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Objectives: This study preliminarily examines the potential correlation between
the gut microbiome and the protective effects of FLASH radiotherapy (FLASH-
RT) on intestinal tissue using metagenomic analysis.

Methods: Compact single high-energy X-ray source (CHEXs) FLASH-RT was
employed for FLASH irradiation, while EBT3 radiochromic film and a fast
current transformer were used to measure the absolute dose and the pulsed
beam characteristics. Sham radiotherapy (control), FLASH-RT (333 Gy/s), and
Conventional dose rate radiotherapy (CONV-RT, 0.07 Gy/s) were performed
on whole abdomen of normal C57BL/6J female mice (10 Gy, 12 Gy, 14 Gy). At
72 h post-irradiation, intestinal contents from normal C57BL/6J female mice
were collected for metagenomic analysis. The survival status, body weight, and
damage to normal tissues were observed.

Results: At 28 days post-whole abdomen irradiation with doses of 12 Gy, the
survivalrate of the FLASH group was higher than that of the CONV group (p < 0.05).
Histological analysis of intestinal tissues by H&E staining revealed significantly
less acute intestinal damage and inflammation in the FLASH group compared
to the CONV group. Further macrobiome analysis using LEfSe indicated that
the abundance of beneficial bacteria, including Weissella, Lactobacillus ruminis
and Lactobacillus taiwanensis was significantly higher in the FLASH group than
in the CONV group. Moreover, compared to the CONV group, the FLASH group
exhibited significant upregulation of several signaling pathways, including the
glycosaminoglycan degradation, PI3K/Akt and arabinogalactan biosynthesis
Mycobacterium signaling pathway.

Conclusion: Compared to CONV-RT, high-energy X-ray FLASH irradiation
exerts radioprotective effects on normal intestinal tissue. Alterations in the gut
microbiota and associated signaling pathways may be linked to the protective
effects of FLASH.
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Introduction

Radiotherapy is a primary treatment modality for malignant
tumors and remains the most widely used therapeutic approach
(Schaue and McBride, 2015). Approximately 40% of long-term
survivors benefit from radiotherapy, and around 60-70% of cancer
patients receive radiotherapy at various stages of their disease
(Baumann et al., 2016; Overgaard and Bartelink, 1995). The radiation
dose is a critical factor influencing the effectiveness of tumor
treatment. As the dose increases, both the local control rate of the
tumor and the patient’s survival rate may improve; however, the risk
of side effects to normal tissues within the irradiated field also rises
(Melia and Parsons, 2023). Despite its efficacy, one of the significant
limitations of radiation therapy is the potential damage it can cause to
surrounding healthy tissues, particularly the intestines in abdominal
and pelvic treatments (Levy et al., 2020). Acute radiation intestinal
injury is a common complication characterized by inflammation,
epithelial cell loss, and compromised barrier function, often leading
to symptoms such as diarrhea, abdominal pain, and malabsorption
(Lu et al,, 2023). These effects not only impact patient quality of life
but can also necessitate treatment interruptions or dose reductions,
potentially compromising therapeutic outcomes (Bao et al., 2019).

FLASH radiotherapy (FLASH-RT) is a revolutionary new
technology in tumor radiotherapy that can deliver ultra-high dose
rates (>40 Gy/s) within an extremely short duration (milliseconds to
microseconds) (Favaudon et al., 2014). Compared to conventional
dose-rate radiotherapy (CONV-RT), FLASH-RT offers two major
advantages: an extremely brief treatment time and enhanced
protection for normal tissues, while maintaining the same tumor cell-
killing efficacy as CONV-RT (Hughes and Parsons, 2020). In
summary, FLASH-RT can improve the efficiency of radiotherapy,
ensure treatment efficacy, and reduce toxicity to normal tissues (Chow
and Ruda, 2024; Srinivasan et al., 2024).

Despite these promising results, the mechanisms underlying the
FLASH effect remain incompletely understood (Shiraishi et al., 2024).
Research indicates that FLASH-RT may modify cellular and molecular
responses to radiation, including oxidative stress, DNA damage repair,
and immune responses (Hageman et al, 2022; Ma et al., 2024).
However, these effects are intricate and necessitate further
investigation. A deeper understanding of these mechanisms could
enhance clinical applications and facilitate the broader adoption of
FLASH-RT in oncology (Yan et al., 2024).

Electrons, kilovolt low-energy X-rays, and protons have been used
in preclinical studies of FLASH-RT, but these radiation types are not
widely applied in clinical practice (Bourhis et al., 2019; Favaudon et al.,

Abbreviations: CHEXs, Compact single high-energy X-ray source; CONV-RT,
Conventional dose rate radiotherapy; FLASH-RT, Flash radiotherapy; PDD, Percent
depth dose; PMMA, Polymethyl methacrylate; LEfSe, Linear discriminant analysis
effect size; LDA, Linear discriminant analysis; FDR, False discovery rate; adj. p,
Adjusted p-value; CV, Coefficient of variation; PCoA, Principal coordinates analysis;
PSA, Polysaccharide A; SCFAs, Short-chain fatty acids; AG, Arabinogalactan; GAG,

Glycosaminoglycans; ROS, Reactive oxygen species.
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2014; Montay-Gruel et al., 2019; Montay-Gruel et al., 2018; Ryoo et al.,
2016; Simmons et al., 2019; Vozenin et al, 2019). Electrons and
low-energy X-rays are typically used to treat superficial tumors, but their
limited penetration makes them unsuitable for tumors located deeper
within the body (Eling et al., 2019; Rahman et al., 2022). Flash protons
can be used to treat deep-seated tumors, but their high construction and
operational costs hinder widespread adoption (Montay-Gruel et al.,
2022). High-energy X-rays are the most commonly used type of
radiation in clinical radiotherapy, as they offer deep penetration, small
divergence, low radiation intensity, and are affordable for patients (Nath
et al,, 1984). However, generating ultra-high dose-rate high-energy
X-rays is challenging, limiting further research in this area. This study
utilized a compact, clinical-grade single high-energy X-ray source
(CHEXs) FLASH-RT device. The device is capable of generating ultra-
high dose-rate high-energy X-rays and has been validated to induce
FLASH effect (Shan et al.,, 2023). While murine models remain a
cornerstone for preclinical FLASH research, there is a growing body of
work utilizing in vitro 3D models such as spheroids and organoids,
which better mimic tissue structure and tumor microenvironments.
Durak-Kozica et al. (2023) applied FLASH proton irradiation to 3D
cancer spheroids, demonstrating preserved structural integrity and
suggesting promising biological effects. Moreover, PET-based studies by
Cesar et al. (2024) and image-guided FLASH discussions by Lang (2024)
further exemplify the relevance of in vitro FLASH systems in
translational settings. This study preliminarily examines the potential
correlation between the gut microbiome and the protective effects of
FLASH-RT on intestinal tissue using metagenomic analysis.

Materials and methods
Irradiation device and dosimetry

FLASH-RT experiments were conducted using CHEXs
equipment (Mianyang, China), which delivers an average dose rate
of 81.01 Gy/s at a source-to-surface distance (SSD) of 1 meter
(Shan et al., 2023). CONV-RT experiments were performed with a
clinically applied 6 MV Elekta Precision linear accelerator (Elekta
AB, Stockholm, Sweden). Dose monitoring procedures followed
previously established protocols (Gao et al., 2022). Beam current
was monitored using a brushing-current transformer (BCT), and a
diamond detector was positioned downstream of the primary
collimator for X-ray beam monitoring. Additionally, Gafchromic™
EBT-XD radiochromic films (Ashland Inc., Covington, Kentucky,
United States) were placed beneath solid water at the central level
of the irradiation target area to ensure uniform dose distribution.
Figure 1A illustrates the schematic of the in vivo FLASH-RT
experiment. Lead secondary collimators with apertures of 4 x 4 cm?
was used to define the FLASH irradiation field, and the total
irradiation dose was controlled by varying the exposure time.
Figures 1B,C shows the setup for fixation and whole-abdomen
irradiation of mice in the FLASH-RT and CONV-RT groups.
EBT-XD films were placed on the anterior surface of each mouse
to monitor the total dose of a single irradiation event
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FIGURE 1

Parameters and dosimetry of FLASH-RT and CONV-RT. (A) Schematic diagram of the in vivo FLASH-RT experiment. (B) For whole-abdomen FLASH-RT,
a 5-mm thick polymethyl methacrylate (PMMA) plate was used for dose buildup and mouse fixation. An EBT-XD film was placed between the PMMA
plate and the anterior surface of the irradiated mouse to evaluate the dose. (C) For whole-abdomen CONV-RT, a 5-mm thick PMMA plate was used for
dose buildup and mouse fixation. (D) Dose profiles illustrating the dose distribution in FLASH-RT. (E) Dose profiles illustrating the dose distribution in
CONV-RT. (F) PDD curve for X-ray sources used in FLASH-RT, with the mouse placed 5 mm from the secondary collimator and a 5-mm buildup area
depth. (G) PDD curve for X-ray sources used in CONV-RT, with the mouse placed 15 mm from the secondary collimator and a 15-mm buildup area
depth. (H) A 12 Gy dose administered 0.8 cm below the surface, showing comparable PDD curves between the FLASH and CONV groups.

(Figures 1D,E). Figures 1F-H presents the percent depth dose
(PDD) curves for both FLASH-RT and CONV-RT whole-
abdomen irradiations.

Mice and ethics statement
Female C57BL/6], aged 6-8 weeks, were procured from Sibeifu

Experimental Animal Technology Co., Ltd. (Beijing, China). All
experimental mice were purchased in a single batch and underwent a

Frontiers in Microbiology

7-day acclimation period prior to the start of the experiment. During
this period, they were fed irradiated, sterilized maintenance chow
(Synergic Biotechnology) from the same brand and batch. The diet
source remained unchanged throughout the entire experiment. In
addition, all mice were housed under consistent environmental
conditions, including lighting, temperature, humidity, and cage type.
All animal experiments were conducted in accordance with the
relevant ethical guidelines and approved by the Animal Ethics
Committee of Mianyang Central Hospital (approval number:
$20230204).
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Whole abdominal irradiation of normal
mice

In the 12 Gy whole abdominal irradiation cohort, each group
(FLASH, CONY, and control) included 15 mice, with 10 assigned to
survival analysis and 5 sacrificed at 72h post-irradiation for
metagenomic analysis. For the 10 Gy and 14 Gy whole abdominal
irradiation cohorts, each group consisted of 10 mice, all of which were
used for survival analysis only. The entire abdomen of each mouse was
irradiated using a 4 cm (cranial) x 4 cm (lateral) irradiation field, with
the upper boundary of the irradiation field located at the lower edges
of the lungs (2 cm below the bilateral ear edges). The dose rates for
FLASH-RT and CONV-RT were 333 Gy/s and 0.07 Gy/s, respectively.
At 72 h post-irradiation, five mice from each group in the 12 Gy
cohort were euthanized, and intestinal tissues and contents were
collected. The survival status of the remaining mice was monitored;
those exhibiting abnormal behavior, such as weight loss exceeding
20% or self-harm, were euthanized.

H&E staining

Three days after irradiation, mice from the 12 Gy groups were
euthanized, and the intestinal tissues were extracted and rinsed with
physiological saline. The intestinal lumen was opened using micro
scissors, and the intestines were rolled from the posterior end with the
lumen facing outward (Ruan et al., 2021). The sample was fixed in
formalin overnight, then embedded in paraffin and sliced into 5
microns for H&E staining. A modified Swiss roll-based crypt assay
was employed to quantify acute crypt damage induced by ionizing
radiation (Groselj et al., 2018). The area with the most severe damage
was identified based on two independent assessments, focusing on
regions with a depth greater than 3 mm and the fewest crypts. The
total number of crypts in areas greater than 3 mm was then calculated
for each site. Only crypts with more than 10 cells and no signs of
apoptosis were considered as regenerating crypts. The number of
remaining crypts per millimeter in each group was calculated.

Metagenomics

At 72 h post-irradiation, five mice from each group in the 12 Gy
cohort were euthanized for intestinal content collection. The intestines
were carefully extracted using sterile forceps, with the intestinal
contents gently expelled, and then placed into a cryogenic container.
Due to insufficient sample volume from one mouse in the CONV
group, a total of 12 samples were ultimately included in the
metagenomic analysis, with four samples per group (FLASH, CONV,
and control). The samples were then rapidly frozen in liquid nitrogen
and stored in dry ice for further analysis. The raw paired-end
sequences obtained from high-throughput sequencing (Illumina
NovaSeq 6000) were first subjected to quality control using Fastp
v0.20.1, with low-quality reads (Phred score <20), adapter
contamination, and ambiguous bases (N content >10%) removed. An
average of 45 million clean reads per sample were retained after
filtering. Assembly was conducted using MEGAHIT v1.2.9 with
default k-mer sizes, and contigs shorter than 500 bp were discarded.
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Gene prediction was performed using Prodigal v2.6.3. Taxonomic
annotation was based on Kraken2 (v2.1.1) and MMseqs2
(sensitivity = 5.7) with sequence identity threshold set at 97%, and
only matches with alignment confidence scores >0.9 were retained for
downstream analysis. Functional annotation was performed against
KEGG, EggNOG, and GO databases. Species annotation was
conducted using Kaiju to generate taxonomic abundance tables across
six hierarchical levels (domain to species). High-quality reads were
taxonomically classified via MMseqs2’s taxonomy module through
sequence alignment against the NCBI nr database (v2021.10.11),
applying the lowest common ancestor algorithm for precise species
assignment. Functional annotation involved aligning protein
sequences to KEGG, EggNOG, and GO databases using MMseqs2’s
search module (sensitivity: 5.7). Taxonomic composition was analyzed
with QIIME to produce abundance distribution tables, while results
were visualized through MEGAN by mapping to the NCBI Taxonomy
classification tree. Alpha diversity was quantified using Chaol, ACE,
Shannon, and Simpson indices; beta diversity was assessed via
principal coordinates analysis (PCoA). Linear discriminant analysis
effect size (LEfSe)—integrating Kruskal-Wallis testing with linear
discriminant analysis (LDA) effect size—identified significantly
enriched taxa, with results visualized using R packages. All taxonomic
abundance data were derived from relative abundance profiles;
absolute microbial loads were not quantified in this study.

Statistical analysis

Statistical analyses were conducted using GraphPad Prism
software (GraphPad Software Inc., La Jolla, CA, United States). All
values are reported as the mean * standard error of the mean. Survival
analysis was conducted using the Kaplan-Meier method, and
differences between groups were assessed with the log-rank test. A
one-way analysis of variance (ANOVA) was used for comparisons
among multiple groups, while an unpaired t-test was applied for
comparisons between two groups. For statistical analysis of the
metagenomic sequencing data, inter-group differences were evaluated
using permutational multivariate analysis of variance (Adonis) and
analysis of similarities (ANOSIM). Species-level differential
abundance between groups was determined using the metagenomeSeq
algorithm, with Benjamini-Hochberg false discovery rate (FDR)
correction applied; features with an adjusted p-value (adj. p) < 0.05
were considered statistically significant. A p-value of < 0.05 was
considered statistically significant for all other analyses. Non-bacterial
taxa (including eukaryotic and viral annotations) were filtered out
prior to final abundance analysis. *p <0.05, **p <0.01, and
¥ p < 0.001.

Results

FLASH-RT demonstrates a protective effect
on intestinal tissues

At 28 days post-whole-abdomen irradiation, no mortality was

observed in any group of the 10 Gy dose group (Figure 2A). In the
12 Gy dose group, the survival rates for the control, FLASH, and
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FIGURE 2

FLASH-RT alleviates damage to normal intestinal tissue. (A—C) Kaplan—Meier survival curves of healthy C57BL/6 mice following whole-abdomen
irradiation at doses of 10 Gy, 12 Gy, and 14 Gy (n = 10 per group). (D) Representative ex vivo images of small intestinal tissue from each group after

12 Gy irradiation. (E) H&E-stained sections of small intestinal tissue from each group after 12 Gy irradiation. (F) Quantification of regenerated crypts per
millimeter in each group after 12 Gy irradiation. (G) Comparison of villus height between groups after 12 Gy irradiation. *p < 0.05, **p < 0.01, and

***p < 0.001.
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CONV groups were 100, 80, and 50%, respectively. The survival rate
of the control group was significantly higher than that of the CONV
group (p < 0.05) and FLASH group, while the survival rate of the
FLASH group was higher than that of the CONV group, though the
difference was not statistically significant (p = 0.17, Figure 2B). In the
14 Gy dose group, the survival rates for the control, FLASH, and
CONV groups were 100, 10, and 0%, respectively. The survival rate of
the control group was significantly higher than that of the FLASH and
CONYV groups (p < 0.001). No significant difference in survival rates
was observed between the FLASH and CONV groups (p > 0.05,
Figure 2C). The specific survival numbers of mice in each group are
shown in Supplementary Figure S3.

Histological examination of intestinal tissues with H&E staining
in the 12 Gy group revealed that in the CONV group, there was
extensive epithelial necrosis, detachment, and ulceration, with loss of
intestinal villi and crypt structures, accompanied by significant
inflammatory cell infiltration. In the FLASH group, epithelial necrosis
and detachment were less severe, with mild inflammatory cell
infiltration, partial villus atrophy, shortening, and crypt destruction.
Overall, the extent of inflammation and damage was less pronounced
in the FLASH group compared to the CONV group (Figures 2D,E).
The number of intestinal crypts per mm in the control group was
significantly higher than in the FLASH (p < 0.01) and CONV groups
(p < 0.001). The FLASH group showed a significantly higher number
of crypts per mm than the CONV group (p < 0.05, Figure 2F). The
length of intestinal villi in the control group was significantly greater
than in the FLASH and CONYV groups (p < 0.05), while no significant
difference in villus length was observed between the FLASH and
CONYV groups (p > 0.05, Figure 2G).

Metagenomic analysis reveals the
differences in gut microbiota and pathways
among the groups

The intestinal contents of normal mice from each group were
collected 72 h after radiotherapy for metagenomic analysis. a-diversity
analysis revealed no significant differences in microbial richness and
diversity among the CONV, FLASH, and control groups. However, the
coefficient of variation (CV) indicated greater intra-group variability
in the FLASH group (Figure 3A). This observation was further
supported by the clustered heatmap and NMDS ordination plots
(Supplementary Figures S1, S2). PCoA analysis showed distinct
separation of the microbial community structure among the three
groups, with significant differences in microbial composition
(Figure 3B). Based on the compositional profiles at the species level,
the Venn diagram visually illustrates the number of species shared and
unique to each group (Figure 3C). To explore whether the large
number of differentially detected species included biologically
meaningful taxa, we assessed the relative abundance of the top 200
unique species across groups. The majority of these accounted for less
than 0.01% of the total abundance, suggesting that rare taxa detection
due to reduced diversity post-irradiation may inflate the total species
count. These data provide insights into the structural changes in the
gut microbiome following different radiotherapy regimens after host-
sequence removal. As shown in Figure 3D, at the phylum level, the
microbiomes of all groups were dominated by Bacteroidota,
Firmicutes, and Proteobacteria, together accounting for more than
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95% of the total abundance. Compared with the control group, the
FLASH group exhibited a modest increase in Proteobacteria and a
decrease in Firmicutes, whereas the CONV group showed an increase
in Bacteroidota with a reduction in Firmicutes. At the genus level
(Figure 3E), the FLASH group displayed higher relative abundances
of genera such as Bacteroides and Escherichia, but lower abundances
of Lactobacillus compared to controls. In the CONV group,
Bacteroides was also elevated, while genera such as Alistipes and
Lactobacillus were reduced relative to the control group. Notably,
Alistipes, a genus previously reported to be sensitive to radiation, was
relatively preserved in the FLASH group compared with the CONV
group. At the species level (Figure 3F), the FLASH group showed
enrichment of Bacteroides acidifaciens and Escherichia coli, and a
relative decrease in several Muribaculaceae taxa compared with
controls. The CONV group, in contrast, exhibited increased relative
abundances of certain Lachnospiraceae species and decreased levels
of Alistipes species. To explore potential group-specific dominant
taxa, we further identified species that were both relatively abundant
and enriched in a single treatment group. Several species met this
criterion, highlighting microbial signatures unique to each
radiotherapy modality.

Through differential species analysis (metagenomeSeq with
Benjamini-Hochberg FDR correction), significant differences were
observed at the species level between the FLASH group, the CONV
group, and the control group (LDA score >2.92, adj. p <0.05,
Figures 4A,B). In Figure 4A, we present a heatmap of KEGG pathway
enrichment based on metagenomic functional profiling. Several
immune and metabolic pathways, such as NOD-like receptor signaling
and amino acid biosynthesis, were differentially enriched across
groups. FLASH-treated samples showed partial recovery of pathways
related to epithelial barrier function and short-chain fatty acid
metabolism. Subsequently, LEfSe was performed to identify the class-
specific enrichment differences between the FLASH and CONV
groups. Compared to the CONV group, the FLASH group exhibited
significantly higher levels of Weissella, Ligilactobacillus ruminis and
Lactobacillus taiwanensis (LDA score >2). These findings suggest that
the observed differences in these microbial communities could
be related to the alleviation of intestinal damage in the FLASH group
(Figure 4C).

Functional prediction analysis through LEfSe further explored the
differences in microbial functions between the FLASH and CONV
groups. Pathway analysis revealed that, compared to the CONV group,
FLASH significantly enhanced the functionality of pathways such as
the glycosaminoglycan degradation, PI3K/Akt and arabinogalactan
biosynthesis Mycobacterium signaling pathway (LDA score >2,
Figure 4D). These results suggest that FLASH radiotherapy could
alleviate damage to normal intestinal tissue by potentially modulating
the distribution of
several pathways.

intestinal microbiota and influencing

Discussion

This study tested three different doses to evaluate the protective
effect of FLASH-RT on normal tissues. At a dose of 10 Gy, no
mortality was observed in any group, while at 14 Gy, the entire
conventional treatment group died, and only one mouse in the FLASH
group survived. This suggests that the 14 Gy dose was too high,
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Flash

Control

leading to near-total mortality, which was not conducive to observing
the protective effects. Therefore, in subsequent experiments, we used
adose of 12 Gy, which resulted in approximately 50% mortality in the
CONV group. Although no statistically significant difference in
survival was found between the FLASH and CONV groups at the
12 Gy dose—Ilikely due to the small sample size (n = 10)—the survival
trends clearly indicate that FLASH-RT provides substantial protective
effects. Further examination of the intestinal tissue from the 12 Gy
group via HE staining revealed less tissue damage and fewer
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inflammatory cell infiltrations in the FLASH group. These findings
further support the notion that high-energy X-ray FLASH-RT can
confer protective effects on normal intestinal tissue.

LEfSe analysis revealed that several beneficial bacterial species in
the FLASH group, including Weissella, Ligilactobacillus ruminis and
Lactobacillus taiwanensis, were relatively enriched compared to the
CONYV group, based on their proportional abundance within the
microbial community. Numerous studies have shown that Weissella
produces antimicrobial exopolysaccharides, bacteriocins, hydrogen
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peroxide, and organic acids (Fusco et al, 2015), exhibiting

antibacterial, antifungal, antioxidant, and anti-inflammatory
properties, as well as enhancing the intestinal epithelial barrier
function (Prado et al., 2020). The bacteriocins synthesized by Weissella
demonstrate significant antimicrobial or bactericidal activity
(Klaenhammer, 1993). The released organic acids also exert
bactericidal effects against Vibrio parahaemolyticus T.11 (Ahmed

et al., 2022), while byproducts such as lactic acid and ethanol may
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enhance the anti-mycobacterial effect of lactic acid alone (Stedman
et al., 2020). Ligilactobacillus ruminis, on the other hand, reduces the
levels of pro-inflammatory cytokines such as IL-1f, TNF-a, and IL-17,
thereby mitigating intestinal tissue damage. Additionally, L. ruminis
increases the levels of short-chain fatty acids (SCFAs) in mouse feces,
further modulating the gut microbiota balance and alleviating
intestinal inflammation (Yang et al., 2021). Overall, L. ruminis exerts

its beneficial effects by regulating inflammatory responses and
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restoring gut microbiota balance, thereby reducing inflammation and
inhibiting intestinal tissue damage (Thorakkattu et al., 2022). These
findings suggest that the intestinal protective effect of FLASH-RT may
be associated with changes in the microbiome and its metabolites.

Interestingly, we observed that the genus Alistipes, which is
known to exert protective effects against colitis and hepatic
inflammation, was significantly depleted in the conventional
irradiation group but relatively preserved following FLASH exposure.
This finding aligns with prior studies indicating that Alistipes
contributes to gut immune homeostasis, partly through production of
short-chain fatty acids (SCFAs) and modulation of tryptophan
metabolism. The preservation of Alistipes in FLASH-treated mice may
thus underlie part of the observed reduction in intestinal injury, and
warrants further mechanistic exploration in future studies.

LEfSe pathway analysis indicates that the protective effect of
FLASH-RT on normal intestinal tissues might be related to several
signaling pathways. Glycosaminoglycans (GAGs) are essential
extracellular matrix components that play pivotal roles in intestinal
barrier integrity and tissue repair (Tang et al., 2018). Studies indicate
that GAG degradation exacerbates murine colitis symptoms, whereas
inhibiting this process attenuates inflammatory responses (Belmiro
et al., 2005). Specifically, probiotic lactobacilli that suppress GAG
degradation ameliorate colitis by inhibiting both pro-inflammatory
cytokine expression and bacterial GAG catabolism (Lee et al., 2009).
This finding appears to contradict the protective effects of FLASH
radiotherapy. However, another study suggests that reactive oxygen
species (ROS) play a significant role in GAG degradation. ROS, with
their high reactivity, can engage in multiple chemical reactions with
GAGs, particularly hydroxyl radicals (¢OH), which can break the
glycosidic bonds in GAGs, thereby reducing their molecular weight
and leading to moderate GAG degradation (Fuchs and Schiller, 2014).
The consumption of ROS may mitigate oxidative stress damage to
normal cells, creating favorable conditions for tissue repair and
regeneration. While existing evidence shows a link between ROS and
GAG degradation, further research is needed to better understand the
specific role and extent of this pathway in the protective mechanism
of FLASH radiotherapy.

The PI3K/Akt signaling pathway orchestrates critical cellular
processes including proliferation, survival, and tissue repair. In
inflammatory bowel disease, upregulation of the NRG1/ERBB; axis
activates PI3K/Akt signaling, sustaining intestinal epithelial
proliferation and damage repair (Qiu et al., 2024). Studies have shown
that activation of the PI3K/Akt/mTOR pathway is a key mechanism
underlying radiation resistance in tumor cells across multiple
radiotherapy models (Su et al., 2022). Activated Akt exerts its effects
by stimulating the downstream mTOR pathway or by inhibiting
proteins such as Bad and Caspase-9, which regulate cell proliferation,
differentiation, apoptosis, and migration, contributing to radiation
resistance in tumor cells (Chang et al., 2014; Chang et al., 2015; Horn
et al,, 2015). Based on these findings, we hypothesize that FLASH
radiotherapy may enhance intestinal radioprotection by activating
PI3K/Akt signaling in normal enterocytes, thereby promoting
epithelial regeneration and repair.

Arabinogalactan (AG), a soluble dietary fiber with an excellent
safety profile, has demonstrated immunomodulatory (Hamed et al.,
2022), anticancer (Gong et al,, 2020), anti-inflammatory, and
antioxidant properties (Zheng et al., 2023). It also alleviates cisplatin-
induced intestinal damage.

Mechanistically, AG mitigates
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lipopolysaccharide induced damage to the small intestinal epithelial
barrier by reducing inflammation and oxidative stress through
modulation of the AMPK/SIRT1/NF-kB signaling pathway. In dry
eye disease models, AG significantly reduced uric acid levels by 27%
and reactive oxygen species (ROS) by 38%, thereby attenuating
oxidative stress (Silvani et al., 2020). In acute liver injury models, AG
treatment not only elevated levels of antioxidant enzymes,
non-enzymatic antioxidants, and total hepatic antioxidant capacity
but also significantly decreased lipid peroxidation in liver tissue (Sun
et al., 2018). The enrichment of the arabinogalactan biosynthesis
Mycobacterium signaling pathway in the flash group suggests that the
protective effect of FLASH-RT on intestinal tissue may be related to
the anti-inflammatory and antioxidant properties of arabinogalactan.
These findings suggest that FLASH-RT may influence immune and
stress-response pathways, including glycosaminoglycan degradation,
PI3K/Akt and arabinogalactan biosynthesis Mycobacterium
signaling, although the activation of these pathways could also reflect
microbial stress or host-pathogen interaction rather than
beneficial effects.

The high number of differentially detected species between
irradiated and non-irradiated groups, as shown in Figure 3C, may
initially appear surprising given the controlled housing conditions.
However, this is likely attributable to deep sequencing sensitivity and
the emergence of rare taxa after dominant species were depleted.
Most of these species were detected at extremely low abundance, and
their biological role remains uncertain. It is possible that microbial
niche space became available following radiation-induced community
collapse, allowing transient or low-abundance microbes to expand.
Although FLASH-irradiated mice exhibited a microbiome profile
that differed from that of conventionally irradiated animals, notable
deviations from the control group remained. Alpha diversity in the
FLASH group was partially restored compared to the CONV group,
but remained lower than that of the unirradiated controls. NMDS
and heatmap analyses also revealed that FLASH samples clustered
closer to the CONV group than to the control group, indicating
incomplete recovery. These findings suggest that FLASH-RT
mitigates but does not fully reverse radiation-induced alterations in
the gut microbiota.

Although metagenomic data preliminarily suggest that the
protective effect of FLASH-RT on normal intestinal tissue may
be linked to the modulation of gut microbiota composition, several
limitations exist in this study. The diversity analysis results show
substantial within-group variation in the FLASH group, and this
high heterogeneity may impact the statistical significance of
specific microbial changes, thereby interfering with the stability of
the conclusions. However, due to the limited number of
experimental animal samples, excluding samples that deviate from
the norm may introduce substantial selection bias. Furthermore,
inherent differences in the microbiota state across different
irradiation batches of mice complicate sample addition, potentially
increasing systemic bias and affecting the reliability and
comparability of the results. In this experiment, 80% of the mice
survived after receiving 12 Gy FLASH-RT, while 20% died,
suggesting individual variability in the protective effect of
FLASH. Combined with the observed heterogeneity in the
microbiota species of the FLASH group, we hypothesize that the
heterogeneity within the FLASH group may be related to
differences in individual microbiota recovery abilities, which could
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be a key factor in the protective effect of FLASH. Therefore,
excluding individuals with large differences might obscure the
biological significance of individual microbiota recovery processes.
To more accurately reflect the individual variability after FLASH-
RT, we retained all raw data and approached data analysis with
caution, avoiding overinterpretation of potential causal
relationships. Through this approach, we believe that this study
provides preliminary insights into the changes in gut microbiota
following FLASH-RT intervention and offers new directions for
exploring the mechanisms behind individual responses to
FLASH-RT.

In summary, the protective effects of FLASH-RT on the intestine
may be associated with multiple microbiota and signaling pathways.
Gut microbiota may exert their effects through specific metabolites,
such as short-chain fatty acids and polysaccharides. However Liberles
et al. (2013) proposed that confirming causal mechanisms requires
further experimental validation. This study is based on metagenomic
analyses and does not include targeted metabolomics; therefore,
functional inferences derived solely from metagenomic pathway
annotations should be interpreted with caution. Causal relationships
between microbial community changes and host effects require
experimental validation. Future research should further explore the
specific roles and mechanisms of different microbiota in this process
to Dbetter of FLASH-RT in
intestinal protection.

understand the potential

Conclusion

Compared to CONV-RT, high-energy X-ray FLASH irradiation
exerts radioprotective effects on normal intestinal tissue. Alterations
in the gut microbiota and associated signaling pathways may be linked
to the protective effects of FLASH.
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