yeasts are poised to 
emerge as pivotal next-generation workhorses tailored for specific applications in 
sustainable biomanufacturing, accelerating the transition to a bio-based economy.
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1 Introduction

The convergence of environmental pollution, climate change, and resource scarcity is 
increasing intractable and compounding global challenges (Li W. et al., 2021; Karim et al., 
2022; Liu et  al., 2023). Microbial biotechnology provides a sustainable alternative 
(Raschmanova et al., 2018; Thorwall et al., 2020), enabling cost-effective and sustainable 
bioproduction across various medical, agricultural, food, and chemical industries. In 
particular, yeasts offer key advantages over other microbes in industrial biotechnology, 
including eukaryotic cellular machinery capable of post-translational modifications, the ability 
to utilize a wide range of inexpensive and renewable feedstocks, and robustness under harsh 
industrial conditions (Deparis et al., 2017; Nielsen, 2013; Qiu et al., 2019). Historically, yeasts 
have played crucial roles in the food industry and in the production of bulk and fine chemicals, 
as well as biofuels (Patra et al., 2021; Fabarius et al., 2021; Wang et al., 2025). Among them, 
Saccharomyces cerevisiae is the most extensively studied model yeast, known for its well-
characterized genome and established molecular genetic engineering tools (Rainha et al., 2020; 
Moon et al., 2023). However, despite extensive research and engineering efforts, S. cerevisiae 

OPEN ACCESS

EDITED BY

Dongsoo Yang,  
Korea University, Republic of Korea

REVIEWED BY

Nam Kyu Kang,  
Kyung Hee University, Republic of Korea
Yong Hee Han,  
Chonnam National University, Republic of 
Korea

*CORRESPONDENCE

Ju Young Lee  
 juyounglee@kaist.ac.kr

RECEIVED 26 March 2025
ACCEPTED 21 April 2025
PUBLISHED 02 May 2025

CITATION

Moon SY, An N-Y and Lee JY (2025) 
Transforming non-conventional yeasts into 
key players in biotechnology: advances in 
synthetic biology applications.
Front. Microbiol. 16:1600187.
doi: 10.3389/fmicb.2025.1600187

COPYRIGHT

© 2025 Moon, An and Lee. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Mini Review
PUBLISHED 02 May 2025
DOI 10.3389/fmicb.2025.1600187

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1600187&domain=pdf&date_stamp=2025-05-02
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1600187/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1600187/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1600187/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1600187/full
mailto:juyounglee@kaist.ac.kr
https://doi.org/10.3389/fmicb.2025.1600187
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1600187


Moon et al. 10.3389/fmicb.2025.1600187

Frontiers in Microbiology 02 frontiersin.org

has inherent metabolic limitations, including low productivity, 
susceptibility to product toxicity, and an inability to convert alternative 
substrates into high-value products efficiently. These constraints 
restrict its commercial competitiveness and emphasize the need for 
alternative microbial platforms with superior metabolic capabilities 
(Park et al., 2022; Sibirny, 2023; Patra et al., 2021).

Potential solutions can be  found in non-conventional yeasts, 
including Yarrowia lipolytica, Pichia pastoris, and Kluyveromyces 
marxianus. These yeasts exhibit superior metabolic flexibility, stress 
tolerance, and substrate utilization capabilities, making them highly 
attractive for industrial applications (Thorwall et al., 2020; Rebello et al., 
2018; Wang et al., 2021; Nurcholis et al., 2020; Spohner et al., 2015; Yang 
and Zhang, 2018; Monteiro de Oliveira et al., 2021; Madhavan et al., 
2017; Wagner and Alper, 2016). However, many non-conventional 
yeasts still suffer from limited genetic tractability, low transformation 
efficiency, and a lack of well-characterized regulatory parts, which 
constrain their broader application in biotechnology (Wagner and 
Alper, 2016; Lobs et  al., 2017). In recent decades, the research on 
non-conventional yeasts has gained momentum, driven by rapid 
breakthroughs in synthetic biology. These advancements have 
significantly expanded their industrial utility by providing powerful 
tools for optimizing gene expression, metabolic pathways, and strain 
performance. This review covers a comprehensive overview of the 
attractive characteristics and role of non-conventional yeasts as versatile 
biotechnological workhorses, with a special emphasis on recent 
breakthroughs in synthetic biology that have enhanced their industrial 
applications. Key areas of focus include promoter and terminator 
engineering for precise gene regulation, CRISPR/Cas-based genome 
editing for efficient strain development, and pathway optimization 
strategies for improved biochemical production.

2 Non-conventional yeasts as 
biotechnological workhorses

Non-conventional yeasts have emerged as new potential 
workhorses for the overproduction of fuels, chemicals, and 
pharmaceuticals owing to their robust physiology, which includes 
high tolerances to bioprocess-induced stresses (e.g., low pH, high 
temperatures, and osmolarity), resistance to inhibitory toxic 
compounds, and ability to utilize non-conventional feedstocks and 
synthesize large amounts of metabolites and proteins (Rebello 
et al., 2018; Thorwall et al., 2020; Wang et al., 2021; Markham and 
Alper, 2018; Spohner et al., 2015; Yang and Zhang, 2018; Nurcholis 
et  al., 2020). Notably, the ability of non-conventional yeasts to 
metabolize non-conventional substrates—such as lignocellulosic 
hydrolysates, waste oils, and methanol—offers substantial industrial 
benefits. These substrates are often derived from low-cost, 
renewable sources like agricultural residues and CO₂-based 
industrial waste streams, thereby supporting more sustainable and 
economically viable biomanufacturing process (Rerop et al., 2023; 
Cotton et al., 2020; Do et al., 2019). For instance, methanol, a key 
substrate for P. pastoris, can be  industrially produced from 
synthesis gas derived from natural gas or biomass, enabling cost-
effective and potentially carbon-neutral feedstock supply chains 
(Cai et  al., 2022). Among non-conventioal yeasts, Y. lipolytica, 
P. pastoris (recently reclassified as Komagataella phaffii), and 
K. marxianus are particularly notable for their distinct and inherent 

advantages in lipid accumulation, heterologous protein production, 
and thermotolerance, respectively. These species have been 
relatively well-characterized and are frequently used as 
biotechnological workhorses (Figure 1).

The oleaginous yeast Y. lipolytica is widely recognized for its 
exceptional lipid accumulation capacity, naturally reaching up to 
30–50% of its cell dry weight, and its ability to metabolize diverse 
non-conventional substrates, including lignocellulosic hydrolysates, 
fatty acids, waste oils, crude glycerol, and acetate (Beopoulos et al., 
2011; Madzak, 2021; Groenewald et al., 2014). Driven by efficient 
carbon flux through the acetyl-CoA and malonyl-CoA pathways, 
Y. lipolytica serves as a robust industrial chassis for commercial 
synthesis, supporting the production of lipids, advanced biofuels, and 
lipid-derived fine chemicals such as carotenoids and omega-3 fatty 
acids (Ma et al., 2020; Zhang et al., 2023; Xie et al., 2017; Shi and Zhao, 
2017; Jiang et al., 2024; Ma et al., 2024; Liu Z. et al., 2024; Park et al., 
2025; Sharpe et al., 2014). Additionally, its generally recognized as safe 
(GRAS) status makes Y. lipolytica a valuable platform for producing 
lipases widely used in the food, pharmaceutical, and environmental 
industries (Brígida et al., 2014; Hu et al., 2024).

Pichia pastoris is a methylotrophic yeast commonly used in the 
manufacture of industrial enzymes and pharmaceutical proteins owing 
to its various strengths. Notably, its strong protein expression and 
secretion capacity, along with its ability to perform post-translational 
modifications, make P. pastoris an ideal system for both cytosolic and 
secretory protein production (Gellissen et al., 2005; Karbalaei et al., 
2020; Macauley-Patrick et al., 2005; Zha et al., 2023; Yang and Zhang, 
2018). This feature enables the secretion of target proteins at high 
titers, simplifying downstream processing and facilitating the 
commercial production of pharmaceutical proteins, including human 
insulin and interferon, demonstrating the industrial relevance of this 
yeast (Patra et al., 2021; Nurdiani et al., 2024; Gao et al., 2021; Zha 
et al., 2023; Shrivastava et al., 2023). A further advantage of P. pastoris 
is its ability to utilize cost-effective substrates, tolerate high-stress 
conditions, and achieve higher cell densities than S. cerevisiae, making 
it a more suitable host for sustainable industrial processes. Owing to 
these attractive characteristics, P. pastoris has also been engineered to 
produce various value-added chemicals at low cultivation costs with 
high scalability (Lobs et al., 2017; Araya-Garay et al., 2012; Liu et al., 
2015; Liu et al., 2018; Qian et al., 2022; Gao et al., 2023; Cai et al., 2022).

Kluyveromyces marxianus is also industrially relevant because of its 
beneficial traits, such as thermotolerance up to ~50°C, high growth rate, 
and broad substrate spectrum (e.g., hemi-cellulose hydrolysates, xylose, 
and dairy industry wastes) (Bilal et al., 2022; Lyu et al., 2021; Ha-Tran 
et al., 2020; Varela et al., 2017). Besides, K. marxianus serves as a natural 
producer of high-value ethyl acetate and other short-chain volatile 
esters, widely used as flavor and fragrance compounds (Lobs et al., 2018; 
Karim et al., 2020; Morrissey et al., 2015; Loser et al., 2013; Roy et al., 
2023; Perpetuini et al., 2022). Its ability to grow at elevated temperatures 
facilitates simultaneous saccharification and fermentation of 
lignocellulosic and other polysaccharide-based feedstocks, reducing 
cooling costs, minimizing contamination risks, and improving 
bioprocess efficiency (Patra et al., 2021). Additionally, K. marxianus 
efficiently assimilates dairy byproducts such as lactose and cheese whey, 
taking a step toward more sustainable biomanufacturing (Bilal et al., 
2022; Qiu et al., 2023).

Beyond these well-studied yeast species, several other 
non-conventional yeasts have recently attracted significant attention for 
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FIGURE 1

A key summary of synthetic biology tools and metabolic features of non-conventional yeasts for industrial biotechnology. This figure illustrates key 
synthetic biology strategies and the distinctive traits of non-conventional yeasts. Genetic components, including synthetic promoters, terminators, and 
transcription factors, enable fine-tuned control of gene expression. Genome editing tools such as homologous recombination via KU70 or KU80 

(Continued)
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their industrial potential. K. lactis, a GRAS yeast following S. cerevisiae, 
is a lactose-fermenting species frequently found in milk and dairy 
products. The β-galactosidase enzyme from K. lactis, which metabolizes 
milk constituents such as lactose, is widely used in the food industry to 
produce lactose-free dairy products (Becerra et al., 2001; Naumov et al., 
2006). Furthermore, several metabolites are commercially produced in 
K. lactis, including lactate, D-gluconic acid derived from xylose, and 
D-arabitol produced from whey (Toivari et  al., 2012; Toyoda and 
Ohtaguchi, 2011). While P. pastoris is primarily used for protein 
production, another methylotrophic yeast, Ogataea polymorpha, has 
attracted increasing attention as a promising chassis for producing 
various chemicals using methanol as the sole carbon source (Xie et al., 
2024). Scheffersomyces stipitis, known for its superior xylose fermentation 
efficiency, holds promise for bioethanol production from lignocellulosic 
hydrolysates, as it converts xylose into ethanol with minimal or no 
xylitol byproduct formation, improving economic viability (Ruchala 
et al., 2020; Mastella et al., 2023; Kobayashi et al., 2022).

Still, beyond the natural advantages of these non-conventional 
yeasts, which make them more suited for tasks such as utilizing 
renewable and low-cost carbon sources or exhibiting high-stress 
tolerance, genetic engineering tailored to specific purposes can 
further enhance their functionality toward a robust bioeconomy in 
future biotechnological processes. To fully unlock the potential of 
these yeasts and facilitate their successful integration into 
biotechnological applications, genome engineering tools must 
be developed to pave the way for progress in metabolic engineering 
and synthetic biology to advance the application of new 
non-conventional yeasts rapidly. Below, we  highlight recent 
synthetic biology tools and approaches that increase the industrial 
potential of non-conventional yeasts (Table  1). Key strategies 
include (1) promoter and terminator engineering for optimized 
gene expression and (2) CRISPR-based genome editing for efficient 
and multiplexed genetic modifications.

3 Synthetic biology tools and 
approaches to unlock the potential 
and function of non-conventional 
yeasts

3.1 Genetic building blocks for synthetic 
pathway engineering: promoters and 
terminators

The advancement and implementation of synthetic biology tools, 
combined with the expanding library of genetic building blocks, have 
significantly increased the utility of non-conventional yeasts as 

versatile systems and chassis cells in biotechnological applications. 
Recent studies have driven significant progress in their application, 
leveraging the availability of genetic elements such as promoters and 
terminators specifically tailored to non-conventional yeasts (Ji et al., 
2024; Patra et al., 2021; Ma et al., 2020; Gao et al., 2021; Wang et al., 
2023; Kumar et al., 2021; Teo and Chang, 2014; Qiu et al., 2023). These 
genetic elements play crucial roles in regulating transcription rates 
and mRNA stability, directly influencing protein expression levels and 
consequently enabling non-conventional yeasts to emerge as valuable 
platforms for synthetic biology and biomanufacturing (Patra et al., 
2021; Ito et  al., 2020; Wagner and Alper, 2016; Sun et  al., 2022) 
(Figure 1).

3.1.1 Promoters
Promoters, in particular, are critical determinants of 

transcriptional regulation, as they govern the timing, strength, and 
spatial patterns of gene expression. This, in turn, profoundly shapes 
metabolic activities, enabling the precise modulation of cellular 
behaviors (Blazeck and Alper, 2013; Ji et al., 2024; Ma et al., 2020; 
Wang et  al., 2023). Hence, discovering and selecting appropriate 
promoters, as well as engineering novel promoter elements, are 
fundamental steps in advancing metabolic engineering and synthetic 
biology for non-conventional yeasts (Madhavan et al., 2017; Rebello 
et  al., 2018). Generally, a significant strategy for achieving high-
expression of a given protein involved in synthetic pathways is using 
a strong and constitutive promoter. Strong promoters are typically 
derived from genes associated with the essential functions or unique 
metabolic traits of each yeast species. Representative examples include 
promoters driving translation (e.g., pTEF active across multiple yeast 
species), methanol utilization (e.g., pAOX1 in P. pastoris), or ethanol 
utilization (e.g., pADH2  in S. cerevisiae), taking advantage of the 
inherent metabolic capabilities and physiological traits of the 
respective species of yeast.

Among these promoters, the endogenous translation elongation 
factor-1α promoter (pTEF) is the most widely used because of its 
robust constitutive expression across diverse yeast species (Gu et al., 
2023; Larroude et al., 2018; Ahn et al., 2007; Steiner and Philippsen, 
1994; Kitamoto et al., 1998). In addition to the TEF1 promoter, to 
expand regulatory options in Y. lipolytica, a library of 81 endogenous 
promoters, primarily associated with carbon and nitrogen metabolism, 
has been systematically screened, offering expression strengths 
ranging from 0.0006- to 1.60-fold relative to pTEF. Notably, the 
MnDH2 promoter (encoding mannitol dehydrogenase) exhibited the 
highest strength, achieving an expression level 1.60-fold greater than 
pTEF. This promoter facilitated the production of the plant-derived 
aromatic compound salidroside in Y. lipolytica, reaching a titer of 
95.64 mg/L, the highest reported to date (Wang et al., 2023).

deletion and CRISPR-associated systems (Cas9 and Cas12a) facilitate efficient and precise genome manipulation. Each non-conventional yeast exhibits 
unique metabolic traits suited for specific biotechnological uses. Y. lipolytica is characterized by high lipid accumulation and the ability to metabolize 
hydrophobic substrates, supporting the production of oleochemicals and carotenoids. P. pastoris exhibits strong protein expression and utilizes 
methanol and other cost-effective substrates, facilitating the industrial production of enzymes and pharmaceutical proteins. K. marxianus is known for 
thermotolerance, rapid growth, and broad substrate utilization, making it suitable for the biosynthesis of flavor compounds and industrial 
enzymes. S. stipitis efficiently ferments xylose derived from lignocellulosic biomass, contributing to bioethanol production. O. polymorpha metabolizes 
methanol to produce oleochemicals such as free fatty acids and fatty alcohols. K. lactis ferments lactose and is widely applied in dairy biotechnology. 
Collectively, these non-conventional yeasts offer complementary and adaptable platforms for sustainable and scalable bioproduction. UAS, upstream 
activating sequence; CDS, coding sequence; TF, transcription factor; HR, homologous recombination.

FIGURE 1 (Continued)
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TABLE 1 Synthetic biology tools and their applications in non-conventional yeasts.

Synthetic 
biology tool

Description / Feature Strain Engineering strategy Substrate Products Production titer 
(Scale)

Ref.

Promoter

pMnDH2 Mannitol dehydrogenase promoter / 1.6-fold stronger than 

pTEF

Y. lipolytica 

Po1g

Overexpression of atUGT (UDP-

glucosyltransferase)

Glucose Salidroside 95.64 mg/L (250 mL Shake 

flask)

Wang et al. 

(2023)

pAOX1 Strong methanol-inducible promoter P. pastoris Co-expression of Mit1 to enhance 

transcriptional activity

Methanol 

Glycerol

eGFP (Enhanced 

green fluorescent 

protein)

2.2-fold increase in 

fluorescence intensity 

(NR)

Haghighi 

Poodeh et al. 

(2022)

VEGF (Vascular 

endothelial growth 

factor)

1.9-fold increase in 

secreted protein amount 

(NR)

Hybrid promoter

pMT-2-UAS16 Copper-inducible promoter enhanced with UAS16 for 

strong gene expression / 30-fold higher induction 

compared to native pMT-2

Y. lipolytica 

Po1f

Overexpression of codon-optimized 

MmWS (wax ester synthase) gene

Glucose Wax ester 149.5 mg/L (Shake flask) Xiong and Chen 

(2020)

pTEFR1 Fatty acyl-CoA-responsive promoter / pTEF fused with 

bacterial transcriptional regulator FadR binding sites

Y. lipolytica 

Po1g Ku70Δ

Overexpression of Alk5 pTEFR1 enables 

fatty acyl-CoA-responsive expression of 

Alk5, allowing decoupling of growth and 

production phases.

Glucose ω-hydroxy palmitic 

acid

160 mg/L (1 L batch 

fermentation)

Park et al. 

(2021)

pUAS1B4-EXPm Strong promoter combining 4 copies of yeast UAS with the 

EXPm core promoter

Y. lipolytica 

Po1g Ku70Δ

Overexpression of ScARO10 Glucose Isoamyl alcohol 11.57 mg/L (250 mL Shake 

flask)

Zhao et al. 

(2021)

pUAS1B4-LEUm Moderate-strength promoter combining 4 copies of strong 

yeast UAS with LEUm core promoter

Overexpression of ScBAT1 and ScADH2

pKmIMTCP2 Constitutive promoter / uncharacterized cell wall protein 

promoter

K. marxianus 

NBRC1777

Overexpression of lacZ (β-galactosidase) 

from K. marxianus

Dextrose, 

xylose

β-galactosidase 1800 Miller Units Kumar et al. 

(2021)

pAOX1 Strongest methanol-inducible promoter / pAOX1 

promoter combined with K4 Kozak sequence

P. pastoris 

GS115

Overexpression of C4ST Methanol 

Glycerol

Chondroitin sulfate 

A

182.0 mg/L (Shake flask), 

2.1 g/L (3 L bioreactor)

Jin et al. (2021)

cTRDL (constitutive 

Transcriptional Device 

Library)

126 constitutive promoter variants with expression levels 

ranging from 16% to 520% relative to pAOX1

P. pastoris 

GS115

Overexpression of sLovA (codon-

optimized LovA, cytochrome P450 

monooxygenase), and CPR (cytochrome 

P450 oxidoreductase)

Methanol Monacolin J 208 mg/L (250 mL Shake 

flask)

Zhu et al. (2022)

iTRDL (inducible 

Transcriptional Device 

Library)

162 methanol-inducible promoter variants with expression 

levels ranging from 30% to 500% relative to pAOX1

P. pastoris 

GS115

Overexpression of LovB (nonaketide 

synthase), LovC (enoyl reductase), LovG 

(thioesterase), and NpgA 

(phosphopantetheinyl transferase)

Methanol Dihydromonacolin 

L

250 mg/L (250 mL Shake 

flask)

Zhu et al. (2022)

(Continued)
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TABLE 1 (Continued)

Synthetic 
biology tool

Description / Feature Strain Engineering strategy Substrate Products Production titer 
(Scale)

Ref.

pSNT5 Engineered ADH2-derived promoters combining UAS 

elements and removing URS to enhance expression

P. pastoris 

GS115

Overexpression of XylB (xylanase) Glycerol Xylanase 2.2-fold increase 

compared to the native 

pADH2 (5 L bioreactor)

Erden-

Karaoglan et al. 

(2022)

phy47-7 pGAP1-based hybrid promoter incorporating regulatory 

elements from KAR2 and GCW14 to enhance 

transcriptional activity

P. pastoris 

GS115

Overexpression of PS (α-pinene synthase) Glucose Pinene 1.18 mg/L (NR) Lai et al. (2024)

Glycerol 2.20 mg/L (NR)

pIN450 Hybrid promoter combining regulatory elements of the 

carbon-responsive ICL1 promoter with the strong 

constitutive NC1 promoter from K. marxianus

K. marxianus 

CBS712ΔU

Overexpression of 2-PS (2-pyrone 

synthase)

Lactose Triacetic acid 

lactone

1.39 g/L (3 mL tube) Bassett and Da 

Silva (2024)

Overexpression of 6-MSAS 

(6-methylsalicylic acid synthase) and npgA 

(4′-phosphopantetheinyl transferase)

Lactose 6-Methylsalicylic 

acid

1.09 g/L (3 mL tube)

Overexpression of IaaM (tryptophan-2-

monooxygenase) and IaaH (indole-3-

acetamide hydrolase)

Lactose 

tryptophan

Indole-3-acetic acid 3.6-fold increase 

compared to pNC1 (3 mL 

tube)

Overexpression of SabS1 (sabinene 

synthase)

Xylose Sabinene 1.5 mg/L (3 mL tube)

Terminator

XPR2t Native terminator from Y. lipolytica, commonly used for 

heterologous expression

Y. lipolytica 

Po1g

Overexpression of prorennin 

(prochymosin A allele)

Sucrose Prorennin 160 mg/L (5 L batch 

fermentation)

Madzak et al. 

(2000)

DHASt Native terminator from P. pastoris / High-expression gene 

terminator from methanol utilization pathway, enhancing 

mRNA stability

P. pastoris 

X-33

Overexpression of CalB Glucose Lipase 3-fold increase compared 

to AOX1t under pAOX1 

(NR)

Ramakrishnan 

et al. (2020)

AOX1t Native strongest terminator in P. pastoris, providing 

mRNA stability and high protein expression

P. pastoris 

CBS7435

Overexpression of EGFP Glycerol EGFP 17-fold increase compared 

to ScGIC1t under 

pGAPDH (NR)

Ito et al. (2020)

Overexpression of β-Glucosidase from 

Aspergillus aculeatus

Glycerol β-Glucosidase 3.6-fold increase 

compared to ScICY2t 

under pGAPDH (NR)

Overexpression of CYP76AD1 (W13L/

F309L) and DOD (DOPA deoxygenase)

Glycerol Betaxanthin 8.36-fold increase 

compared to ScICY2t 

under pGAPDH (NR)

CRISPR tool

CRISPR/Cas9 Disruption rates of PEX10 (86%) and MFE1 (100%) Y. lipolytica 

Po1f

Increased HR efficiency through KU70 

deletion

Glucose, Oleic 

acid

NR NR Schwartz et al. 

(2016)

(Continued)
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TABLE 1 (Continued)

Synthetic 
biology tool

Description / Feature Strain Engineering strategy Substrate Products Production titer 
(Scale)

Ref.

nickase Cas9 Multiplex gene disruption of TRP1, PEX10, and HIS3: 94% 

(single), 31% (double)

Y. lipolytica 

Po1g ku70Δ

Target-AID (activation-induced cytidine 

deaminase) system for introducing a 

nonsense mutation

Glucose, Oleic 

acid

NR NR Bae et al. (2020)

Cas12a/Cpf1 Editing efficiencies of up to 96% for counter-selectable 

markers (CAN1, URA3) and up to 80% for auxotrophic 

markers (MET2, MET25, MET6)

Y. lipolytica 

Po1g

Optimized crRNA expression and polyU 

modifications for precise and multiplexed 

genome editing

Dextrose NR NR Yang et al. 

(2020)

CRISPR/Cas9 Editing efficiency above 80% for base insertions, deletions, 

and a single-point mutation

P. pastoris 

GS115

Site-specific deletion, insertion, or 

substitution of the S215 residue of 

transcriptional activator MXR1 on the 

chromosomes

Methanol NR NR Hou et al. 

(2020)

CRISPR/Cas9 One-step integration of a three-gene expression cassette 

into a single genomic locus (~60% efficiency)

K. marxianus 

CBS 6556

Multigene integration of shikimate 

pathway (KmARO4K221L, KmPHA2, and 

KmARO7G141S)

Glucose 2-phenylethanol 1,943 mg/L (250 mL Shake 

flask)

Li M. et al. 

(2021)

CRISPR/Cas9 Gene editing efficiency not reported K. lactis 

GG799

Knocked out INV (endogenous invertase) 

to improve fructosyltransferase activity

Glucose 

Galactose

Fructo-

oligosaccharide

NR Burghardt et al. 

(2020)

CRISPR/Cas9 Gene editing efficiency not reported C. tropicalis 

CU-208

Gene editing of key pathway enzymes 

tCBTS1 (truncated Cembratriene-ol 

Synthase 1), ERG20 (Farnesyl 

Pyrophosphate Synthase), BTS1 

(Geranylgeranyl diphosphate Synthase) 

Enhanced expression of ERG20 and BTS1 

under the strong pGAP1

Glucose Cembratriene-ol 1,425.76 mg/L (NR) Zhang et al. 

(2024)

CRISPR-assisted Cre 

recombination

Iterative genome editing using CRISPR-SpCas9 and Cre-

loxP system

R. toruloides 

RT1389

Integrating EGT biosynthetic genes (Egt1 

and Egt2) and optimizing the 

S-adenosylmethionine pathway

Glucose Xylose Ergothioneine 

(EGT)

267.4 mg/L (NR) Liu K. et al. 

(2024)

NR, Not Reported.
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Alternatively, artificial hybrid promoters, combining upstream 
activation sequences (UASs) with modified core promoter elements, 
have been developed to enhance gene expression control in 
Y. lipolytica, providing greater flexibility and dynamic regulation 
(Blazeck et al., 2011). A notable example is the development of fatty 
acid-sensitive hybrid promoters by combining pTEF with bacterial 
transcriptional regulator FadR binding sites. Fatty acyl-CoA binds to 
FadR, inducing a conformational change that inhibits FadR binding 
to its target sequences, thereby upregulating the expression of target 
genes. This mechanism allows FadR hybrid promoters to decouple the 
cell growth and production phases in response to intracellular fatty 
acyl-CoA concentrations, producing 160 mg/L of ω-hydroxy palmitic 
acid (Park et al., 2021).

Hybrid promoters incorporating UAS elements have also 
addressed the limited number of native Y. lipolytica promoters 
available, significantly expanding expression flexibility. For instance, 
a hybrid promoter incorporating sixteen copies of the UAS from the 
Y. lipolytica alkaline extracellular protease promoter into the copper-
inducible MT-2 core promoter facilitated the efficient production of 
wax esters at a titer of 149.5 mg/L (Blazeck et al., 2011; Xiong and 
Chen, 2020). Similarly, another hybrid promoter, which incorporates 
four copies of the Y. lipolytica alkaline extracellular protease promoter 
UAS with the export protein EXP1 promoter, achieved an isoamyl 
alcohol titer of 11.57 mg/L (Zhao et al., 2021). These advancements 
highlight the versatility of hybrid promoters in Y. lipolytica, enabling 
the production of diverse valuable compounds and optimizing cell 
factory applications.

In the methylotrophic yeast P. pastoris, promoter engineering has 
advanced with the AOX1 promoter, a highly active methanol-inducible 
promoter widely used for recombinant protein production (Wu et al., 
2023). To create pAOX1 variants with variable strengths, Zhu et  al. 
(2022) fused bacterial DNA-binding proteins with yeast transactivation 
domains and linked bacterial binding sequences to the AOX1 core 
promoter. Consequently, 126 constitutive hybrid promoter libraries with 
expression strengths ranging from 16% to 520% and 162 methanol-
inducible hybrid promoter libraries ranging from 30% to 500% were 
constructed relative to the native AOX1 promoter (Zhu et al., 2022).

In addition, in a recent study, various Kozak sequences were 
applied to the AOX1 promoter to enhance the intracellular expression 
of chondroitin-4-O-sulfotransferase (C4ST), a membrane-bound 
enzyme rarely expressed in microorganisms. Combined with 
chondroitin biosynthesis pathway genes, hybrid promoter-driven 
C4ST expression produced 182.0 mg/L of chondroitin sulfate A in 
P. pastoris (Jin et al., 2021). In another effort to improve the AOX1 
promoter efficiency, the overexpression of methanol-induced 
transcription factor 1 (Mit1) strongly activated the AOX1 promoter 
and increased eGFP production by 2.2-fold. Doubling the methanol 
feed concentration further boosted the eGFP output by an additional 
1.3-fold (Haghighi Poodeh et al., 2022). Similar to the activation of 
pAOX1 mediated by Mit1 overexpression, a separate study was 
dedicated to modifying the alcohol dehydrogenase 2 promoter 
(pADH2) based on its transcriptional regulatory mechanism. By 
replacing its repressor region with an activator region, pADH2 activity 
was enhanced by 2.2-fold compared with that of original pADH2 
(Erden-Karaoglan et al., 2022).

Besides pAOX1, the glyceraldehyde-3-phosphate dehydrogenase 
promoter (pGAP) is commonly used as a constitutive promoter for 

protein expression in P. pastoris. Unlike pAOX1, pGAP does not 
require a toxic methanol inducer, making it suitable for continuous 
cultivation while maintaining stable cellular function (Wu et al., 2023; 
Vogl et al., 2016). Lai et al. (2024) developed a novel randomized 
hybrid promoter library derived from pGAP1 and demonstrated its 
potential by producing 1.18 mg/L of the biologically active natural 
monoterpene pinene, representing an 18% increase over the native 
GAP promoter.

Recent studies on K. marxianus have also been focused on 
identifying and optimizing native-derived promoters, from the 
weakest promoter REV1 (deoxycytidyl transferase) to the 
strongest promoter PDC1 (pyruvate decarboxylase), enabling 
40-fold variation in gene expression (Qiu et al., 2023; Rajkumar 
et al., 2019). Among these efforts, novel expression toolkits were 
constructed by combining various promoters and terminators 
derived from K. marxianus. For example, pKmIMTCP2-
KmIMTT1t, comprising an uncharacterized cell wall protein 
promoter (pIMTCP2) and a maltose transporter terminator 
(IMTT1t), demonstrated the highest activity in K. marxianus, 
producing approximately 1800 Miller units of β-galactosidase 
(Kumar et al., 2021).

Most recently, Bassett and Da Silva (2024) designed and built a 
novel carbon-responsive hybrid promoter, pIN450, by combining 
regulatory elements of the native K. marxianus carbon-responsive 
ICL1 promoter with the strong constitutive NC1 promoter from 
K. marxianus. The hybrid IN450 promoter exhibits carbon-responsive 
behavior in lactose and constitutive behavior in xylose, leading to over 
a 50% increase in the production of the high-value chemical triacetic 
acid lactone and a 6.6-fold increase in the production of the fungal 
polyketide 6-methylsalicylic acid compared to native pICL1 (Bassett 
and Da Silva, 2024).

3.1.2 Terminators
Terminators are also essential in transcriptional regulation, 

influencing mRNA stability, half-life, and abundance, directly affecting 
protein expression levels (Gu et al., 2023; Patra et al., 2021; Hu et al., 
2024; Madzak, 2021). Despite their vital roles, only a few terminators 
in non-conventional yeasts have been systematically characterized. 
Meanwhile, several S. cerevisiae terminators have been successfully 
adapted to non-conventional yeasts, such as ScCYC1t in Y. lipolytica 
and P. pastoris, ScADH1t and ScPGK1t in K. marxianus, and ScADH1t 
in H. polymorpha (Madzak, 2021; Patra et  al., 2021). Native and 
synthetic terminators from non-conventional yeasts have also 
demonstrated potential in modulating gene expression (Table 1). In 
Y. lipolytica, native terminators such as XPR2t (extracellular protease), 
LIP2t (extracellular lipase), and CyC1t (cytochrome C) have been 
identified and characterized (Madzak et al., 2000; Ma et al., 2020). In 
P. pastoris, DHASt (dihydroxyacetone synthase) enhanced the 
expression of Candida antarctica lipase B (CalB) by 3-fold compared 
with AOX1t under pAOX1 (Ramakrishnan et al., 2020). Additionally, 
a library of 72 terminators from S. cerevisiae, P. pastoris, and synthetic 
sources demonstrated a 17-fold tunable range of activity in P. pastoris 
(Ito et  al., 2020). The IMTT1 (IMTCP1) and IMTT2 (IMTCP2) 
terminators from K. marxianus significantly increased β-galactosidase 
production (Kumar et  al., 2021), highlighting the versatility of 
terminator engineering for optimizing gene expression (Ito 
et al., 2020).
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3.2 Genome editing tool: CRISPR-based 
genome editing

Efficient genome editing tools for inserting, deleting, and altering 
target genes are critical for engineering non-conventional yeasts to 
reconstruct complex metabolism and thus enhance product synthesis 
for industrial applications. Homologous recombination 
(HR)-mediated tools are generally preferred in genetic engineering 
due to their ability to precisely control integration loci, minimizing 
the risk of disrupting essential genes (Flagfeldt et al., 2009; Cai et al., 
2019; Donohoue et  al., 2018; Xia et  al., 2023). However, unlike 
S. cerevisiae, non-conventional yeasts face unique challenges because 
non-homologous end joining (NHEJ) dominates over HR, which 
often leads to imprecise integration of inserted DNA (Xia et al., 2023; 
Cai et  al., 2019). Overcoming the natural dominance of NHEJ to 
increase HR efficiency in non-conventional yeasts remains a 
significant challenge. Nonetheless, modulation of the NHEJ or HR 
DNA repair pathways has shown promise in addressing this issue. For 
instance, deletion of native NHEJ-promoting genes such as Ku70 or 
Ku80 significantly increased HR efficiency in many non-conventional 
yeasts (Maassen et al., 2008; Kooistra et al., 2004; Verbeke et al., 2013; 
Naatsaari et  al., 2012; Saraya et  al., 2012; Choo et  al., 2014). 
Furthermore, the overexpression of HR repair proteins such as 
RAD52, RAD59, MRE11, and SAE2 from S. cerevisiae has achieved 
multiplex gene integration efficiencies of 100%, ~98%, and ~81% at 
single, double, and triple loci, respectively, even with homology arms 
as short as 40 bp (Gao et al., 2022).

The advent of CRISPR/Cas9 technology has revolutionized 
genome editing in non-conventional yeasts, offering unparalleled 
precision, flexibility, multiplexing, and simplicity (Bai et al., 2023) 
(Figure 1, Table 1). The CRISPR/Cas9-mediated genome editing tool 
introduces targeted double-strand breaks (DSBs) at specific loci, 
enabling precise and programmable modifications guided by 
customized simple single-guide RNA (sgRNA), with the assistance of 
intracellular DNA repair pathways such as HR and NHEJ. CRISPR/
Cas9 streamlines the editing workflow, improves accuracy, and 
accelerates strain engineering to achieve desired properties (Zha et al., 
2023; Wu et  al., 2023; Schwartz et  al., 2016; Li M. et  al., 2021; 
Burghardt et al., 2020; Zhang et al., 2024; Liu K. et al., 2024).

In Y. lipolytica, CRISPR/Cas9 was first adapted in 2016 using a 
codon-optimized Cas9 and sgRNA expression under a synthetic RNA 
polymerase III promoter to disrupt genes such as Ku70, as well as lipid 
oxidation-related Pex10 and Mfe1 (Schwartz et  al., 2016). More 
recently, a base editor combining CRISPR/Cas9, cytidine deaminase, 
and uracil glycosylase inhibitor enabled targeted base modifications 
without introducing DSBs, further expanding the genome editing 
toolbox in Y. lipolytica. This system achieved editing efficiencies of 
94% for single genes and 34% for dual genes, demonstrating its 
potential for precise genetic engineering (Bae et  al., 2020). 
Additionally, the CRISPR-Cas12a/Cpf1 system has been implemented, 
allowing for the retention of PAM sites after NHEJ repair and enabling 
efficient multiplexed editing (Yang et al., 2020). Using this system, the 
single-gene disruption efficiencies reached 99%, while triplex edits 
achieved up to 30%, highlighting its utility for complex 
genetic modifications.

In P. pastoris, a highly efficient CRISPR/Cas9 system was 
developed through the systematic optimization of codon-optimized 
Cas9 DNA sequences, various sgRNA sequences, and promoters for 

the optimal expression of both Cas9 and sgRNA, achieving genome 
editing efficiencies approaching 100% (Weninger et al., 2016). This 
system enabled targeted editing of the methanol expression regulator 
MXR1 and facilitated base insertions and deletions at critical amino 
acid positions, allowing for studying this transcription factor and its 
targets (Hou et al., 2020). Additionally, the CRISPR/Cas12a system 
enabled the deletion of large DNA fragments (up to 20 kb) and 
one-step integration of multiplexed genes, exhibiting 99% efficiency 
for single-gene edits, 65–80% efficiency for duplex edits, and 30% 
efficiency for triplex integrations (Zhang et al., 2021).

CRISPR/Cas9 has also been applied in Kluyveromyces species, 
demonstrating its versatility for gene deletion and multiplexed gene 
integration. In K. marxianus, a CRISPR/Cas9-based multigene 
integration system was developed to engineer key genes in 
the shikimate pathway (KmARO4K221L, KmPHA2, and 
KmARO7G141S), resulting in a 2.8-fold increase in the production of 
the rose-scented flavor and fragrance compound 2-phenylethanol. 
Further optimization of the Ehrlich pathway through the 
overexpression of ARO10 and inactivation of EAT1 boosted 
2-phenylethanol production to 1,943 ± 63 mg/L under fed-batch 
conditions (Li M. et  al., 2021). In K. lactis, CRISPR/Cas9 was 
successfully applied to delete the endogenous invertase gene, resulting 
in a 66.9% increase in fructose transferase activity (Burghardt 
et al., 2020).

Similar advances have also been achieved in other 
non-conventional yeasts. In C. tropicalis, CRISPR/Cas9 enhanced the 
production of the plant-derived macrocyclic diterpene 
cembratriene-ol to 1,425.76 mg/L, a 1,602-fold increase, by integrating 
the codon-optimized cembratriene-ol synthase gene and optimizing 
metabolic flux (Zhang et  al., 2024). Likewise, in Rhodotorula 
toruloides, the CRISPR-assisted Cre recombination system, which 
combines CRISPR/Cas9 with the site-specific recombinase Cre, 
enables iterative genome editing. This approach increased the 
production of ergothioneine (EGT), a high-value antioxidant and 
cytoprotectant, to 267.4 mg/L, a 1.5-fold improvement, by integrating 
EGT biosynthetic genes (Egt1 and Egt2) and optimizing the 
S-adenosylmethionine pathway (Liu K. et al., 2024).

4 Conclusions and future perspectives

Technological developments in synthetic biology, particularly in 
transcriptional regulation systems, CRISPR-based genome editing, 
and strain engineering, have greatly expanded the potential of 
non-conventional yeasts while overcoming their inherent limitations. 
Their applications are diverse, and they likely represent a crucial new 
means to address the looming challenges of biomanufacturing—for 
both narrow and broad product ranges—by enabling the production 
of a wide array of bio-based chemicals, fuels, and materials, thereby 
positioning them as valuable assets in the future of industrial 
biotechnology. In the near future, emerging technologies such as the 
design-build-test-learn cycle in synthetic biology will further 
accelerate this progress, driving the development of advanced and 
cost-effective methods for building, editing, and screening 
non-conventional yeasts with novel and optimized functions in a 
high-throughput manner, solidifying them as next-generation 
microbial workhorses for industrial biotechnology (Li X. et al., 2023; 
Whitford et al., 2021; Moon et al., 2024; Son et al., 2024).
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The integration of automated genome synthesis, AI-assisted 
metabolic design, and omics-driven pathway optimization will further 
strengthen the potential of non-conventional yeasts, enabling precise 
metabolic fine-tuning for a wide range of applications (Patra et al., 
2021; Darvishi et al., 2021; Li M. et al., 2023; Madhavan et al., 2017; 
Wang et  al., 2025). Looking ahead, the convergence of synthetic 
biology, systems biology, and machine learning will be instrumental 
in streamlining strain engineering workflows, improving predictive 
modeling accuracy, and enhancing strain design efficiency. 
Additionally, expanding the molecular toolbox for non-conventional 
yeasts—including novel inducible promoters, tunable gene circuits, 
and genome-scale engineering strategies—will further enhance their 
versatility and adaptability. To fully realize the potential of 
non-conventional yeasts in biomanufacturing, future advances in 
synthetic biology should focus on addressing current limitations—
such as the limited availability of species-specific regulatory elements 
and the narrow range of inducible promoters. Expanding modular, 
programmable, and scalable toolkits will enable more precise, flexible, 
and context-specific strain engineering, thereby accelerating the 
transition toward next-generation yeast-based production systems.

As synthetic biology continues to bridge the gap between a 
detailed understanding of non-conventional yeasts and their practical 
applications, these yeasts will undoubtedly play an expanding role in 
the global bioeconomy. Future research will likely be  focused on 
harnessing automation, leveraging AI-driven metabolic design, and 
integrating multi-omics datasets to drive innovation in yeast 
engineering. Non-conventional yeasts will not only provide additional 
options alongside existing microbial platforms but also offer unique 
and tailored solutions for sustainable bioproduction, accelerating the 
transition toward a more sustainable bioeconomy.
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