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1 Introduction

Phosphorus (P) is an essential element for plant growth, which functions in

photosynthesis, root development, and nucleotide incorporation (Bisson et al., 2017).

However, only 0.1–0.5% of the total soil P is available for plants to absorb (Sharma et al.,

2013). Generally, most P in the soil is insoluble and adsorbed, significantly affecting plant

accessibility and crop yield (Tian et al., 2020). The commonly insoluble phosphates (IPs) in

soils usually include ferric phosphate (FePO4, Fe-P), aluminum phosphate (AlPO4, Al-P),

and tricalcium phosphate (Ca3(PO4)2, Ca-P) (Tian et al., 2024). These IPs are distributed

across various soil types, which limits crop yields and phosphorus use efficiency (Tian et al.,

2021a).

The input of chemical phosphate fertilizer can promote plant adsorb P and increase

crop yield. However, over 60% of P fertilizers rapidly react with soil metal cations (e.g.,

Ca2+, Fe3+) and become immobilized as IPs (Jayashree et al., 2011; Mahdi et al., 2020).

According to the statistics, the IPs stored in soils could alleviate the expected P shortages

over the next 50 years (Zhu et al., 2018). Therefore, enhancing the development and

utilization of this stored P in agricultural soils is crucial for sustainable P management

in the future (Tian et al., 2021b, 2024).

Phosphate-solubilizing microorganisms (PSMs) can convert IPs into plant-absorbable

and utilizable P forms in soil (Gadd et al., 2014; Owen et al., 2015; Jiang et al., 2021).

Using PSMs in agricultural systems is an efficient and sustainable pathway to improve

plant uptake of P from soil (Sharma et al., 2013; Tian et al., 2020; Munar et al., 2023; Wu

et al., 2025). The common PSMs include phosphate-solubilizing fungi (PSF), phosphate-

solubilizing bacteria (PSB), and phosphate-solubilizing actinomycete (PSA). Phosphate-

solubilizing fungi have greater P-dissolving capacity than bacteria and actinomycetes. In

the case of PSF Aspergillus niger, the amount of P dissolved from Ca-P (770.5 mg/L) is

approximately two times higher than the PSB Acinetobacter spp (Li et al., 2019). Therefore,

PSF is generally considered the primary candidate for IP dissolution (Figure 1).
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FIGURE 1

Mechanisms of phosphate-solubilizing fungi in insoluble phosphate dissolution and e�ects pathway in application.

PSF can secrete large amounts of organic acids, producing

formic acid, oxalic acid, etc., reaching up to three times that of PSB

(Li et al., 2016a). Meanwhile, PSF hyphae can directly penetrate

insoluble phosphate minerals through mechanical pressure (Gadd,

2021). The highly developed hyphal network of PSF can extend

several meters, significantly surpassing the range of PSB colonies

(typically <1mm; Martinez and Marschmann, 2025). In addition,

PSF fungal hyphae can penetrate deep into soil aggregates,

while PSB usually accumulates on pore surfaces (Tian et al.,

2021b). More importantly, PSF shows significant advantages in

IPs dissolution, maintaining over 90% of IPs-dissolving capacity

even after 10 successive subcultures (Kucey, 1983). Meanwhile,

PSF also demonstrates a higher tolerance to drought and extreme

pH levels than PSB (Li et al., 2016a; Bi et al., 2022). However,

PSB usually offers practical benefits in production, including faster

reproduction (generation time: 30–60min) and more excellent

suitability for liquid inoculant formulation compared to PSF

(Belen Lobo et al., 2019). The co-inoculation of PSB and PSF

significantly enhances IPs dissolution and plant growth compared

to using either microorganism alone in sterile soil (Nacoon et al.,

2020). Therefore, the co-inoculation of PSF and PSB presents a

more promising approach to enhance the application of PSF in

IPs dissolution.
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TABLE 1 Capacity of phosphate-solubilizing fungi in organic acid secretion and P release.

PSF strains Primary organic acid types Organic acid
production

P release (mg/L) References

Trichoderma harzianum Glucose, citric, lactic and succinic acids 4,422.54 (mg/L) 9.31 (from RP) Promwee et al.,

2014

Trichoderma asperellum Oxalic and citric acids 36 (mmol/L) 3.1 (from RP) García-López et al.,

2015

Aspergillus niger Oxalic and citric acids 561.6 (mg/L) 861 (from TCP) Tian et al., 2021b

Penicillium oxalicum Oxalic, acetic, and lactic acids 0.143 (mmol/L) 189.1 (from TCP) Yang et al., 2022

Penicillium sp. PSM11-5 Gluconic and citric acids 13,830 (mg/L) 300.1 (from TCP) Chai et al., 2011

Gigaspora margarita Citric acid 2.7 (mmol/L) 1.49 (from Fe-P) Tawaraya et al.,

2006

Penicillium chrysogenum Oxalic acid 227.7 (mg/L) 693.6 (from TCP) Wang et al., 2023a

IPs, insoluble phosphates; RP, rock phosphate; TCP, tricalcium phosphate.

PSF includes various genera such as Penicillium, Aspergillus,

Mucor, Trichoderma, Rhizopus, Phytophthora, Fusarium, and

Saccharomyces (Mercl et al., 2020; Zhang et al., 2020; Yang et al.,

2022; Wang et al., 2023b). This diversity allows the selection of PSF

strains tailored to specific environmental conditions and cropping

systems (Figure 1). However, environmental factors such as soil

pH, soil minerals, types of nutrients, organic fertilizer, and toxic

pollutants (such as pesticides, heavy metals, and microplastics)

would directly or indirectly affect the dissolution of IPs by PSF in

soil (Tian et al., 2022a; Su et al., 2023; Wang et al., 2024a,b; Feng

et al., 2025; Ni et al., 2025). In the case of typical PSF Aspergillus

niger, the biomass and physiological activity were significantly

higher in acidic soil than in alkaline soil (Su et al., 2023). Therefore,

investigating the factors that affect the efficiency of IPs dissolution

by PSF in soil is crucial for optimizing their application.

2 The secretion of dicarboxylic and
tricarboxylic acids dominates the
dissolution of IPs by PSF

Organic acid secretion is the primary pathway of PSF in

the dissolution of IPs (Palmieri et al., 2019). On the one hand,

PSF continuously releases low-molecule-weight organic acids

(LMWOAs) to acidify the soil environment and significantly

promote IPs dissolution (Kpomblekou-A and Tabatabai, 1994; Tian

et al., 2020). On the other hand, the active functional groups of

organic acids can also effectively chelate with metal cations (Ca2+,

Fe3+, Al3+, etc.), thereby promoting the release of P from Ca-P, Fe-

P, and Al-P, etc. (Shen et al., 2002; Kishore et al., 2015). Moreover,

the LMWOAs can also directly release orthophosphate from soil

minerals and Fe/Al oxides via ligand exchange (Sharma et al., 2013;

Li et al., 2021).

The LMWOAs secreted by PSF include monocarboxylic,

dicarboxylic, and tricarboxylic acids (Scervino et al., 2010). The

dicarboxylic and tricarboxylic acids have higher acidity constants

and chelating ability for metal cations (Kpomblekou-A and

Tabatabai, 1994; Patel et al., 2008). Thus, dicarboxylic acids

(oxalic, malonic, fumaric, and tartaric) and tricarboxylic acids

(cis-aconitic and citric) are more effective in P detoxification

than monocarboxylic acids (glycolic, pyruvic, and salicylic acid)

(Table 1). The tricarboxylic acid (TCA) cycle in mitochondria

is the key pathway for organic acid secretion by PSF (Mäkelä

et al., 2010). The activity of various enzymes in the TCA cycle

determines the types and amounts of organic acids secreted

by PSF. For example, Fe-P supply significantly increased the

citrate synthase activity and promoted the secretion of citric

acid by PSF (Tian et al., 2021a). Meanwhile, constructing

Aspergillus niger strains with the oxaloacetate acetylhydrolase-

encoding gene can increase oxalic acid production by up to

3.1 times (Xu et al., 2019). Therefore, modifying environmental

factors and genetically engineering fungi to enhance organic acid

production are crucial strategies for strengthening PSF efficiency in

IPs dissolution.

3 Environmental factors a�ecting IPs
dissolution by PSF in soil

3.1 Soil acidity and alkalinity

PSF dissolves IPs are generally more efficient in acidic soil

than in alkaline soil. In acidic soil, the fungal abundance,

microbial respiration, organic acid secretion, and phytase activity

of PSF are higher than in alkaline soil (Adnan et al., 2022;

Jin et al., 2022; Chandra et al., 2024). In the case of PSF, the

abundance of Aspergillus niger in acidic red soil (pH 4.58) is

approximately ten times greater than in alkaline red soil (pH

8.28) (Su et al., 2023). Generally, low soil pH values favor fungal

growth, and high soil pH values promote bacterial growth (Su et al.,

2023).

3.2 Soil minerals

The influence of soil minerals on the biological process of IPs

dissolution by PSF is both beneficial and detrimental (Su et al.,

2021). The soil mineral montmorillonite can enhance respiratory
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metabolism and oxalic acid secretion of PSF to improve the P-

release capacity (Su et al., 2021). In contrast, other minerals

(such as Calcium-bearing minerals) can also inhibit IPs dissolution

by PSF via the adsorption of organic acids (do Nascimento

et al., 2021; He et al., 2022). Specifically, carbonate can deplete

the secreted oxalic acid to form stable calcium oxalate crystals,

limiting IPs dissolution by PSF (Tian et al., 2021b). In general,

soil minerals have a negative impact on the dissolution of IPs

by PSF.

3.3 NO–
3
-N and NH+

4
-N

Nitrogen can significantly affect the phosphate-solubilizing

capacity of PSF. Typically, the supply of NO−

3 -N is more efficient

than NH+

4 -N in IPs dissolution by PSF. Nitrogen forms can

significantly affect the secretion of organic acids by PSF. For

example, PSF Aspergillus niger predominantly secrete citric and

malic acids in the supply of NH+

4 -N, while it primarily secrete

oxalic acid under NO−

3 -N conditions (Gadd et al., 2014). NO−

3 -N

stimulates the secretion of oxalic acid by Aspergillus niger primarily

through the upregulation of the oxaloacetate acetylhydrolase

(OAH) gene (Kobayashi et al., 2014). Oxalic acid is the primary

organic acid that functions in IPs dissolution by PSF due to the

high acidity constant (Feng et al., 2022). Consequently, the form

of nitrogen can modulate the activity of enzymes involved in the

TCA cycle of PSF, thereby impacting their IPs dissolution capacity.

3.4 IPs types

The different phosphates can affect the types and amounts

of organic acids secreted by PSF (Tian et al., 2021a). Compared

with Fe-P and Al-P, PSF is more effective in promoting P release

from Ca-P (Tian et al., 2021a). On the one hand, Ca-P promotes

PSF to secrete more oxalic acid compared with Fe-P (Wang

et al., 2023a). On the other hand, oxalic acid secreted by PSF

can combine with Ca2+ to form relatively stable calcium oxalate

crystals, which can promote the release of P from Ca-P (Tian

et al., 2021a; Wang et al., 2022). Therefore, Ca-based phosphate

fertilizer shows excellent potential in producing “ phosphate-based

biofertilizer ”.

4 Application of PSF in soil P cycle,
crop yield, and heavy metal
remediation

PSF can significantly increase soil P effectiveness and plant

P uptake (Ahmad et al., 2013; Fiuza et al., 2022). For instance,

Trichoderma harzianum inoculation can increase wheat biomass

and plant P content and improve crop yield (Akbar et al., 2023).

The combination of native arbuscular mycorrhizal fungi (AMF)

and PSF (Aspergillus niger and Penicillium brevis) can significantly

enhance soil available P, stimulate phosphatase activity in the coffee

rhizosphere and promote coffee growth (Rojas et al., 2019). More

importantly, multiple field experiments demonstrated that the

application of “ phosphate-based biofertilizer ” (PSF and apatite)

can significantly improve soil P utilization and enhance crop quality

and yield (da Silva et al., 2017; Arias et al., 2023; Wang et al.,

2023b). Compared with chemical phosphate fertilizers, inoculating

with PSF can increase approximately 30% P uptake efficiency and

approximately 16% yield of eggplant (Yin et al., 2021). Meanwhile,

the absorption efficiency of soybeans for phosphate rock powder

also improved by 56.1% after Trichoderma inoculation (Bononi

et al., 2020). Even in barren desert soils, adding silicon (Si) can

enhance the phosphate solubilization of fungi by 50%, providing

a promising solution to P deficiency in desert soils (Ameen et al.,

2019).

The combination of PSF and apatite also shows excellent

potential in the remediation of heavy metal-contaminated soil

(Tian et al., 2018, 2022b). Oxalic acid secreted by PSF can also

react with heavy metal cations (e.g., Pb2+) to form insoluble oxalate

minerals, e.g., lead oxalate (Li et al., 2016b; Tian et al., 2023). The

combination of Penicillium oxalicum and tricalcium phosphate not

only increases soil available P but also reduces the environmental

exposure toxicity of soil Pb (Hao et al., 2022).

5 Potential pathways to enhance the
insoluble phosphate solubilization and
application of PSF

PSFs can secrete large amounts of organic acids to promote

P release from IPs in soil. The critical enhancements that

improve the dissolution of IPs by PSF are fungal bioactivity

and organic acid secretion capacity. However, the application

of PSF in agricultural production also faces several limitations,

including inconsistent performance and poor environmental

adaptability. Hence, improving the IPs dissolution by PSF remains

a considerable challenge in the future. Firstly, screening and

cultivating more efficient and adaptable PSF and using genetic

engineering to improve existing strains is necessary. Secondly,

modifying environmental factors like soil pH and organic matter

content to create more favorable conditions for the PSF. Thirdly,

developing multifunctional composite biofertilizer products of

PSF. Lastly, conducting long-term field experiments to accumulate

application data of PSF under different soil types and climatic

conditions. Overall, improving the practical application effect

of PSF in agricultural production requires further attention in

the future.
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