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Botrytis cinerea, a necrotrophic phytopathogen responsible for gray mold 
disease, poses a significant threat to global postharvest horticultural production 
due to substantial spoilage of fruits and vegetables. This study systematically 
investigated the antifungal efficacy and molecular mechanisms of terpinen-4-ol 
against B. cinerea. Terpinen-4-ol exhibited a broad-spectrum of antifungal activity, 
significantly inhibiting both mycelium growth and conidial viability of B. cinerea. 
Further analyses revealed that terpinen-4-ol disrupted cell membrane integrity and 
induced reactive oxygen species (ROS) accumulation. The inhibitory effect may 
be attributed to its ability to promote ROS accumulation and induce autophagy 
activity, thereby disrupting the intracellular redox balance and autophagic processes 
in fungi, ultimately leading to apoptosis via a metacaspase-dependent pathway. 
Altogether, these findings revealed a specific antifungal mechanism of terpinen-
4-ol against B. cinerea, suggesting its potential as an effective preservative for 
postharvest preservation of fruits.
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Introduction

Gray mold, caused by Botrytis cinerea, is widely acknowledged as the most economically 
important postharvest disease impacting the global production of food and ornamental plants 
(Williamson et al., 2007). Traditionally, chemical control through the application of fungicides 
has been the primary method for managing gray mold (Smilanick et al., 2010). However, the 
growing global concerns regarding the environmental impacts and human health risks 
associated with chemical residues have spurred interest in developing sustainable alternatives 
(Combrinck et al., 2011; Hussin et al., 2021). Among these alternatives, plant-derived essential 
oils (EO), have emerged as promising candidates due to their broad-spectrum antimicrobial 
activity, biodegradability, and eco-friendly properties (Pan et al., 2023; Utama et al., 2020), 
demonstrating significant potential in controlling plant pathogens and extending the shelf-life 
of perishable commodities (Doyle and Stephens, 2019).

Numerous studies have demonstrated the in vitro efficacy of EO in inhibiting postharvest 
fungi (Lopez-Reyes et al., 2013). Among these, tea tree oil (TTO) extracted from Melaleuca 
alternifolia has been widely used to treat various conditions in human and animal, and is 
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considered as an effective alternative to the most commonly used 
antifungal agents (Shao et al., 2013; Terzi et al., 2007). In in vitro 
experiments showed, TTO vapour effectively suppresses conidial 
germination and mycelial growth of the main postharvest pathogens 
including Fusarium spp. and Rhizopus stolonifera (Jing et al., 2014; 
Jung et al., 2014). However, further investigation is required to explore 
the volatile active constituents of TTO and their antifungal activity 
against phytopathogens.

Terpinen-4-ol [3-cyclohexen-1-ol,4-methyl-1-(1-methylethyl)-, 
(R)-] is a terpene that serves as the primary component of TTO and is 
also found in various other plants, such as Alpinia zerumbet and 
Eucalyptus species from Hajeb Layoun arboreta in Tunisia (De et al., 
2018; Hart et  al., 2000; Swords and Hunter, 1978). Additionally, 
terpinen-4-ol has been shown efficacy against fungal species such as 
Aspergillus flavus, Candida spp., Saccharomyces cerevisiae, and other 
yeast species, primarily through membrane-targeted mechanisms (Avis 
and Belanger, 2001; Yalage Don et al., 2021), including increasing cell 
membrane permeability, compromising cell membrane integrity, 
inducing ROS accumulation, affecting protein and DNA synthesis, and 
reducing ATP content (Ren et al., 2024; Yu et al., 2015; Zhang et al., 
2018). Additionally, it has also been shown to improve disease resistance 
in strawberry fruit by activating the phenylpropanoid metabolism 
pathway (Li et al., 2020). Given its antimicrobial properties, terpinen-
4-ol has garnered significant scientific interest (Nogueira et al., 2014).

Based on this, our study systematically evaluates the antimicrobial 
potential of terpinen-4-ol against B. cinerea, and the possible 
mechanism. The study revealed that terpinen-4-ol exhibits broad-
spectrum antifungal activity, exerting inhibitory effects against both 
fungi and oomycetes. The mechanistic investigations indicate that 
terpinen-4-ol disrupts plasma membrane integrity, induces ROS 
accumulation, triggers ER-phagy and autophagy processes, and 
activates metacaspase-dependent apoptosis in B. cinerea. Moreover, 
its effectiveness in reducing pathogenicity on tomato leaves, tomatoes, 
and strawberries underscores its applicability in postharvest 
disease management.

Materials and methods

Fungal strains

The B. cinerea strain 05.10 was maintained in our laboratory. 
Other phytopathogenic strains, including F. oxysporum, 
F. graminearum, Valsa mali, Phomopsis vaccinii, Pestalotiopsis theae, 
Rhizoctonia solani, and the oomycete Phytophthora capsici, were also 
cultured on potato dextrose agar (PDA) at 25°C under dark conditions.

The BcRtn1-GFP, BcIlv2-GFP, BcGFP-SKL, and GFP-BcAtg8 
strains were described previously (Wang et al., 2023) and available 
from the corresponding author’s laboratory. The ΔBcMca1, ΔBcMca2, 
and ΔBcMca1Mca2 mutants (Wang et al., 2023) were maintained in 
our laboratory. All these strains were also cultured on potato dextrose 
agar (PDA) at 25°C under dark conditions.

Materials and reagents

Fresh tomato leaves were harvested from greenhouse-grown 
plants, while fresh tomatoes and strawberries were obtained from 

local markets. Terpinen-4-ol (95% purity; CAS: 20126-76-5) was 
purchased from Macklin (Shanghai, China). Propidium iodide (PI), 
2′,7′-dichlorofluorescein diacetate (DCFH-DA), N-(3-
triethylammoniumpropyl)-4-(6-(4-(diethylamino) phenyl) 
hexatrienyl) pyridinium dibromide (FM4-64) and annexin V-PE were 
purchased from Beyotime Biotechnology (Shanghai, China).

Antifungal activity of terpinen-4-ol on 
plant pathognes in vitro

Terpinen-4-ol was added to PDA to achieve the desired final 
concentration of 0, 0.2, 0.4 and 0.8 μl/ml. Mycelial plugs (5 mm in 
diameter) of the plant pathogens and the B. cinerea mutants ΔBcMca1, 
ΔBcMca2, and ΔBcMca1Mca2 were inoculated onto PDA plates, 
which were then incubated at 25°C in the dark for 3 days. The colony 
diameter was measured, excluding the original plug size. Conidial 
germination assays were conducted in a 96-well microtiter plate, with 
180 μl of spore suspension (4.6 × 104 spores/ml) in each well. The 
conidial suspensions were treated with different concentrations of 
terpinen-4-ol (0, 0.2, 0.4 and 0.8 μl/ml). The germination rate of the 
conidia was then estimated after incubation at 25°C for 6 h. Three 
independent technical replicates were performed.

Testing the inhibitory effect of terpinen-4-
ol on pathogenesis

Conidia of B05.10 were collected from 7-day-old PDA cultures. 
Conidial concentration was determined microscopically using a 
hemocytometer and adjusted to 4.5 × 104 conidia/ml. Detached leaves 
from 4-week-old tomato plants received 30 μl terpinen-4-ol sprays (0, 
0.2, 0.4 or 0.8 μl/ml). After 4 h air-drying, leaves were inoculated with 
mycelial plugs. The antifungal activity was further assessed using 
commercially available mature tomatoes and strawberry fruits with 
artificial equatorial wounds (diameter 1 mm). The wounds were 
sprayed with 0.4 μl/ml terpinen-4-ol or H2O for 4 h, then inoculated 
with either 5-mm mycelial plugs or 20 μl of conidial suspension, and 
finally incubated in an airtight box. After 3 days, fruits were 
maintained at room temperature (95% humidity) for a further 3 days 
before the lesion diameters were measured.

Fluorescence microscopy

The conidia suspension of B. cinerea was inoculated into 100 ml 
of yeast extract-peptone-dextrose (YEPD) liquid medium and 
incubated at 25°C at 120 rpm for 24 h. The B. cinerea mycelia were 
treated with 0.1 μl/ml of terpinen-4-ol, while a control group remained 
untreated. Following an additional 4 h of incubation under the same 
conditions, the mycelia were harvested and stained with PI (20 μg/ml) 
to assess cell membrane integrity and with DCFH-DA (10 μM) to 
detect intracellular ROS. Apoptosis was determined by Annexin V-PE 
assay. Fluorescence was examined using an Olympus fluorescence 
microscope (Tokyo, Japan). All experiments were performed 
according to the protocol described in the kit instructions.

To examine whether terpinen-4-ol affects selective or 
non-selective autophagy, conidia of these strains expressing 
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GFP-tagged markers (BcRtn1-GFP, BcIlv2-GFP, BcGFP-SKL, and 
GFP-BcAtg8) were cultured in YEPD liquid medium at 25°C for 24 h. 
The mycelia were then exposed to 0.1 μl/ml of terpinen-4-ol or H2O 
for 4 h, as previously described. The samples were stained with FM 
4–64, and the fluorescence was examined using an Olympus 
fluorescence microscope (Tokyo, Japan) (Meng et al., 2025).

Protein extraction and Western blotting

The wild-type strain B05.10 and gene-overexpressing strains, 
including the GFP-BcAtg8, BcRtn1-GFP, BcGFP-SKL, and 
BcIlv2-GFP strains, were cultivated in YEPD liquid medium at 25°C 
in a 120-rpm shaker for 24 h. Subsequently, the cultures were treated 
with terpinen-4-ol or H2O for an additional 4 h as previously 
described. Mycelia were then harvested and resuspended in protein 
extraction buffer. Equal volumes of protein extracts from each strain 
were separated by SDS-PAGE and transferred to polyvinylidene 
fluoride membranes. Immunoblotting was performed using an 
anti-GFP antibody (Cat# 32146, Thermo Fisher Scientific) at a dilution 
of 1:5,000, with an anti-actin antibody (Abcam, Cambridge, MA, 
USA) serving as a reference.

RNA preparation and quantitative real-time 
PCR (qRT-PCR) analysis

For the analysis of BcMac1 and BcMac2 gene expression, total 
RNA was extracted from B. cinerea mycelia under two conditions: 
B. cinerea treated with either terpinen-4-ol or H2O, and B. cinerea 
treated with either terpinen-4-ol or H2O during subsequent 
pathogenicity assays. RNA isolation was carried out using the TRIzol 
method (TaKaRa, Japan) in accordance with the manufacturer’s 
instructions. The PrimeScript RT Reagent Kit with gDNA Eraser 
(TaKaRa) was employed for reverse transcription of total RNA. TB 
Green® Premix Ex Taq (TaKaRa) was used to qRT-PCR analyses. 
Transcript levels were normalized to the expression of the β-actin gene.

Statistical analyses

All experimental data are presented as the means ± the standard 
errors. Statistical differences were analyzed using analysis of variance 
(ANOVA) and followed by Duncan’s multiple range tests in SPSS 21.0 
(SPSS Inc.). A value of p < 0.05 was considered statistically significant.

Results

Antifungal activity of terpinen-4-ol against 
plant pathogens

The antifungal efficacy of terpinen-4-ol was evaluated against 
eight plant pathogens, including fungal and oomycete species, by 
measuring colony diameter on PDA. Terpinen-4-ol exhibited 
significant antifungal activity against all eight pathogens, with colony 
growth inhibited in a concentration-dependent manner (Figure 1A). 
In the control group, the colony exhibited unrestricted radial 

expansion, whereas terpinen-4-ol-treated colonies displayed 
concentration-dependent growth retardation with significantly 
reduced final diameters. Notably, complete mycelial growth inhibition 
of B. cinerea and V. mali was achieved at 0.8 μl/ml terpinen-4-ol. From 
the perspective of antifungal activity, terpinen-4-ol exhibited the 
strongest inhibitory effect against B. cinerea, with an inhibition rate of 
86% at a concentration of 0.4 μl/ml (Figure  1B). Consequently, 
B. cinerea was selected for further mechanistic studies due to its 
exceptional sensitivity.

To assess the inhibitory effect on conidial germination, B. cinerea 
conidial suspensions were prepared and incubated on slide containing 
terpinen-4-ol at concentrations of 0, 0.05, 0.1, 0.2, 0.4 μl/ml. Conidial 
germination rates were suppressed by terpinen-4-ol in a concentration-
dependent manner, showing significant inhibition at 0.2 μl/ml 
(Figure 1C). These results demonstrate that terpinen-4-ol possessed 
an ability to impair both mycelial growth and conidial germination in 
B. cinerea.

Terpinen-4-ol disrupts plasma membrane 
integrity and induced ROS accumulation

To further investigate the effect of terpinen-4-ol on B. cinerea 
plasma membrane integrity, the cell membrane integrity was assessed 
by PI staining. Compared to the control group, terpinen-4-ol-treated 
mycelia exhibited pronounced red fluorescence (Figure 2A). This 
result demonstrates that terpinen-4-ol has the capacity to disrupt cell 
membrane integrity. Additionally, many plant derived compounds 
strongly induced ROS production, therefore ROS accumulation was 
monitored using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-
DA) staining. The terpinen-4-ol-treated group showed a significant 
increase in fluorescence intensity, whereas no such increase was 
observed in the control group (Figure 2B). These findings suggest that 
terpinen-4-ol exerts antifungal activity against B. cinerea by 
disrupting plasma membrane integrity and promoting 
ROS accumulation.

Terpinen-4-ol induces ER-phagy and 
autophagy

To investigate whether terpinen-4-ol induces ER-phagy in 
B. cinerea, strains expressing fluorescent markers were analyzed. In the 
BcRtn1-GFP (ER marker) strain treated with terpinen-4-ol, GFP 
fluorescence was localized in the cytoplasm and vacuole, whereas GFP 
fluorescence in the BcRtn1-GFP strain without terpinen-4-ol 
treatment mainly localized in the ER (Figure  3A). In contrast, 
mitochondria-localized BcIlv2-GFP and peroxisome-targeted 
BcGFP-SKL strains treated with terpinen-4-ol showed no difference 
from control group (Figures 3B,C). Furthermore, the autophagic flux 
was analyzed using GFP-BcAtg8. GFP fluorescence was detected in 
both the cytoplasm and vacuoles of the GFP-BcAtg8 strain treated 
with terpinen-4-ol, confirming the induction of autophagy 
(Figure 3D). Next, the process of autophagy was observed through the 
use of immunoblotting. The results showed that the proportion of free 
GFP in the terpinen-4-ol-treated mycelia was significantly higher than 
that of the H2O-treated mycelia (Figures 3E,F). Collectively, these 
results indicated that terpinen-4-ol specifically triggered ER-phagy 
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FIGURE 1

Inhibitory effects of terpinen-4-ol on mycelial growth. (A) Terpinen-4-ol inhibits the mycelial expansion of phytopathogens after 4 days of growth on 
PDA plates supplemented with increasing concentrations of terpinen-4-ol. (B) Statistical analysis of inhibition rate. (C) Inhibition rate of conidial 
germination in Botrytis cinerea under different concentrations of terpinen-4-ol. Each value represents the mean of triplicate measurements, while the 
vertical bar indicates the standard error. Different letters denote statistically significant differences (p < 0.05).

FIGURE 2

Effects of terpinen-4-ol on cell membrane integrity ROS accumulation. (A) Cell membrane integrity after conidial germination treated with terpinen-4-
ol was observed using fluorescent dye PI. (B) ROS accumulation in conidial germination exposed to terpinen-4-ol for 4 h at 25°C, were visualized by 
fluorescent staining with DCFH-DA.
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and autophagy in B. cinerea, but did not affect mitophagy and 
peroxisomal degradation.

Terpinen-4-ol induces apoptosis 
dependent on metacaspases

Previous studies have shown that terpinen-4-ol induces ROS 
accumulation, a known trigger of apoptotic cell death. In yeast, the 
metacaspase Yca1 mediates oxidative stress induced programmed cell 
death. To investigate the role of metacaspases in terpinen-4-ol-
induced apoptosis in B. cinerea, we analyzed the expression levels of 
BcMca1 and BcMca2 in B05.10 mycelia treated with either terpinen-
4-ol or H2O. Notably, terpinen-4-ol significantly upregulated BcMca1 
expression (Supplementary Figure S1). To further confirm this 
observation, we  investigated two single-gene deletion mutants 
(ΔBcMca1 and ΔBcMca2) as well as a double-deletion mutant 
(ΔBcMca1Mca2) strains in our further study. The antifungal sensitivity 

of these mutants was assessed by culturing the wild-type B05.10 strain 
and mutants on PDA amended with gradient concentrations of 
terpinen-4-ol. After 4 days, the ΔBcMca1 and ΔBcMca1Mca2 mutants 
showed decreased sensitivity to terpinen-4-ol compared to that of 
B05.10. However, ΔBcMca2 displayed no phenotypic divergence from 
B05.10 (Figures 4A,B). To further evaluate apoptosis, we conducted 
annexin V-PE and DAPI staining. Notably, POH treatment induced 
phosphatidylserine exposure on the outer membrane leaflet in both 
B05.10 and ΔBcMca2 mutants (Figure 4C); whereas no such exposure 
was detected in either ΔBcMca1 or ΔBcMca1Mca2 mutants. Based on 
the above results we speculated that terpinen-4-ol activates apoptosis 
in B. cinerea through the metacaspase BcMca1-dependent pathway.

Antifungal efficacy on pathogenicity

The potential inhibitory effect of terpinen-4-ol on the 
pathogenicity of B. cinerea was evaluated using detached tomato 

FIGURE 3

Effects of terpinen-4-ol on Botrytis cinerea autophagy. Strains BcGFP-SKL (A), BcRtn1-GFP (B), BcIlv2-GFP (C), and GFP-BcAtg8 (D) were incubated in 
YEPD for 12 h and treated with terpinen-4-ol for 4 h. Then fluorescence was observed with a microscope after staining with FM4-64 for 30 to 45 min. 
Immunoblot analysis of BcRtn1-GFP (E) and GFP-BcAtg8 (F) proteolysis.
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leaves, tomato and strawberry fruits. In the detached leaf assay, 
terpinen-4-ol significantly reduced the pathogenicity of B. cinerea 
in a dose-dependent manner, with a notable reduction in lesion 
diameter observed at 2 days post-inoculation (dpi) (Figure 5A). 
Additionally, the antifungal efficacy of terpinen-4-ol was further 
evaluated on tomato fruits. After 3 days of storage, mycelial plugs 
of B. cinerea inoculated onto tomato treated with terpinen-4-ol 
(0.4 μl/ml) exhibited significantly smaller lesion diameters 
compared to those untreated controls (Figure  5B). Similarly, 
conidial suspensions of B. cinerea inoculated onto strawberries 
treated with terpinen-4-ol (0.4 μl/ml) resulted in significantly 
reduced lesion diameters after 3 days of storage (Figure 5C). These 
results demonstrated that terpinen-4-ol effectively inhibited the 
pathogenicity of B. cinerea on both tomato and strawberry fruits. 

We  further examined the expression level of the BcMac1 and 
BcMac2 genes in tomato leaves following terpinen-4-ol treatment 
during the pathogenicity assay. The results revealed that BcMac1 
expression was significantly higher than that of BcMac2, indicating 
that terpinen-4-ol treatment induced the apoptosis in gray mold 
during host infection.

Discussion

Terpinen-4-ol, a naturally derived monoterpenoid alcohol 
recognized for its biosafety and broad-spectrum antifungal activity 
has emerged as a promising plant-derived fungicide for controlling 
postharvest diseases caused by phytopathogenic fungi. The present 

FIGURE 4

Effects of terpinen-4-ol on metacaspases mutant in Botrytis cinerea. (A) ΔBcMca1 and ΔBcMca1Mca2 strains exhibited resistance to terpinen-4-ol, 
ΔBcMca2 strain show no resistance on PDA medium after 3 days under terpinen-4-ol stress. (B) Inhibition rate in three mutants. (C) Detection of 
apoptosis in B05.10 and mutants using Annexin V-PE and DAPI staining. Each value represents the mean of triplicate measurements, while the vertical 
bar indicates the standard error. Different letters denote statistically significant differences (p < 0.05).
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study demonstrated that terpinen-4-ol controlled the B. cinerea 
development in friuts by inducing cell apoptosis.

The accumulation of intracellular ROS has been established as a 
biochemical hallmark preceding apoptotic initiation (Liang et  al., 
2023). Apoptosis is a classical execution pathway of cell death and a 
highly regulated process that occurs naturally in multicellular 
organisms (Tkachenko, 2024). Previous studies have demonstrated 
that treatment with potato glycoside alkaloids elicited significant 
upregulation of NADPH oxidase (NOX) and superoxide dismutase 
(SOD), which ultimately leads to apoptosis in F. solani (Sun et al., 
2024). Terpinen-4-ol induces ROS accumulation in F. sambucinum 
and F. solani, then further activated the caspase in Penicillium italicum, 
a critical protease to initiate apoptosis program (Duru et al., 2003). 
The ROS-mediated apoptosis in A. flavus may involve mitochondrial 
cytochrome c translocation to the cytosol, where it initiates 
apoptosome assembly (Ma et al., 2022). However, direct evidence 
confirming apoptotic progression in these fungal species remained 
elusive. In the present study, B. cinerea emitted green fluorescence 
after terpinen-4-ol treatment. In contrast, only a few spores in the 
control emitted green fluorescence, and the fluorescence was weak and 
sparse. This result revealed that terpinen-4-ol elicited ROS 
accumulation, which further induced apoptosis. This conclusion is 
supported by the reduced sensitivity of the ΔBcMca1 mutant to 
terpinen-4-ol, indicating that BcMca1 plays a crucial role in mediating 
apoptosis in response to oxidative stress. Thus, both assays above 
confirmed that terpinen-4-ol triggered cell apoptosis in B. cinerea. The 
results were consistent with our previous observations of 
perillaldehyde-mediated apoptosis (Wang et  al., 2023). Therefore, 
we speculated that terpinen-4-ol induces apoptosis mediated by ROS 
accumulation in B. cinerea through a metacaspase-dependent 
pathway. This mechanism is similar to that observed in A. flavus and 

yeast, where the metacaspase Yca1 is involved in programmed cell 
death under oxidative stress (Lam and Sherlock, 2023; Qu et al., 2019). 
Our study provides further evidence of the conserved role of 
metacaspases in fungal apoptosis and highlights the potential of 
terpinen-4-ol as a natural compound for inducing apoptosis in 
plant pathogens.

Many natural products have been demonstrated to simultaneously 
trigger autophagy and apoptosis in mammalian cells, mainly through 
modulation of the mTOR signaling pathway (Qin et al., 2024; Zhu 
et  al., 2022). Polyphenolic agents, including resveratrol and 
(−)-Epigallocatechin-3-gallate induces apoptosis and autophagy in 
cells by regulating Akt/mTOR signaling pathway (Yang et al., 2022; 
Yin et  al., 2021). Triterpenoid and flavonoid derivatives, such as 
celastrol, apigenin and genistein induces apoptosis and autophagy via 
the ROS/JNK signaling pathway or endoplasmic reticulum stress 
(Kayacan et al., 2021; Liu et al., 2019; Wu et al., 2024). In addition to 
inducing apoptosis via terpinen-4-ol treatment, endoplasmic 
reticulum autophagy and autophagy levels were significantly elevated. 
We hypothesised that excess autophagy leads to apoptosis. However, 
our current approach to evaluate metacaspase-mediated apoptosis 
through radial growth inhibition assays of deletion mutants on 
terpinen-4-ol-containing plates has certain limitations. While this 
indirect method suggests that terpinen-4-ol-induced apoptosis 
requires metacaspase activity, it cannot provide definitive mechanistic 
evidence. Sousa et al. demonstrated that YCA1 deletion strains exhibit 
significantly increased resistant to nickel oxide nanoparticles (NiO 
NPs) toxicity, which suggests that NiO NPs-induced apoptosis is 
caspase-dependent (Sousa et al., 2019).

Fungal cell membrane, enriched with diverse lipids, plays a critical 
role in maintaining cellular physiology (Ren et al., 2024). We found 
that a significant increase in PI influx following terpinen-4-ol 

FIGURE 5

Terpinen-4-ol impairs the pathogenicity of Botrytis cinerea on tomato plants and fruits of tomato, grapes, and strawberry. (A) Tomato leaves treated 
with or without terpinen-4-ol were inoculated with mycelial plugs with or without terpinen-4-ol, and incubated in a humid chamber at 25°C. 
(B) Tomatoes treated with or without terpinen-4-ol were inoculated with mycelial plugs, and incubated in a humid chamber at 25°C. (C) Strawberry 
were inoculated with 10 μl droplets of conidial suspension with or without 0.4 μl/ml terpinen-4-ol, and incubated in a humid chamber at 25°C.
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treatment indicated irreversible membrane damage. This result was 
consistent with previous publications, while terpinen-4-ol showed a 
stronger ability to induce cell membrane damage to spores of 
B. cinerea than in A. flavus (Ren et al., 2024). Due to the lipophilic 
nature of fungal cell membranes, it is one of the main targets of 
essential oils (Tian et al., 2012; Yu et al., 2015).

Conclusion

In summary, terpinen-4-ol exhibits potent antifungal activity 
against Botrytis cinerea through multiple mechanisms, including the 
disruption of cell membrane integrity, induction of ROS accumulation, 
activation of apoptosis via the metacaspase BcMca1 pathway, and 
induction of ER-phagy and non-selective autophagy. Since our study 
only evaluated terpinen-4-ol-induced apoptosis in metacaspase 
mutants, these findings have certain limitations, and further 
experiments are required for validation. Nevertheless, the ROS 
induction assay, combined with mutant sensitivity assay and annexin 
V-PE staining, confirmed that terpinen-4-ol triggers apoptosis 
through the metacaspase-dependent pathway. These findings highlight 
the potential of terpinen-4-ol as a natural and effective antifungal 
agent for controlling plant pathogens and provide a foundation for 
further exploration of its application in agricultural and food 
preservation settings.
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