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Watermelon (Citrullus lanatus L.), a globally significant economic crop generating 
billions of dollars annually, faces severe production limitations due to persistent 
Fusarium wilt caused by continuous cropping. The disease emerges following 
watermelon cultivation, driven by the invasion of Fusarium oxysporum f. sp. 
niveum, the accumulation of allelochemicals in the rhizosphere, changes in soil 
properties, and disruptions to the soil microbial community. These factors interact 
complexly, influencing plant health and soil conditions. This review examines 
the causes and impacts of watermelon Fusarium wilt. It explores various control 
strategies, including developing resistant cultivars, adjusting planting systems and 
agricultural practices, soil fumigation, microbial inoculants, targeted fertilization, 
and reductive soil disinfection. Additionally, Future wilt control may leverage 
nanomaterial delivery systems for precisely targeted, environmentally sustainable 
fungicide applications in watermelon production. This review aims to establish 
a scientific foundation for preventing and controlling watermelon Fusarium wilt.
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1 Introduction

1.1 A brief introduction of watermelon

Watermelon (Citrullus lanatus L.) ranks among the world’s most consumed fresh fruits, with 
global production reaching approximately 100 million tons annually according to the Food and 
Agriculture Organization of the United Nations (FAO, 2023). It is an annual dicotyledonous 
herb and a monoecious plant belonging to the gourd family Cucurbitaceae. Watermelon 
originated in southern Africa and has undergone roughly 4,000 years of domestication and 
breeding (Guo et al., 2019). Watermelons have been selectively improved into modern cultivated 
varieties known for their sweetness (Paris, 2015). In addition to its high water content (~92%) 
and provides multiple bioavailable nutrients, including carbohydrates (mainly fructose), 
proteins, vitamins, and essential minerals (Seymen et al., 2021; Karin and Melanie, 2009). This 
unique nutritional composition, particularly its high water content and electrolyte balance, 
makes it an ideal rehydration source. Given the projected increase in global temperatures and 
heatwave frequency under climate change scenarios, watermelon’s dual role as both a hydrating 
food and nutrient source suggests its agricultural importance will grow substantially in 
coming decades.
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1.2 The continuous cropping obstacles of 
watermelon

Continuous cropping obstacles (CCOs) refer to the decline in 
crop yield or quality when the same crop or its related species are 
repeatedly grown on the same land (Wang K. et al., 2024). CCOs 
may arise due to three main factors: (i) shifts in microbial 
communities (Ma et  al., 2023); (ii) allelopathic effects (Chen 
et  al., 2023); and (iii) changes in nutrient availability (Zhang 
et  al., 2024). As the global population grows and arable land 
becomes increasingly limited, CCOs have become a significant 
challenge in intensive, large-scale agricultural and horticultural 
systems (Tan et al., 2021). Watermelon production is particularly 
vulnerable to CCOs. Under continuous monoculture, watermelon 
is highly susceptible to these obstacles, exhibiting symptoms such 
as high seedling mortality, stunted growth, reduced vigor, wilting, 
plant death, and declines in both yield and quality (Zhang et al., 
2022b). As a result, CCOs pose a major threat to the sustainable 
production of watermelon.

1.3 Remediation of watermelon CCOs

Over the past decades, various strategies have been explored 
to sustain watermelon production and mitigate CCOs. Most 
watermelon CCOs are caused by soilborne fungi, including 
Fusarium oxysporum f. sp. Niveum (FON), Sclerotium rolfsii, and 
Macrophomina phaseolina, which contribute to wilt disease in 
watermelon. The decade-long soil persistence of FON, mediated 
predominantly by its chlamydospores, represents a major obstacle 
for watermelon Fusarium wilt control (Zhang et  al., 2015; 
McKeen and Wensley, 1961). The pathogen spreads through 
spores, which germinate and develop into hyphae. These hyphae 
penetrate vascular tissues through wounds, producing 
microconidia that facilitate reproduction. As the plant dies and 
decomposes, FON is released back into the soil, perpetuating the 
disease cycle (Rahman et  al., 2021; Zhang et  al., 2015). 
Chlamydospores formed by FON under stress are key to its 
decade-long soil persistence, which drives the recurrence and 
spread of wilt disease (Akhter et al., 2016; Hudson et al., 2021). 
FON can also spread through soil transfer, plant transplantation, 
seed sowing, and contaminated runoff. Once an area becomes 
contaminated, the risk of disease recurrence remains high 
(Rahman et al., 2021). Additionally, the presence of wilt disease 
alters soil microbial communities. Following infection, fungal 
diversity in the soil decreases, allowing FON to dominate the 
microbial ecosystem and intensifying the severity of wilt and 
other soilborne diseases (Xu et al., 2020).

Multiple management strategies have been developed to 
control pathogen proliferation through distinct mechanistic 
pathways: grafting resistant rootstocks induces systemic 
resistance, optimized crop rotation disrupts pathogen life cycles, 
intercropping with antagonistic species modifies rhizosphere 
microbiomes, while precision fertilization protocols and targeted 
soil fumigation techniques collectively alter physicochemical 
parameters critical for fungal survival (Ding et al., 2021; Li et al., 
2019; Ling et al., 2015; Liu et al., 2023a; Lv and Yan, 2024; Yang 
et al., 2016).

1.4 Research status of watermelon wilt 
disease

To assess the research status of watermelon wilt disease, 
we conducted a literature search using the Web of Science platform. 
The search methodology is detailed in Supplementary Text S1. Using 
“wilt disease” as the search topic, we identified 10,590 publications 
from 2005 to 2024, among which only 2.93% (310/10,590) specifically 
addressed watermelon wilt disease, highlighting a critical research gap 
in this economically significant pathosystem (Figure  1). A 
co-occurrence network analysis of the keywords from these 310 
articles showed that “watermelon Fusarium wilt” was the most 
frequently occurring keyword, indicating that watermelon Fusarium 
wilt is a central research focus in studies on wilt diseases affecting 
watermelon (Figure 2A). Further analysis of keyword bursts revealed 
that FON has been a primary subject in recent studies on watermelon 
wilt disease (Figure 2B).

Watermelon wilt caused by FON is the most severe soilborne 
disease affecting watermelon worldwide and can occur at all growth 
stages. However, the most critical period is from vine elongation to 
fruit setting, when the disease reaches its peak severity. The wilting of 
leaves (early stage) and vascular browning (late stage) result from the 
pathogen’s invasion process: root penetration, xylem colonization with 
toxin and enzyme production, and eventual vascular blockage causing 
permanent wilt (Zhang et al., 2005). Research on watermelon wilt 
disease continues to evolve. This review will focus on the tripartite 
determinants of Fusarium wilt pathogenesis: FON virulence, 
allelopathic interference, and abiotic stress potentiation. The review 
will also address the detrimental impacts of the disease, particularly 
plant damage coupled with yield and fruit quality reduction, and soil 
ecosystem disruption. Additionally, it will explore disease prevention 
and control strategies, including breeding resistant varieties, 
optimizing land management practices, and applying chemical or 
biological treatments.

2 Causes of watermelon wilt disease

The development of watermelon wilt disease is influenced by 
multiple factors resulting from interactions between plant roots, soil 
physicochemical properties, and microbial communities. These 
factors collectively contribute to disease onset and progression.

2.1 Direct pathogenesis: Fusarium 
oxysporum f. sp. niveum

Watermelon wilt disease is a soilborne disease primarily 
caused by pathogenic microorganisms inhabiting the rhizosphere. 
Upon infection, these pathogens produce phytotoxic compounds 
such as fusaric acid, lycomarasmin, and dehydrofusaric acid, 
which promote tissue colonization and block vascular conduits, 
thereby disrupting water transport and ultimately inducing plant 
wilting (Rahman et  al., 2021; Michielse and Rep, 2009; Wang 
X. et al., 2024). Four distinct races of FON (race 0–3) have been 
identified based on their virulence and ability to infect different 
watermelon cultivars (Meru and McGregor, 2016). Race 0 is the 
least aggressive and only affects susceptible varieties lacking 
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resistance genes, such as “Sugar Baby” and “Black Diamond.” Race 
1 exhibits moderate pathogenicity and can infect some resistant 
cultivars, including “Charleston Gray.” Race 2 is highly virulent 
and can infect most watermelon varieties, causing severe wilt 
symptoms (Bruton et al., 2008). Race 3, first reported in 2006 and 
identified as a new race in 2009, represents the most aggressive 
strain of FON. As of 2018, no commercially available watermelon 
varieties have resisted race 3 (Amaradasa et  al., 2018; Zhou 
et al., 2010).

Significant progress has been made in understanding the 
pathogenicity of FON. Recent studies indicate that various 
proteins, including protein kinase FonKin4, the pumilio protein 
family (PUF), and the ubiquitin–proteasome system (UPS), play 
essential roles in the ability of FON to infect and colonize host 
tissues (Gao et al., 2023; Noman et al., 2023b; Wang J. et al., 2024). 
Genes responsible for encoding these proteins have been identified 
as virulence factors. For example, FonSMT3, FonAOS1, FonUBC9, 
and FonMMS21 are key components of the SUMOylation pathway, 

FIGURE 1

Number of publications related to watermelon and wilt disease from 2005 to 2024.

FIGURE 2

Co-occurrence network diagram (A) and the keyword bursts diagram (B) related to watermelon wilt disease.
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which regulates critical cellular and biochemical processes. 
Deleting these genes has been shown to significantly reduce the 
pathogenicity of FON (Azizullah et  al., 2023; Azizullah 
et al., 2024).

Additionally, mutations in genes such as FonNot2 have also been 
linked to decreased virulence (Dai et al., 2016). A complex network of 
multiple factors regulates the pathogenicity of FON. Further research 
is needed to elucidate the molecular mechanisms underlying FON 
infection in watermelon, which could aid in developing effective 
disease management strategies.

2.2 Effects of allelopathic chemicals

Allelopathic compounds, primarily secreted by plant roots and 
associated microorganisms, play a pivotal role in mediating 
interactions between plants and the rhizosphere microbiota 
(Supplementary Table S1). These chemicals, which include phenolic 
compounds, terpenes, flavonoids, polyacetylenes, and organic acids, 
can exert either stimulatory or inhibitory effects on neighboring 
organisms (Hao et al., 2010; Li et al., 2021; Polyak and Sukcharevich, 
2019). In watermelon (Citrullus lanatus L.), allelopathic interactions 
have been increasingly recognized as a key factor influencing the onset 
and progression of Fusarium wilt, primarily caused by FON.

Watermelon roots predominantly exude phenolic acids as 
allelochemicals, including cinnamic acid, vanillic acid, coumaric acid, 
and ferulic acid (Wu et  al., 2008a). These compounds have been 
demonstrated to act as autotoxins that inhibit seedling growth, with 
phytotoxic effects that may persist throughout the entire plant life 
cycle (Hao et al., 2007). Importantly, these autotoxins also influence 
the composition and stability of the rhizosphere microbial community. 
Disruption of microbial equilibrium can lead to reduced microbial 
antagonism against soilborne pathogens, thereby increasing the plant’s 
susceptibility to Fusarium wilt (Liu Q. et al., 2022).

Comparative studies across watermelon cultivars revealed 
significant differences in the types and relative proportions of phenolic 
acids. Wu et al. (2009) identified and classified 12 phenolic acids into 
antifungal and fungus-promoting groups, observing that the ratio of 
antifungal to fungus-promoting compounds was substantially lower 
in susceptible cultivars than in resistant ones. This finding suggests 
that a high abundance of fungus-promoting phenolic acids may 
compromise defense capacity in plants and contribute to 
disease development.

In addition to indirectly influencing FON through shifts in 
microbial dynamics, allelochemicals can also exert direct effects on 
the pathogen. Ferulic acid, at concentrations of 0.2 g·L−1, has been 
shown to stimulate hyphal growth, conidial germination, and 
mycotoxin production in FON, thereby exacerbating disease severity 
(Wu et al., 2010). Similarly, elevated levels (≥1.2 g·L−1) of specific 
amino acid have been found to promote FON growth and development 
(Liu et  al., 2009). On the other hand, certain naturally occurring 
compounds may enhance plant resistance to Fusarium wilt. For 
instance, palmitic acid, a saturated fatty acid, has been shown to 
activate host defense mechanisms. Its application leads to increased 
reactive oxygen species (ROS) production and upregulation of 
defense-related enzymes, resulting in a significant reduction in FON 
abundance and enhanced early-stage resistance in watermelon 
seedlings (Kou et al., 2021; Ma et al., 2021; Li et al., 2022).

Taken together, these findings highlight the dual role of 
allelopathic compounds as both risk factors and potential 
modulators in Fusarium wilt pathogenesis. A deeper understanding 
of their biosynthesis, accumulation, and ecological impacts may 
offer novel insights for the development of sustainable disease 
management strategies.

2.3 Abiotic exacerbating factors

In addition to microbial pathogens and allelopathic 
compounds, abiotic environmental conditions significantly 
influence the onset and severity of watermelon wilt disease. These 
factors can either directly affect the physiological state of the host 
plant or indirectly alter the composition and functional stability of 
the rhizosphere microbiome, thereby modulating plant-
pathogen interactions.

Soil physicochemical properties play a pivotal role in shaping 
disease dynamics. Soil pH, for instance, has been shown to affect both 
the growth of FON and the structure of microbial communities in the 
rhizosphere (hong et  al., 2013; Lv et  al., 2023). Suboptimal pH 
conditions, particularly acidification, can suppress beneficial microbial 
taxa while favoring pathogenic fungi (Das et al., 2022; Palmieri et al., 
2023). Likewise, low levels of soil organic matter and poor aeration 
reduce the abundance and activity of antagonistic microorganisms 
that otherwise suppress FON proliferation (Zheng et  al., 2024; 
Pommier, 2023). Soil compaction and poor drainage further 
exacerbate this imbalance by promoting anaerobic microenvironments, 
which impair root function and increase plant susceptibility to 
infection (Xu et al., 2025).

Nutrient availability and fertilization practices are also critical 
determinants of disease progression. Excessive nitrogen fertilization 
has been associated with increased disease incidence, likely due to 
enhanced pathogen growth and weakened host defenses (Sun et al., 
2021). High nitrogen levels may stimulate the production of pathogen-
derived phytotoxins such as fusaric acid and compromise systemic 
resistance in plants (Mur et al., 2017; Sun et al., 2020; Palmieri et al., 
2023). In contrast, deficiencies in potassium and phosphorus, which 
are essential nutrients for root development and immune signaling, 
have been shown to compromise plant defense mechanisms and 
enhance susceptibility to soilborne pathogens (Dutta et  al., 2024; 
Amtmann et al., 2008). Moreover, imbalanced nutrient regimes can 
modulate the production of root exudates, potentially altering the 
abundance and activity of pathogenic or beneficial microbes in 
the rhizosphere.

Environmental stressors such as extreme temperatures, drought, 
and flooding further intensify Fusarium wilt severity. Elevated soil 
temperatures not only enhance FON sporulation and virulence but 
also accelerate plant metabolic rates, often outpacing the activation of 
defense responses (Fawe et  al., 1998; Venkatesh and Kang, 2019). 
Drought conditions disrupt root integrity and restrict the movement 
of defense-related phytohormones, while excessive soil moisture 
reduces oxygen availability, exacerbating root hypoxia and facilitating 
pathogen ingress (Jogawat et al., 2021; Gusain et al., 2024). These 
environmental fluctuations may also induce shifts in root exudate 
composition, indirectly promoting the accumulation of autotoxins or 
pathogen-favoring compounds in the rhizosphere (Zhalnina 
et al., 2018).
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Collectively, these abiotic stressors interact in a complex and often 
synergistic manner with biotic factors, amplifying the risk of Fusarium 
wilt disease in watermelon. Integrated soil health management can 
suppress FON activity and reduce disease severity. Key strategies 
include adjusting pH, optimizing nutrients, improving drainage, and 
implementing crop rotations.

3 Harms of watermelon wilt disease

3.1 Plant damage and decline in yield and 
fruit quality

Once Fusarium wilt occurs in watermelon, it severely disrupts 
plant physiological functions, leading to significant reductions in both 
yield and fruit quality. Studies have shown that the pathogen FON 
exerts its pathogenicity primarily through the secretion of the 
secondary metabolite fusaric acid (FA). FA compromises the integrity 
of host cell membranes, induces excessive accumulation of 
mitochondrial reactive oxygen species (ROS), disrupts energy 
metabolism, and ultimately triggers programmed cell death (Xie et al., 
2019). Additionally, FA significantly inhibits the biosynthesis of 
photosynthetic pigments in leaves, thereby reducing photosynthetic 
efficiency and causing leaf wilting and necrosis (Singh et al., 2017). As 
the initial site of infection, the root system also experiences substantial 
damage; FA suppresses root cell dehydrogenase activity, decreases 
membrane potential, and impairs water and nutrient uptake (Wu 
et al., 2008b). Moreover, FA-induced oxidative stress leads to lipid 
peroxidation, resulting in structural deterioration of leaf cells and 
further weakening the overall vitality of plants (Iqbal et al., 2023).

Such systemic damage directly compromises the yield formation 
process in watermelon. In continuous cropping systems, field 
incidence rates often reach 10–80% (Yang B. et al., 2024; Banerjee 
et al., 2025). Additionally, infected plants exhibit shortened growth 
periods, reduced fruit set, and impaired fruit development, which 
collectively intensify yield losses (Tong et al., 2025; Zheng et al., 2024; 
Pal et al., 2020). The soil persistence and accumulation ability of FON 
creates ongoing risks for watermelon production and complicates 
Fusarium wilt control.

3.2 Disruption of soil ecosystem

As the disease progresses, a cascade of physicochemical and 
biological alterations occurs within the rhizosphere. Notably, soil 
acidification becomes pronounced due to a gradual decline in pH, 
accompanied by elevated electrical conductivity and salinity, which 
together accelerate the process of soil salinization (Zheng et al., 2024). 
These changes not only compromise aggregate stability and reduce 
porosity but also degrade the overall structure of the soil, thereby 
impairing its ability to support healthy plant growth (Alekseeva et al., 
2011; Pan et al., 2024). The resulting decrease in nutrient bioavailability 
often prompts growers to apply excessive amounts of chemical 
fertilizers in an attempt to sustain productivity. Overapplication of 
nitrogen-based fertilizers has been shown to suppress beneficial 
microbial taxa involved in key ecological functions, including 
antibiotic synthesis and nitrogen transformation (Fan et al., 2019; 
Zhang et  al., 2022b). This imbalance disrupts microbial-mediated 

nutrient cycling and weakens soil disease resistance mechanisms. 
Moreover, excessive nitrogen inputs disturb the stoichiometric balance 
of carbon, nitrogen, and phosphorus in the rhizosphere, leading to 
nutrient imbalances that further constrain plant productivity (Cui 
et al., 2024).

Management practices involving the application of broad-
spectrum fungicides, although aimed at disease suppression, often 
exert non-selective effects on soil microbiota. Such treatments can 
inhibit beneficial fungal populations and indirectly affect bacterial 
communities, particularly those involved in nitrogen cycling processes 
like ammonia oxidation (Carvalho, 2017; Luz et al., 2018; Meyer et al., 
2024). Additionally, the potential for fungicide residues to accumulate 
in plant tissues and enter the food chain raises concerns about their 
broader ecological and human health implications (Lv et al., 2022). 
Collectively, these findings underscore the urgent need to adopt 
integrated soil and disease management strategies that prioritize 
ecological balance and long-term soil health.

4 Remediation measures of 
watermelon wilt disease

To minimize the yield and economic losses associated with 
watermelon production, the prevention and control of watermelon 
wilt disease have become a key research focus. Significant progress has 
been made in recent years. By managing interactions among plants, 
soil, and microorganisms, crop health and resistance to wilt disease 
can be significantly improved (Tong et al., 2024). Control strategies 
include breeding and cultivating highly resistant varieties, adjusting 
cropping systems, soil fumigation, applying microbial agents, 
optimizing fertilizer use, and reductive soil disinfestation.

4.1 Agroecological control measures

Agroecological strategies, including the development of resistant 
cultivars, Anti-stress grafting technique, and the optimization of 
cropping systems, offer sustainable solutions for managing Fusarium 
wilt in watermelon. The effectiveness of host resistance is closely 
related to both the watermelon genotype and the specific FON race 
(Supplementary Table S2). Several cultivars and germplasms such as 
“Charleston Gray,” “Longke No.13,” “PI 296341” and “PI 271769” have 
shown resistance to races 0, 1, or 2 (Wu et al., 2019; Bruton et al., 2008; 
Su et al., 2024; Wechter et al., 2012; Zhou and Everts, 2003), but highly 
resistant varieties remain limited, and no commercial cultivars are 
currently available for race 3 (Zhou et al., 2010; Song et al., 2017). 
Although conventional breeding methods and molecular techniques 
such as marker-assisted selection and QTL mapping have accelerated 
progress (Branham et al., 2019; Fall et al., 2018; Yang et al., 2009), 
developing cultivars with durable and broad-spectrum resistance 
remains challenging. By combining vigorous, stress-resistant 
rootstocks with high-yielding, high-quality scions, grafting not only 
enhances crop resistance to diseases but also improves tolerance to 
drought, salinity, and heavy metal stress. For instance, in watermelon 
grafting trials, using pumpkin as a rootstock significantly reduced the 
incidence of Fusarium wilt and increased the activity of antioxidant 
enzymes, thereby improving the plant’s adaptability to environmental 
stress (Mashilo et al., 2023).
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Cropping system adjustments also play a key role in disease 
suppression. Crop rotation effectively suppresses Fusarium wilt 
through multiple mechanisms. Rice-watermelon rotation with 
intermittent flooding reduces FON populations (Ali et  al., 2020). 
Wheat rotation significantly restructures soil microbial communities, 
enhancing beneficial taxa (e.g., increasing Podospora by 97%) while 
suppressing pathogens (e.g., reducing Fusarium by 89%), thereby 
improving soil health and disease suppression (Tian et al., 2023; Hu 
et al., 2025). Watermelon-garlic rotation increased yield by 67% and 
reduced wilt incidence by 50% (Yang et al., 2016), with garlic root 
exudates containing antimicrobial diallyl disulfide (DADS) identified 
as a key mechanism (Ren et al., 2018). Intercropping with wheat or 
aerobic rice can suppress pathogen growth through allelopathy and 
rhizosphere modification (Hao et al., 2010; Ren et al., 2008; Ren et al., 
2016; Lv et al., 2018; Xu et al., 2015; Yu et al., 2019), though improper 
combinations may result in interspecies competition (Huang et al., 
2017). Common intercropping combinations for watermelon include 
aerobic rice and wheat. Studies have shown that intercropping with 
aerobic rice suppresses pathogen spore production and modifies the 
microbial community in rhizosphere soil by influencing watermelon 
root exudates, thereby reducing disease severity (Hao et al., 2010; Ren 
et al., 2016). Other cultural practices, including delayed transplanting 
under higher temperatures (Keinath et al., 2019) and grafting onto 
resistant rootstocks (Ge et al., 2022; Ling et al., 2015; Toporek and 
Keinath, 2020), further contribute to disease mitigation. The 
integration of these approaches enhances system-level resilience and 
supports long-term, sustainable management of Fusarium wilt 
in watermelon.

4.2 Soil fumigation

Soil fumigation is a widely used method for controlling soilborne 
diseases (Sennett et  al., 2022), including Fusarium wilt caused by 
FON. Fumigants evaporate and diffuse when applied to the soil, 
eliminating pathogens and beneficial microorganisms (Wang and 
Tang, 2024; Ge et al., 2021). Numerous studies have demonstrated the 
effectiveness of various fumigants in managing watermelon wilt 
disease. For example, ammonium bicarbonate (NH₄HCO₃) has been 
found to disrupt FON hyphae, causing fragmentation. Its effectiveness 
is further enhanced in acidic soils when combined with lime, 
increasing soil pH, improving nutrient availability, and boosting 
enzymatic activity (Li et al., 2019; Sun et al., 2015). Similarly, dazomet 
(C₅H₁₀N₂S₂) fumigation has increased soil phosphorus availability 
and enriched beneficial microorganisms, thereby enhancing 
watermelon resistance to FON infection (Zhu et al., 2020). Pic-Clor 
60, a mixture of 1,3-dichloropropene (C₃H₄Cl₂) and chloropicrin 
(CCl₃NO₂), has been reported to reduce FON populations by over 
90% while suppressing Meloidogyne spp. pathogens (Karki et  al., 
2022). However, the environmental persistence and non-target toxicity 
of synthetic fumigants necessitate alternative approaches (Tagele 
et al., 2021).

To address the limitations and environmental concerns associated 
with chemical fumigation, the development of safer and eco-friendly 
alternatives has gained increasing attention. Among these, 
biofumigation using cruciferous plants, particularly species from the 
Brassica genus, has shown promising potential due to their high 
glucosinolates content (Tagele et al., 2021). Although glucosinolates 

themselves have limited biocidal activity, their hydrolysis by 
myrosinase released upon tissue disruption produces isothiocyanates, 
which possess strong herbicidal and antimicrobial properties 
(Brennan et al., 2020; Zhang et al., 2019). Studies have shown that 
applying mustard plant extracts can reduce the incidence of Fusarium 
wilt in watermelon, enhance stress resistance, and promote seedling 
growth (Yuan et al., 2020). During biofumigation, the decomposition 
of Brassica tissues releases volatile compounds such as isothiocyanates 
and sulfur-containing substances, along with heat, which together 
inhibit pathogen growth (Liu et al., 2023b). Biofumigation combined 
with microbial inoculants improves soil nutrients, lowers pH, and 
reshapes fungal communities, mainly Ascomycota and Basidiomycota 
(95.14–96.17%), thereby creating a more favorable environment for 
watermelon growth (Chang et  al., 2022). Taken together, these 
findings highlight the multifaceted benefits of biofumigation as a 
sustainable strategy for enhancing soil health and promoting 
watermelon productivity in environmentally responsible 
agricultural systems.

4.3 Application of microbial agents

The direct application of beneficial microbial agents to the 
soil is an effective strategy for mitigating watermelon wilt. 
Various microbial species, including Bacillus spp., Pseudomonas 
spp., Trichoderma spp., Streptomyces spp., and nonpathogenic 
Fusarium spp., have been utilized for pathogen control (Figure 3) 
(Faheem et  al., 2015). These microorganisms promote plant 
health and growth through both direct and indirect mechanisms. 
Directly, they enhance plant development by improving nutrient 
availability, producing plant hormones, modifying enzyme 
activity, and generating antimicrobial compounds that inhibit or 
kill pathogens. Indirectly, certain microorganisms activate 
induced systemic resistance (ISR), strengthening plant immunity, 
making them more resistant to diseases and pests (Luo et  al., 
2023; Viaene et al., 2016).

Recent research has highlighted the potential of microbial-based 
technologies for controlling watermelon wilt. Noman et al. (2023a) 
developed biogenic manganese nanoparticles from Bacillus 
megaterium NOM14, which enhance various physiological processes 
in watermelon plants, thereby suppressing disease onset. Similarly, 
Trichoderma asperellum M45a has been shown to trigger defensive 
responses in watermelon roots against FON infection while increasing 
the diversity of beneficial rhizosphere bacteria (Zhang Y. et al., 2022). 
The solid fermentation products of Streptomyces ahygroscopicus strain 
769 improve rhizosphere microbial community composition, creating 
a highly interconnected microbial network that enhances the 
expression of resistance-related and auxin-regulated genes in 
watermelon, ultimately reducing the incidence of FON infection (Ge 
et al., 2024). In addition, inactivated FON mycelium has significantly 
enhanced soil enzyme activity and systemic resistance in watermelon 
plants. This treatment also improves the abundance and diversity of 
beneficial rhizosphere microorganisms while substantially reducing 
FON populations and disease severity (Xie et al., 2021). However, 
microbial agents containing a single strain are not always effective. A 
combination of multiple strains may improve efficiency and stability. 
For example, a mixture of Pseudomonas fluorescens P4 and Bacillus 
amyloliquefaciens XY-13 has demonstrated antagonistic effects against 
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11 pathogenic fungi, including FON, with an inhibition rate of up to 
78.17% against watermelon wilt (Yang D. et al., 2024). Similarly, a 
synthetic microbial consortium consisting of 16 core bacterial strains 
has been shown to mitigate watermelon wilt, with the synergistic 
interactions among these microorganisms playing a key role in disease 
suppression (Qiao et al., 2024).

4.4 Rational fertilization

Continuous cropping leads to the depletion and imbalance of soil 
nutrients, particularly in monoculture systems, which compromises 
plant resistance and increases susceptibility to soil-borne pathogens 
such as Fusarium oxysporum (Chen et  al., 2018). Improper 
fertilization, especially the excessive and long-term application of 
chemical fertilizers, not only fails to restore soil health but also 
disrupts microbial communities. High concentrations of chemical 
inputs reduce microbial diversity, suppress beneficial taxa such as 
nitrogen-fixing and phosphate-solubilizing bacteria, and increase soil 
salinity and acidification (Bitew and Alemayehu, 2017). These changes 
create favorable conditions for the survival and proliferation of 
pathogenic fungi, thereby intensifying the risk of wilt disease (Fu et al., 
2020; Zhang et al., 2022b).

In contrast, rational fertilization strategies, particularly those 
involving organic and bioorganic amendments, effectively alleviate 
soil nutrient stress and restore microbial balance. These inputs 
increase soil organic matter and improve the availability of key 
nutrients such as nitrogen, phosphorus, and potassium, which 
support plant development and metabolic resilience (Zhang et al., 
2022a). More importantly, organic fertilization enhances the 
abundance and activity of beneficial microbial groups such as Bacillus, 
Pseudomonas, and Trichoderma, which are known for their biocontrol 
functions (Li et al., 2024). Additionally, organic fertilizers improve soil 

structure and buffer capacity, raising pH levels and reducing the 
accumulation of toxic ions (Liu et  al., 2024). This creates a 
physicochemical environment less conducive to pathogen infection 
and colonization. The combined effects of microbial antagonism, 
improved nutrient dynamics, and enhanced root zone conditions 
contribute to a marked reduction in the incidence of watermelon wilt 
(Ling et  al., 2014; Zhang et  al., 2022b; Zhao et  al., 2018). These 
findings underscore the mechanistic advantages of rational 
fertilization in promoting plant health and maintaining soil 
ecological stability.

4.5 Reductive soil disinfestation

Reductive soil disinfestation (RSD) is a soil treatment method 
that creates strong reducing conditions to eliminate aerobic 
pathogens. Also known as anaerobic soil disinfestation or 
biological soil disinfestation (Lopes et al., 2022), this technique 
was first developed by researchers in Japan (Shinmura, 2000) and 
the Netherlands (Blok et al., 2000). RSD typically consists of four 
key steps (Figure 4). First, easily degradable organic materials are 
evenly mixed into the soil. Second, the soil is flooded to saturation. 
Third, the soil is covered with a plastic mulch film for several 
weeks to maintain anaerobic conditions. Finally, the plastic film is 
removed, and excess water is drained to prepare the soil for 
planting (Ueki et al., 2018). The effectiveness of RSD is attributed 
to several mechanisms. Anaerobic and high-temperature 
conditions impose stress on pathogens. Anaerobic bacteria 
decompose organic matter, producing compounds harmful to 
pathogens (Momma et al., 2006). Additionally, the process leads 
to the release of iron and manganese ions, which further 
contribute to pathogen suppression (Momma et al., 2011). RSD 
also induces shifts in soil microbial communities, favoring the 

FIGURE 3

Biocontrol microorganisms help watermelon plants resist attacks by Fon.
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proliferation of beneficial microbes (Hewavitharana and 
Mazzola, 2016).

While these mechanisms collectively contribute to effective 
pathogen suppression, the transient nature of RSD-induced soil 
modifications poses challenges for long-term disease control, as 
observed in subsequent cropping cycles. Studies have shown that 
RSD significantly reduces bacterial diversity and alters microbial 
community composition. However, after watermelon replanting, 
bacterial diversity gradually recovers (Meng et al., 2019). Liu et al. 
(2018) showed that RSD treatment effectively suppresses FON 
growth while promoting beneficial soil microbiota. This not only 
prevents watermelon wilt but also enhances plant growth. However, 
after subsequent watermelon planting, the microbial community 
structure tends to revert to its original state, allowing FON 
populations to recover and regain pathogenicity. Researchers 
suggest that watermelon root exudates may play a role in driving 
this phenomenon. To extend the efficacy of RSD, some researchers 
have tested prolonged treatment durations at low temperatures 
(3.3°C–12.2°C), which have been shown to further improve soil 
microbial communities and physicochemical properties while 
suppressing soilborne pathogens (Liu L. et al., 2022). While RSD 
effectively controls watermelon wilt, the risk of disease recurrence 
in subsequent plantings remains. Further research is needed to 

better understand the mechanisms behind this process and to 
develop strategies for extending the duration of RSD 
treatment efficacy.

5 Conclusions and future perspectives

Watermelon wilt disease, caused by FON, represents a significant 
threat to global watermelon production, particularly in continuous 
cropping systems. The pathogenesis involves dynamic tripartite 
interactions among: (i) FON virulence factors, (ii) allelochemical-
mediated rhizosphere feedbacks, and (iii) soil microbiome-
physicochemical co-dysregulation, culminating in systemic host 
physiological disruption and yield depression.

Current management strategies, including resistant varieties, soil 
fumigation, microbial agents, and reductive soil disinfestation, have 
shown partial success but require optimization for improved efficacy 
and sustainability. Future research should focus on four key 
directions: First, advancing breeding programs through multi-omics 
approaches to develop durable resistant cultivars. Second, 
engineering precision microbiome solutions that simultaneously 
target pathogens, degrade allelochemicals, and enhance plant 
immunity. Third, exploring innovative nanotechnology applications 

FIGURE 4

Schematic of the four-step reductive soil disinfestation (RSD) process.
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for targeted delivery of antifungal compounds. Fourth, optimizing 
integrated soil health management practices tailored to 
regional conditions.

This comprehensive approach, balancing scientific innovation 
with practical application, will be crucial for ensuring the long-term 
sustainability of watermelon production while maintaining 
environmental integrity and meeting global food demands. Future 
studies should prioritize field validation of emerging technologies and 
economic feasibility assessments to facilitate widespread adoption.
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