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Multi-omics reveals effects of diet 
FNDF/starch level on growth 
performance and rumen 
development of Hu sheep
Haibi Zhao , Jiqing Wang , Zhiyun Hao , Pengfei Yin , 
Shanglong Wang , Yanli Guo  and Chunyan Ren *

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China

To maximize the utilization of nutritional components in diet to enhance the 
growth performance of Hu sheep, this study investigates the effects of varying 
forage neutral detergent fiber (FNDF) to starch ratio levels in the diet on the rumen 
microbial flora, metabolites and expression in the rumen epithelium through 
sequencing techniques involving microbiomes, metabolomics and transcriptomes. 
Thirty-six male Hu sheep (2 months old) with similar weight [(10 ± 0.5) kg] were 
randomly divided into four groups of nine sheep each, and were divided into 
groups A (FNDF/starch = 0), B (FNDF/starch = 0.23), C (FNDF/starch = 0.56) and 
D (FNDF/starch = 1.10) with different FNDF/starch of pelleted rations, respectively. 
The results indicated that average daily gain (ADG) and average daily feed intake 
(ADFI) of group B, C and D were significantly higher than group A (p < 0.05); the 
feed conversion ratio (FCR) of group B was significantly higher than other groups 
(p < 0.05) and the height of rumen papillae in group B and C was significantly higher 
than in group A (p < 0.05). Species annotation results of microorganisms were 
found that the presence of 22 phyla, 33 classes, 62 orders, 120 families, 245 genera 
and 341 species. Among them, Prevotella_7 (20.170%) and Succinivibrionaceae_
UCG_001 (12.28%) were the dominant bacteria at the genus; Bacteroidota (36.66%), 
Firmicutes (33.06%) and Proteobacteria (25.39%) were dominant at the phylum. A 
total of 3,907 metabolites were annotated by metabolomic analysis of the rumen 
content samples and the differential metabolites were mainly enriched in amino 
acid metabolism, cofactor and vitamin metabolism and lipid metabolism. Rumen 
epithelial transcriptome sequencing analysis identified 825 (A vs. B), 355 (A vs. C), 
818 (A vs. D), 204 (B vs. C), 718 (B vs. D) and 199 (C vs. D) differentially expressed 
genes (DEGs). DEGs were mainly enriched in pathways related to amino acid 
metabolism, vitamins metabolism and signaling, etc. Notably, during histidine 
metabolism, thiamine in the rumen decreased with increasing FNDF/starch levels, 
while the expression level of the TPK1 in the rumen epithelium increased with 
rising FNDF/starch levels. In conclusion, diet FNDF/starch levels have a significant 
effect on growth performance and healthy rumen development of Hu sheep.
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Introduction

Forage and concentrated feed are, respectively, the main sources of neutral detergent fiber 
(NDF) and starch in the diet (Piantoni et al., 2015). Adjusting the proportion of forage and 
concentrate in the diet can effectively change the levels of NDF and starch in the diet, and the 
levels of NDF and starch are closely related to rumen fermentation and production performance 
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of lambs. For example, a diet high in starch and low in NDF accelerates 
the rumen fermentation rate, resulting in the production of a large 
amount of volatile fatty acids (VFA) in the short term and reducing the 
rumen pH value. However, this may lead to metabolic disorders, such 
as rumen acidosis (Wallace et al., 2001; Colombatto et al., 2003; Zhang 
et al., 2018). On the contrary, feeding a low-starch diet may lead to 
insufficient fermentable energy in the rumen, disrupt the functions of 
microorganisms, reduce the absorption and barrier capacity of rumen 
epithelium, and impair the utilization of nutrients (Mulakala et al., 
2023). Furthermore, studies have shown that diets with high NDF 
produce a higher molar ratio of acetate (acetic acid-type fermentation), 
while starch-based diets produce a higher molar ratio of propionate 
(propionic acid-type fermentation) (Suárez et al., 2006; Detmann et al., 
2014; EbnAli et al., 2016). Changes in fermentation type directly affect 
the composition and abundance of microorganisms (Su et al., 2022). 
Research has shown that as starch content increases, the abundance of 
Streptococcus bovis in lambs rises, while the abundance of Butyrivibrio 
decreases, leading to a reduction in total bacterial counts (Guo et al., 
2021). Increasing the NDF level in the diet can enhance the abundance 
of fiber-digesting bacteria in the rumen; for example, the addition of 
oat hay to sheep diets can increase the abundance of Bacteroidetes (Xie 
et al., 2020; Liu et al., 2016; An et al., 2020). Furthermore, the interaction 
between microorganisms and their hosts is mediated by the interaction 
of metabolites between the host and the bacteria (Su et  al., 2022; 
Temmar et al., 2021; Ren et al., 2018; Vi et al., 2004). Rumen epithelium 
is the channel connecting rumen contents and rumen tissues, allowing 
microbial metabolites to act on the host (Shabat et al., 2016; Zhang 
R. et al., 2021). At present, many studies have reported the relationship 
between the composition of rumen microorganisms and its metabolites 
in ruminants and the composition of their diets, indicating that feed 
affects the composition of rumen microbiota and its metabolites and 
the interaction between microbial metabolites and the host affects the 
expression of host genes, further promoting the growth and 
development of animals (Zhang et al., 2022; Zhao et al., 2023; Torres 
Manno et al., 2023). For instance, the anaerobic environment in the 
rumen and the fermentation activity of rumen microorganisms enable 
plant substances to ferment into metabolic end products, such as VFAs. 
VFAs can be  metabolized, absorbed and transported through the 
rumen epithelium, interacting with various physiological functions of 
the host (Steele et al., 2016). This interaction is ultimately reflected in 
the growth and development of the host (Ren et al., 2023; Malmuthuge 
et al., 2019). However, at present, it is still rare to combine the dietary 
FNDF/starch level with the changes of rumen microorganisms to study 
the effect of dietary FNDF/starch level on the host. Therefore, in this 
study, microbiomics, non-targeted metabolomics and transcriptomics 
were used to explore the effects of dietary FNDF/starch levels on rumen 
microorganisms and their metabolites as well as the host, and to further 
identify the optimal balance between NDF and starch in the diet. This 
is crucial for enhancing the nutrient utilization rate and production 
capacity of ruminants.

Materials and methods

Experimental animals and sample collection

All animal experiments received approval from the Animal Ethics 
Committee of Gansu Agricultural University, Gansu, China (approval 

number: GSAU-Eth-Ast-2021-008). Thirty-six weaned male Hu sheep 
lambs with similar ages [(60 ± 5) days] and body weights [(10.0 ± 0.5) 
kg] were selected and randomly divided into four groups, with 9 
lambs in each group. These groups were designated as group A 
(FNDF/starch = 0), group B (FNDF/starch = 0.23), group C (FNDF/
starch = 0.56), and group D (FNDF/starch = 1.12). The diet 
formulation was in accordance with the “Feeding Standards for Meat 
Sheep and Goats (NY/T816–2021).” Feed ingredients were crushed 
and then pelletized using a ring die (with a temperature of 84–86°C; 
a die size of 8.0 mm, a compression ratio of 1:5, and a pellet diameter 
of 4 mm) to produce pellet feed. The composition and nutritional 
components of the diet were detailed in Table 1. The experimental 
period lasted for 60 days, including 10 days of pre-feeding and 50 days 
of formal feeding. On the first day of the experiment and every 
10 days thereafter at 8:00 a.m. (before feeding), the Hu sheep were 
weighed. Feeding was carried out at 8:00 and 16:00 every day, and the 
feeding amounts were recorded. The remaining feed from the 
previous day was weighed before feeding at 8:00 a.m. each morning. 
The Feed Conversion Ratio (FCR) was calculated based on the ratio 
of total feed consumption to net body weight gain post-experiment. 
Prior to slaughter, Hu sheep were fasted for 24 h and subjected to 
water deprivation for 2 h. Six experimental sheep per group were 

TABLE 1 The composition and nutrient levels of diets (DM basis) %.

Item Group

A B C D

Composition (%)

Corn 60 48.7 38 26.5

Soybean meal 27.7 25.3 22.2 20.13

Wheat bran 8 8 8 8

Alfalfa hay 0 6.9 16 21.8

Oat grass 0 7 12 20

Limestone 2.22 2 1.67 1.45

CaHPO4 0.73 0.75 0.78 0.77

Salt 0.35 0.35 0.35 0.35

Premix1 1 1 1 1

Total 100 100 100 100

Nutrient2

DM 83.21 83.73 84.28 84.85

CF 3.43 7.99 12.70 17.18

NDF 12.60 19.22 25.81 32.44

ADF 5.33 9.94 14.61 19.19

CP 19.04 18.79 18.46 18.26

Ca 1.12 1.16 1.17 1.18

P 0.66 0.64 0.62 0.60

FNDF 0.00 8.00 16.00 23.99

Starch 41.95 35.02 28.38 21.36

FNDF/Starch 0.00 0.23 0.56 1.12

1The premix provided the following per kg of diets: VA 940 IU, VD 111 IU, VE 20 IU, VB12 
0.02 mg, Cu 8 mg, Fe 25 mg, Mn 40 mg, Zn 40 mg, I 0.3 mg, Se 0.20 mg, S 200 mg, Co 
0.1 mg. 2DM, CF, NDF, ADF, CP, Ca, P and were starch measured values, while FNDF is 
calculated based on the composition of the diets.
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electrically stunned followed by cervical exsanguination. Post-
slaughter, rumen abdominal tissue was rapidly excised and rinsed 
thoroughly with sterile physiological saline to remove surface 
contaminants. The rumen epithelium was isolated, sectioned into 
~1 cm2 samples, and stored in pre-chilled cryovials under liquid 
nitrogen. Concurrently, rumen contents were collected and filtered 
through four layers of sterile gauze to remove coarse particles. The 
filtrate was aliquoted into cryotubes and temporarily stored in liquid 
nitrogen for subsequent analysis. All samples were transported to the 
laboratory and archived at −80°C for downstream analyses, including 
rumen fermentation parameters, high-throughput 16S rRNA gene 
sequencing, metabolomics, and transcriptomics. Additionally, 1 cm3 
whole rumen tissue samples were collected and fixed in 10% neutral-
buffered formaldehyde solution for histological sectioning and 
microscopic observation. Tissue section preparation and 
measurement were performed according to a previously established 
protocol (Zhao et al., 2023). Fixed rumen abdominal tissues were 
processed through an automatic dehydrator: sequential dehydration 
in 75% ethanol (4 h), 85% ethanol (2 h), 95% ethanol (1 h), and 100% 
ethanol (0.5 h, 4 times); clearing in xylene (10 min, 2 times); and 
infiltration in paraffin (6 h). Tissues were then trimmed, embedded, 
sectioned, dewaxed, and stained with hematoxylin–eosin (HE). 
Hematoxylin stained cell nuclei blue-purple, while eosin stained 
cytoplasm pink. Following staining, sections were dehydrated with 
ethanol, cleared with xylene, sealed with neutral gum, and air-dried. 
Images were captured using an upright optical microscope (Nikon, 
Japan). For each sample, 10–15 sites were selected based on 
morphological characteristics, and papillary height, width, and basal 
layer thickness were measured using Image Pro Plus software (Media 
Cybernetics, Bethesda, MD, United  States). Rumen fermentation 
parameters were determined as described (Liu et al., 2020). VFAs 
were analyzed via gas chromatography (GC-2010 Plus, Shimadzu, 
Kyoto, Japan) using the internal standard method with 2-ethylbutyric 
acid (2-EB). Concentration calculations involved: (1) determining the 
peak area ratio of target VFAs to 2-EB; (2) substituting ratios into 
calibration curve equations to obtain concentration ratios; and (3) 
calculating sample VFA concentrations. Rumen fluid pH was 
measured using a PHS-3C pH meter (Shanghai Precision Scientific 
Instruments, China).

Microbiological analysis of rumen contents

The genomic DNA of rumen contents was extracted using the 
TGuide S96 Stool DNA Kit (DP812, Tiangen Biotech, Beijing, China) 
according to the manufacturer’s protocol. DNA quality and quantity 
were assessed by 1.8% agarose gel electrophoresis, and concentration/
purity were determined with a NanoDrop 2000 spectrophotometer 
(Sloan et al., 2021) (Thermo Scientific, Wilmington, DE, United States). 
The V1-V9 hypervariable regions of the 16S rRNA gene were amplified 
using primers 27F (5’-AGRGTTTGATYNTGGCTCAG-3′) and 1492R 
(5’-TASGGHTACCTTGTTASGACTT-3′), with sample-specific 
PacBio barcodes appended to both primers for multiplexed sequencing. 
The genomic DNA of the rumen contents was extracted using TGuide 
S96 Stool DNA Kit (DP812, Tiangen Biotech (Beijing) Co., Ltd.) 
according to manufacturer’s instructions. The quality and quantity of 
the extracted DNA were examined using electrophoresis on a 1.8% 
agarose gel, and DNA concentration and purity were determined with 

NanoDrop  2000 UV–Vis spectrophotometer (Thermo Scientific, 
Wilmington, United States). The V1-V9 hypervariable regions of the 
16S rRNA gene were amplified using primers (27F: 
5’-AGRGTTTGATYNTGGCTCAG-3′; 1492R: 
5’-TASGGHTACCTTGTTASGACTT-3′). Both the forward and 
reverse 16S primers were tailed with sample-specific PacBio barcode 
sequences to allow for multiplexed sequencing. The reaction procedure 
consisted of perform 25 cycles of PCR amplification, with initial 
denaturation at 95°C for 2 min, followed by 25 cycles of denaturation 
at 98°C for 10 s, annealing at 55°C for 30 s, and extension at 72°C for 
1 min 30 s, and a final step at 72°C for 2 min. The amplicons were 
quantified, after which the normalized equimolar concentrations of 
amplicons were pooled and performed Single Molecule Real-Time 
Sequencing (SMRT) on the PacBio Sequel II platform (Beijing 
Biomarker Technologies Co., Ltd., Beijing, China). Genomic DNA was 
randomly broken into 500 bp-10 KB fragments using the library 
construction Kit (SMRTBELLS PREPKIT 3.0). The fragmented DNA 
was ligated using the SMRTbell adapter. Unligated adapters and short 
fragments were removed through magnetic bead screening to enrich 
the complete target fragments. After repeatedly testing the same target 
fragment multiple times (passes > 4), the accuracy of Circular 
Consensus Sequencing (CCS) can reach more than 99%. Using the 
SMRT Link v8.0 software, the CCS sequence was obtained with 
minPasses ≥ 5 and minPredictedAccuracy ≥ 0.9 h. After sequencing 
the samples, CCS sequences were obtained through Barcode 
recognition. The obtained sequences were preprocessed, including CCS 
recognition, filtering and removing fragments with higher homology, 
in order to obtain effective sequences. The valid CCS sequences were 
clustered using the Usearch (Edgar, 2013) (V10.0.240_i86) with a 
similarity threshold of 97%, thereby determining the corresponding 
OTUs for each sample. Taxonomy annotation of the OTUs was 
performed based on the Naive Bayes classifier in QIIME2 (Bolyen 
et al., 2019) using the SILVA database (Quast et al., 2013) (release 
138.1) with a confidence threshold of 70%, thereby determining the 
species composition and abundance of each sample at different 
taxonomic levels (phylum, class, order, family, genus, and species). 
Alpha was performed to identify the complexity of species diversity of 
each sample utilizing QIIME2 software. Beta diversity calculations 
were analyzed by principal coordinate analysis (PCoA) to assess the 
diversity in samples for species complexity. One-way analysis of 
variance was used to compare bacterial abundance and diversity.

Metabolite extraction

For each sample, 100 μL of rumen contents was transferred to 
a centrifuge tube and mixed with 500 μL of extraction solvent 
containing an internal standard (methanol: acetonitrile = 1:1, v/v; 
internal standard concentration 20 mg/L). The mixture was 
vortexed thoroughly, followed by sonication in an ice-water bath for 
10 min using an ultrasonic processor (Xiaomei Ultrasonic 
Instruments, XM-P22H, China). The samples were then incubated 
at −20°C for 1 h, after which they were centrifuged at 12,000 rpm 
(≈13,400 × g) for 15 min at 4°C. A 500-μL aliquot of the supernatant 
(Want et al., 2010) was transferred to an Eppendorf tube, sealed, 
and stored at −20°C. All samples were subsequently shipped to 
Biomarker Technologies (Beijing, China) for mass 
spectrometry analysis.

https://doi.org/10.3389/fmicb.2025.1601950
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fmicb.2025.1601950

Frontiers in Microbiology 04 frontiersin.org

LC–MS/MS analysis

The metabolomics analysis was performed using a liquid 
chromatography-mass spectrometry (LC–MS) system composed of 
an Acquity I-Class PLUS ultra-high-performance liquid 
chromatography (UHPLC) coupled with a Xevo G2-XS QTOF high-
resolution mass spectrometer (Waters, United  States). The 
chromatographic separation was achieved on a UPLC HSS T3 column 
(2.1 × 100 mm, 1.8 μm; Waters, United States). For both positive ion 
mode (POS) and negative ion mode (NEG), the mobile phase 
conditions were as follows: mobile phase A was 0.1% formic acid in 
water, and mobile phase B was 0.1% formic acid in acetonitrile. ESI 
source parameters were set as: capillary voltage 2,500 V (POS) or 
−2000 V (NEG); cone voltage 30 V; ion source temperature 100°C; 
desolvation gas temperature 500°C; backing gas flow rate 50 L/h; 
desolvation gas flow rate 800 L/h. The injection volume was 1 μL, and 
a quality control (QC) sample was analyzed after every 10 samples to 
assess method stability and reproducibility. Data were acquired in 
MSe mode using acquisition (Jialin et al., 2016) software (V4.2), with 
a scanning interval of 0.2 s per mass spectrum.

Data preprocessing and analysis

Raw data collected using MassLynx (V4.2) was processed via 
Progenesis QI software for peak extraction, alignment, and other 
preprocessing steps. Compound identification was performed using 
the Progenesis QI online METLIN database and Biomark’s in-house 
library, with theoretical fragment annotation and mass deviation 
constrained within 100 ppm. Principal component analysis (PCA) and 
Spearman correlation analysis were employed to evaluate intra-group 
sample reproducibility and quality control (QC) sample consistency. 
Classification and pathway annotations of identified compounds were 
retrieved from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (Kanehisa and Goto, 2000), Human Metabolome Database 
(HMDB) (Wishart et al., 2018), and Lipid Maps Structure Database 
(LMSD) (Fahy et al., 2007). Fold changes were calculated based on 
grouping criteria, and T-tests were used to determine statistical 
significance of p-values for individual compounds. Differential 
metabolites were screened using a combined criterion of fold change 
>1, p < 0.05, and variable importance in the projection (VIP) > 1 from 
OPLS-DA modeling. Pathway enrichment of differential metabolites 
was assessed via hypergeometric distribution tests against 
KEGG pathways.

Determination and analysis of rumen 
epithelium transcriptome

Total RNA from the rumen epithelium of Hu sheep was extracted 
using the Trizol reagent (Life Technologies, California, United States) 
according to the manufacturer’s instructions. RNA extraction process 
was as follows: Sample lysis: fifty to 100 mg of rumen epithelial tissue 
was placed in a pre-cooled mortar, frozen with liquid nitrogen, and 
ground to a fine powder. The powder was transferred to a centrifuge 
tube containing 1 mL of TRIzol, then vortexed vigorously or 
homogenized thoroughly using a tissue homogenizer until the lysate 
appeared clear and particle-free. RNA separation: two hundred 

microliters of chloroform were added, and the mixture was shaken for 
30 s followed by a 2–3 min incubation at room temperature. After 
centrifugation at 12,000 × g for 20 min at 4°C, the upper aqueous phase 
was carefully transferred to a new centrifuge tube. RNA precipitation: 
Approximately 600 μL of isopropanol was added, and the tube was 
inverted to mix thoroughly. Following a 10-min incubation at room 
temperature, the sample was centrifuged at 12,000 × g for 10 min at 
4°C, yielding a gel-like or white RNA pellet at the tube bottom. RNA 
washing: the supernatant was discarded, and 1 mL of pre-cooled 75% 
ethanol was added to wash the pellet by gentle inversion. After 
centrifugation at 7,500 × g for 5 min at 4°C, residual ethanol was 
removed with a pipette, and the pellet was air-dried at room temperature 
for 5–10 min. RNA dissolution: The pellet was resuspended in 30–50 μL 
of DEPC-treated water or RNase-free water using a pipette tip, followed 
by a 5-min incubation at 55–60°C to promote dissolution. RNA 
concentration and purity were measured using a NanoDrop  2000 
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE), and 
integrity was assessed with the RNA Nano 6,000 Assay Kit on an Agilent 
Bioanalyzer 2,100 system (Agilent Technologies, CA, United States). 
Sequencing libraries were generated using Hieff NGS Ultima Dual-
mode mRNA Library Prep Kit for Illumina (Yeasen Biotechnology 
(Shanghai) Co., Ltd.) following manufacturer’s recommendations. After 
confirming the quality of the libraries, sequencing was performed on 
the Illumina NovaSeq platform, producing 150 bp paired-end reads. 
The raw data in fastq format underwent further processing on the 
bioinformatics analysis platform BMKCloud1. Fastp (Chen, 2023) was 
used by BMKCloud to delete sequences containing joints, sequences 
containing ploy-N, and low-quality sequences to obtain clean data, and 
simultaneously calculates Q20, Q30, GC content, and sequence 
repetition levels. The HISAT2 (Kim et al., 2015) was used to perform 
rapid and accurate alignment of clean data with the reference genome 
(Ovis_aries. GCA_017524585.1.) to obtain the localization information 
of Reads on the reference genome. All downstream analyses relied on 
high-quality clean data. Effective data were aligned to the reference 
genome sequence using Hisat2 software (Kim et  al., 2019). Gene 
expression levels were measured using FPKM (Fragments Per Kilobase 
of transcript per Million fragments mapped). Differential expression 
analysis between the two groups was conducted using DESeq2, with 
genes designated as differentially expressed genes (DEGs) if p < 0.05 
and |FC| ≥ 1.5. GO enrichment analysis and KEGG pathway analysis 
of DEGs were performed using ClusterProfiler software (V4.2.2). For 
RNA-seq validation, eight DEGs (PRDX6, FABP5, GNB2L1, GPX1, 
MAL, NADPH1, PRDX2, IGFBP7) were randomly selected for 
RT-qPCR analysis, using β-actin as a reference gene. Specific primer 
sequences are listed in Supplementary Table S1. The reaction conditions 
for qPCR: initial denaturation at 95°C for 30 s, followed by 40 cycles of 
95°C for 5 s and 60°C for 30 s.

Multi-omics joint analysis

Differentially expressed genes (DEGs) and differentially 
metabolites with a co-expression trend were mapped to the KEGG 
pathway, and significantly enriched pathways were screened out. 

1 www.biocloud.net
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Combined with the functional genera involved in this pathway in the 
microbiome (combined with literature evidence, genera with clear 
functional reports in the target pathway were screened out), the 
“microbiome-metabolism-gene” regulatory axis was constructed.

Results and analysis

Growth performance, rumen fermentation 
characteristics and rumen tissue 
morphology of Hu sheep

As shown in Table 2, the ADG and ADFI of the roughage groups 
(B, C, and D) were significantly higher than group A (p < 0.05). The 
ADFI of groups B and C were significantly greater than group A 
(p < 0.05). The FCR of group A was significantly higher than that of 
group D (p < 0.05). The acetic acid content in groups C and D was 
significantly higher than that in group A (p < 0.05). The propionate in 
groups A and B was significantly higher than group D (p < 0.05). group 
D isobutyric acid, A/P and pH significantly higher than group A 
(p < 0.05). The valeric acid in groups A and B was significantly higher 
than groups C and D (p < 0.05). The TVFA in group A was significantly 
higher than groups C and D (p < 0.05). Additionally, acetate, isobutyric 
acid, A/P and pH showed a significant linear increase with the increase 
in FNDF/starch (p < 0.05), while propionate, valeric acid and TVFA 
significantly decreased linearly with the increase in FNDF/starch 
(p < 0.05). The papilla height in groups B and C was significantly greater 
than group A (p < 0.05). The papilla width in group A was significantly 
greater than group D (p < 0.05). Furthermore, papilla height showed a 

significant quadratic increase with FNDF/starch (p  < 0.05), while 
papilla width significantly decreased linearly with FNDF/starch 
(p < 0.05). Rumen tissue section images are shown in Figure 1.

Rumen microbial composition and 
microbiota differences

Sequencing was conducted on 24 samples and identification was 
carried out through barcodes. A total of 3.22 million CCS sequences 
were obtained. Each sample produced at least 11.71 thousand CCS 
sequences, with an average of 13.44 thousand CCS sequences and an 
average sequence length of 1,457 bp (Supplementary Table S2). At 
1,000 reads, the curve plateaus, indicating that the sequencing data 
volume is sufficiently large. The number of microbial species does not 
increase with additional sequencing, suggesting saturation of coverage 
(Figure 2a). The ACE index (Figure 2b) shows that there are significant 
differences in species diversity among the groups (p < 0.05), and the 
Simpson index indicates that group D has significantly higher species 
diversity than groups A, B and C (p < 0.05), group B is significantly 
higher than group A (p < 0.05), and group C is significantly higher 
than group B (p < 0.05) (Figure 2c). The PCoA analysis shows high 
similarity within groups and clear differences between groups. The 
first and second principal components contribute 46 and 17% to the 
variance in sample differences, respectively (Figure  2d). Anosim 
analysis tests the differences between groups, revealing that inter-
group differences exceed intra-group differences (R = 0.667) and that 
there are significant differences between groups (p  = 0.001) 
(Figure 2e), indicating the meaningfulness of the research groupings.

TABLE 2 Analysis of growth performance, rumen fermentation parameters and rumen tissue development.

Items 0.23 SEM P-value

A B C D ANOVA Linear Quadratic

Growth performance

ADG (kg) 0.24b 0.30a 0.31a 0.30a 0.01 0.011 0.008 0.028

ADFI (kg) 1.64c 2.25b 2.48ab 2.67a 0.09 <0.001 <0.001 0.053

FCR (%) 6.93c 7.64bc 8.17ab 9.07a 0.41 0.003 <0.001 0.782

Rumen fermentation parameters

Acetate (%) 51.32b 53.32ab 58.02a 58.15a 1.39 0.026 0.006 0.379

Propionate (%) 32.57a 31.06a 28.80ab 25.21b 1.46 0.02 0.003 0.508

Isobutyric acid (%) 2.95b 3.01b 3.61ab 3.83a 0.21 0.028 0.005 0.731

Butyrate (%) 5.16 4.94 5.02 4.57 0.4 0.051 0.039 0.056

Isovaleric acid (%) 2.46 2.04 2.2 2.19 0.2 0.594 0.529 0.356

Valeric acid (%) 2.76a 2.30a 1.52b 1.24b 0.18 <0.001 <0.001 0.654

TVFA (mmol/−1) 117.66a 105.68ab 97.23bc 84.53c 4.93 0.002 0.002 0.028

A/P 1.63c 1.74bc 2.18ab 2.31a 0.14 0.019 0.003 0.973

pH 6.06b 6.07b 6.49ab 6.70a 0.16 0.039 0.007 0.562

Rumen tissue development

Papilla height (μm) 1990.93b 2464.83a 2399.15a 2301.92ab 104.67 0.034 0.095 0.019

Papilla width (μm) 529.02a 490.25ab 486.44ab 420.08b 17.76 0.01 0.002 0.492

Basal layer thickness (μm) 1417.97 1296.73 1375.07 1500.47 72.37 0.339 0.361 0.129

In the same row, values with different lowercase letters superscripts mean significant difference (P < 0.05), while with the same lowercase letters or no letter superscripts mean no significant 
difference (P > 0.05). Average daily gain (ADG); average daily feed intake (ADFI); feed conversion ratio (FCR); total volatile fatty acids (TVFA); acetic acid/propanoic acid (A/P).
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A total of 959 OTUs were obtained by clustering CCS sequences at 
≥97.0% similarity level, including 265 OTUs in group A, 341 OTUs in 
group B, 610 OTUs in group C, and 861 OTUs in group D (Figure 3a). 
Taxonomically, 22 phyla, 33 classes, 62 orders, 120 families, 245 genera, 
and 341 species were identified. The top 10 abundant taxa at the phylum 
and genus levels were annotated as follows: Bacteroidota (36.66%), 
Firmicutes (33.06%), and Proteobacteria (25.39%) were the dominant 
phyla (Figure 3b); Prevotella-7 (20.170%), Succinivibrionaceae-UCG-001 
(12.28%), Anaerobiospirillum (11.74%), and Prevotella (7.72%) were the 
dominant genus (Figure  3c); ANOVA was employed to assess the 
significance of inter-group differences among dominant taxa at the 
phylum and genus (Supplementary Table S3). At the phylum level, there 
was no significant difference in Bacteroidota among the groups 
(p > 0.05); Firmicutes in group D was significantly higher than groups 
A and B (p  < 0.05); Proteobacteria in Groups A, B, and C was 
significantly higher than group D (p < 0.05); Firmicutes in group D was 
significantly higher than that in groups A and B (p < 0.05). At the genus 
level, prevotella-7 in groups A and B was significantly higher than group 
D (p < 0.05). Prevotella-7 in group A was significantly higher than in 
group C (p  < 0.05); Succinivibrionaceae-UCG-001 in group C was 
significantly higher than group D (p  < 0.05); Anaerobiospirillum in 
groups A and B was significantly higher than group D (p  < 0.05); 
Prevotella in Group D was significantly higher than groups A, B and C 
(p < 0.05); Ruminococcus in group D was significantly higher than that 
in groups A and B (p < 0.05).

Metabolite extraction and qualitative and quantitative analysis were 
performed on 24 rumen contents samples, and 18,810 peaks were 
identified, among which 3,907 metabolites were annotated 
(Supplementary Table S4). PCA analysis showed significant differences 
in metabolites between the groups except for the differences between 
groups C and D, which were not significant (Supplementary Figure S1). 
Using the KEGG database, all the identified differential metabolites were 
annotated and it was found that they were mainly enriched in amino 
acid metabolism, cofactor and vitamin metabolism, lipid metabolism, 
biosynthesis of other secondary metabolites, carbohydrate metabolism, 
digestive system, membrane transport and nucleotide metabolism 
(Figure  4a). Enrichment analysis of differential metabolites among 
groups revealed that the main shared pathways included arginine and 
proline metabolism, biosynthesis of amino acids, histidine metabolism, 
nicotinate and nicotinamide metabolism, fatty acid metabolism, 
thiamine metabolism, tryptophan metabolism, tyrosine metabolism, 
and AMPK signaling pathway (Figures 4b–g). The OPLS-DA score plot 
revealed R2Y and Q2Y values close to 1 for inter-group comparisons 
(Supplementary Figures S2a–f, 3a–f), indicating that the evaluation 
model is stable and reliable, allowing for the selection of differential 
metabolites. Based on the OPLS-DA results, the selection criteria of 
|FC| ≥ 1, p value <0.05, and VIP ≥ 1 were used to identify the differential 
metabolites. 774, 924, 992, 494, 789 and 255 upregulated differential 
metabolites, and 465, 777, 863, 447, 756 and 108 downregulated 
differential metabolites were identified, respectively, between groups A 

FIGURE 1

Rumen tissue morphology HE staining in groups (A, B, C, D).
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and B, A and C, A and D, B and C, B and D, and C and D (Figures 5a–f 
and Supplementary Table S5). Key differential metabolites include 
thiamine, 3-indole acetamide, 2,2′,3-trihydroxybiphenyl, pyridoxamine 
phosphate, folic acid, histamine, hercynine, ergothioneine, ergotamine, 
and niacin (nicotinic acid), etc.

Differential gene expression and functional 
enrichment in rumen epithelium

Twenty-four samples were analyzed for eukaryotic reference 
transcriptome (RNA-seq), and a total of 159.81 Gb of clean data were 
obtained. Each sample achieved a clean data output of at least 5.80 Gb, 
with a Q30 base percentage of 96.66% or higher. The Spearman’s 
correlation coefficient (r) between individuals exceeded 0.65. Clean reads 
of each sample were aligned with the reference genome of sheep, and the 
alignment efficiency ranged from 96.49 to 98.61% 
(Supplementary Table S6). In the comparisons of A vs. B, A vs. C, A vs. 
D, B vs. C, B vs. D and C vs. D, 825, 355, 818, 204, 718 and 199 
differentially expressed genes (DEGs) were identified, respectively, 
(Figures 6a,b). Trend analysis using K-means clustering revealed that a 
total of 18 co-expression patterns of differentially expressed genes were 
discovered (Supplementary Table S7). Among these, four patterns with 
a higher clustering of differential genes [gene lists for each pattern are 

available in Supplementary Table S8: patterns 1 (148 genes), patterns 2 
(252 genes), patterns 3 (63 genes), and patterns 4 (235 genes)] (Figure 6c) 
were selected. Notably, a higher k-means value for a gene indicates its 
stronger representation of the expression pattern associated with this 
trend. KEGG enrichment analysis (Figure 6d) of DEGs in patterns 1 and 
4 revealed that the main KEGG pathways enriched for co-expressed 
DEGs in pattern 1 included amino acid metabolism, vitamin metabolism, 
fatty acid synthesis, thiamine metabolism, and signal transduction. In 
contrast, the main KEGG pathways for pattern 4 included transcription 
regulation, carbohydrate digestion and absorption, aldosterone synthesis 
and secretion, and sodium reabsorption regulated by aldosterone, along 
with signal transduction. The major differential genes in Patterns 1 and 
4 are as follows: TPK1, ACACA, IL18, ATP1A1, ATP1B3, FABP4 etc. 
These genes PABP5, GNB2L, GPX1, MAL, NADPH1, PRDX2 and 
PRDX6 were randomly selected for qRT-PCR verification. The results 
indicated that the qRT-PCR data aligned with the trends observed in the 
RNA-seq data (Figure 6e).

Multi-omics analysis

Multi-omics joint analysis revealed (Figure 7) that during thiamine 
metabolism, the thiamine content in the rumen contents decreased as 
the dietary FNDF/starch level increased. Conversely, the expression of 

FIGURE 2

(a) Shannon Index curve for the sample. (b) ACE index. (c) Simpson index. (d) PCoA analysis plot. (e) Boxplot from Anosim analysis.
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the TPK1 gene, which regulates thiamine production in the rumen 
epithelium, increased with higher dietary FNDF/starch levels. This 
indicates a negative correlation between TPK1 gene expression in the 
rumen epithelium and thiamine content in the rumen contents. In the 
histidine metabolism process, the histamine levels in the rumen 
contents increased with rising dietary FNDF/starch levels, while the 
AOC1 gene, associated with histidine metabolism in the rumen 
epithelium, also showed increased expression with higher dietary 
FNDF/starch levels.

Discussion

Growth performance reflects the efficiency of nutrient 
absorption and utilization in ruminants after nutrient intake. 
Numerous factors influence animal growth performance, primarily 
including animal breed, management practices, and environmental 
conditions. Indicators such as daily weight gain and feed 
conversion rate can indirectly reflect the alignment between 
nutrient supply in the diet and the actual needs of the animals. 
Nutrient intake is the most fundamental requirement for animal 
growth, while dry matter provides essential nutrients for 
maintaining health and growth. When nutrient levels meet the 

needs for sustaining life activities, increased feed intake can 
enhance nutrient absorption, thereby supplying energy for 
production activities. In this study, the addition of alfalfa hay and 
oat hay benefited the average daily weight gain of Hu sheep. The 
feed intake and feed conversion rate of Hu sheep with an FNDF/
starch ratio of 0.23 were lower than those at higher FNDF/starch 
levels, consistent with findings that increased concentrate levels 
can enhance the production performance of Tibetan sheep (Liu 
et  al., 2019). The rumen plays a crucial role for ruminants. 
Numerous studies indicate that feed can alter the VFA 
concentration in rumen contents, as well as the microbial 
community and metabolites, particularly the levels of NDF and 
starch in the feed (Ren et al., 2023; Dias et al., 2017). Therefore, this 
study integrates the rumen microbiome, metabolome, and 
epithelial transcriptome to explore the relationships among feed, 
microbes, metabolites, and the host, while also seeking the optimal 
balance of FNDF/starch in the diet.

The energy source for ruminants primarily relies on the absorption 
of short-chain fatty acids. In this study, the contents and ratios of 
TVFA, acetic acid, and propionic acid will show significant differences. 
Research indicates that increased concentrations of acetic acid and 
propionic acid can stimulate the development of rumen epithelium. A 
higher A/P suggests greater energy utilization efficiency (Zhao et al., 

FIGURE 3

(a) Venn diagram of different groups. (b) Histogram of the distribution of top 10 species at phylum. (c) Histogram of the distribution of top 10 species at 
genus.
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FIGURE 4

(a) Summary of metabolite annotations. (b–g) Enriched pathways of differential metabolites.
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FIGURE 5

(a–f) Volcano plot of differential metabolites.
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2023). Therefore, it is believed that group B (FNDF/starch = 0.23) and 
group C (FNDF/starch = 0.56) sheep exhibit higher energy utilization 
efficiency. Additionally, consistent with this study’s findings, high-
starch diets reduce the diversity of rumen contents and decrease the 
populations of fiber-degrading bacteria such as Butyrivibrio, 
Ruminococcus and Fibrobacter, while increasing the presence of 
bacteria like Prevotella, Streptococcus, Methanobrevibacter and 
Megasphaera, which produce propionate and degrade starch (Fernando 
et al., 2010; Petri et al., 2013). The nutritional level of the diet affects 
the morphological development of rumen tissues. This study shows 
that the width of rumen papillae decreases with an increase in FNDF/
starch, while the length of rumen papillae develops better with the 
addition of roughage to the diet. Furthermore, research indicates that 

high-grain diets can impair rumen development (Xue et al., 2019). 
Well-developed papillae enhance the digestive capacity of the rumen 
(Lesmeister et al., 2004). Thus, feeding a diet with an FNDF/starch 
ratio of 0.23 is more beneficial for the morphological development of 
rumen tissues. The richness and diversity of microbial communities 
serve as crucial indicators of rumen digestive capacity. This study’s 
analysis of rumen microbial diversity indicates that groups C and D 
exhibit greater microbial diversity, which enhances the stability of the 
rumen ecosystem and its resilience and adaptability to environmental 
changes (Zhang Y. K. et al., 2021). Additionally, principal coordinate 
analysis reveals differences in microbial communities among the 
various treatment groups. Bacteroidota, Firmicutes, and Proteobacteria 
account for over 90% of all phyla, consistent with previous findings 

FIGURE 6

Transcriptome atlas. (a) Bar chart of differentially expressed genes. (b) Venn diagram of differential gene sets. (c) Co-expression pattern of differentially 
expressed genes. (d) Sankey bubble chart. (e) Dual y-axis chart for qRT-PCR validation of differentially expressed genes.
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that these three bacterial groups dominate healthy rumen 
environments (Chang et al., 2020). Research suggests that improving 
the Firmicutes/Bacteroidota (F/B) ratio in the gut can enhance feed 
efficiency and promote energy absorption in hosts (Sim et al., 2022). 
In this study, group C shows a higher F/B ratio, indicating improved 
feed efficiency. Studies have demonstrated that Bacteroidetes and 
Firmicutes are the most preponderant phyla in the gastrointestinal 
microbiota of mammals (Pu et al., 2020). Specifically, Bacteroidetes 
play a crucial role in the degradation of non-fibrous components, while 
the Firmicutes phylum is primarily associated with fiber degradation 
(Jami and Mizrahi, 2012). Consistently, the present study identified 
Bacteroidetes and Firmicutes as the dominant phyla. Notably, when 
the FNDF/starch ratio reached 1.12, the relative abundance of 
Firmicutes exhibited a significant upward trend, providing further 
evidence for the involvement of Firmicutes in fiber degradation 
processes. Additionally, previous studies have reported that the 
abundance of Proteobacteria increases with the elevation of dietary 
NFC/NDF levels (Li et al., 2023), which is generally consistent with the 
finding of this study: the abundance of Proteobacteria decreases as the 
dietary FNDF/starch ratio increases. At the genus level, the 
predominant bacteria are Prevotella and Prevotella_7, aligning with 
earlier 16S rRNA studies (Wang et  al., 2022; Savin et  al., 2022). 
Interestingly, in this study, the relative abundance of Prevotella and 
Prevotella_7 exhibits opposing trends with increasing FNDF/starch 
ratios, while the composition of structural and non-structural 
carbohydrates in the diet also shows contrasting trends. This might 
indicate that Prevotella and Prevotella_7, respectively, use structural and 
unstructural carbohydrates in the diet as the main degradation 

substrates. Ruminococcus belongs to the Firmicutes and was known to 
degrade cellulose in the rumen (Whon et al., 2021). The abundance of 
Ruminococcus in different NFC/NDF diets varied, resulting in changes 
in fiber digestibility and the formation of short-chain fatty acids 
(SCFAs) (Chen et  al., 2024). In this study, the abundance of 
Ruminococcus increased with the increase of dietary FNDF/starch 
levels, indicating that a high-fiber diet might increase the colonization 
of cellulose-decomposing bacteria.

Metabolite analysis reveals that feeding different FNDF/starch 
diets to Hu sheep resulted in notable differences in rumen metabolites. 
For example, in the metabolic pathway (ko01100), with the increase of 
FNDF/starch, the level of 2,2′, 3-trihydroxybiphenyl was detected to 
increase significantly (there was no difference between group C and 
group D). Under the action of estradiol ring cleavage dioxygenase, 
2,2′,3-trihydroxybiphenyl is converted into 2-hydroxy-6-(2-
hydroxyphenyl)-6-oxo-2,4-hexadienoic acid, which undergoes 
cyclization and hydrolysis to yield salicylic acid (Kohler et al., 1993). 
Salicylic acid inhibits inflammatory responses by regulating the gut 
microbiota (for example, reducing the abundance of Prevotella) and 
reduces methane production in vitro through mechanisms related to 
its lipophilic molecular structure (Nørskov et  al., 2023; Luo et  al., 
2022). Additionally, this study identified differential metabolites 
involved in the digestion and absorption of vitamins, with increased 
levels of pyridoxamine phosphate and folic acid, and decreased levels 
of Thiamine and Vitamin D3 as FNDF/starch increased. Group A 
showed significantly higher pantothenic acid levels compared to other 
groups, consistent with numerous studies indicating that feed levels are 
a major factor affecting the differences in metabolites related to vitamin 

FIGURE 7

Combined multi-omics analysis.
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digestion and absorption in the rumen (Tafaj et al., 2006; Ragaller et al., 
2011; La et al., 2019). The digestion and absorption of vitamins directly 
influence the biosynthesis and catabolism of amino acids, thereby 
affecting the operation of the digestive system and leading to variations 
in growth performance (Miret and Munné-Bosch, 2014). Histamine 
and hercynine were identified as differential metabolites in histidine 
metabolism. In this study, histamine levels gradually decreased while 
hercynine levels increased with higher FNDF/starch in the diet. The 
results also confirmed the presence of high concentrations of histamine 
in the rumen fluid of animals fed high-concentrate diets (Sun et al., 
2017). Histamine can induce inflammatory responses in rumen 
epithelial cells (Wang et al., 2013), while hercynine is a metabolite of 
the strong antioxidant ergothioneine (Ando and Morimitsu, 2021), 
suggesting that increased FNDF/starch in the diet may enhance the 
body’s antioxidant capacity. The study posits that ergotamine can 
impair the immune system, affect gastrointestinal activity (e.g., gut 
motility and emptying), and influence hormones that regulate feeding 
(e.g., insulin, leptin), leading to reduced feed intake (McLeay and 
Smith, 2006). In this study, ergotamine significantly increased with 
higher FNDF/starch in the diet, particularly in group D, where the 
average abundance of ergotamine was three times that of group B and 
twice that of group C, which is detrimental to rumen health. However, 
appropriate levels of ergotamine do not adversely affect animal health, 
nutrition, or growth performance (Poole et al., 2009). In this study, 
niacin levels in groups A and B were significantly higher than in groups 
C and D, indicating that excessive FNDF/starch is detrimental to the 
health and development of rumen epithelium in ruminants.

In order to understand the effects of different FNDF/starch 
diets on the expression of host genes, multiple differentially 
expressed genes (DEGs) were identified through transcriptome 
sequencing in this study. Among them, the PTX3 gene serves as a 
biomarker and evaluation factor in immunity, with its encoded 
protein playing a corresponding immune role upon pathogen 
invasion (Jaillon et al., 2007; Suliman et al., 2008). The expression 
of PTX3 decreases with increasing FNDF/starch in the diet, 
regulating proteins in the rumen and thus maintaining normal 
rumen function. Research indicates a significant correlation 
between the relative expression of the TPK1 gene and thiamine 
levels (Sambon et al., 2022). In this study, the upregulation of TPK1 
expression may occur due to the decrease in thiamine content in 
the rumen as the FNDF/starch ratio in the diet increases. This 
reduction in thiamine availability prompts the host to enhance 
TPK1 expression through feedback regulation mechanisms, 
facilitating thiamine production within the body (Pavlova et al., 
2021). FABP4 (fatty acid-binding protein 4) and FABP5 (fatty acid-
binding protein 5) encode fatty acid-binding proteins found in 
adipocytes. They bind to long-chain fatty acids (FAs) and participate 
in their uptake, transport, and metabolism (Thompson et al., 2018; 
Rosa-Velazquez et al., 2022; Li et al., 2020). In this study, as the 
FNDF/starch ratio in the diet increases, the expression of the 
FABP4 gene in the rumen tissue of Hu sheep gradually decreases. 
This finding suggests that the mobilization and metabolism of long-
chain FAs in the rumen decline with increasing FNDF/starch in the 
diet. Conversely, the expression levels of ACACA (acetyl-coenzyme 
A carboxylase-α) and TPK1 increase with the FNDF/starch ratio. 
ACACA is involved in the synthesis of fatty acids from acetate, 
likely due to elevated acetate concentrations in the rumen, which 
enhances the expression of genes that utilize acetate (Zhang et al., 
2023). Although the mechanisms differ from those of FABP4, the 

outcomes align. ATP1A1 and ATP1B3 encode the α1 and β3 
subunits of the Na+/K+-ATPase, respectively. Both are widely 
expressed across various tissues and function as transmembrane 
proteins on the cell membrane. They establish a high K+/low Na+ 
gradient, crucial for maintaining transmembrane potential, cellular 
homeostasis, physiological activities, and normal metabolism 
(Dieho et al., 2017). Studies show a positive correlation between 
ATP1A1 expression and VFAs concentrations, with hay and 
concentrate feeding affecting ATP1A1 expression. This finding is 
consistent with the results of the current study (Metzler-Zebeli 
et  al., 2013). Furthermore, two significant upregulated genes, 
GCNT3 and SLC9A3, were identified. Research indicates that 
SLC9A3 plays a role in the rumen by transporting sodium into cells 
and protons into the rumen, thereby helping to maintain epithelial 
homeostasis (Beckett et al., 2021; Connor et al., 2010). In this study, 
the expression of SLC9A3 in the roughage-added groups (B, C, and 
D) was significantly upregulated compared to the non-roughage-
added group, suggesting that the addition of roughage in the diet 
benefits rumen epithelial stability, independent of FNDF/starch 
levels. The protein encoded by GCNT3 is associated with tissue 
integrity (Jiang et al., 2023). In this study, the expression of the 
GCNT3 gene was upregulated in the roughage-added groups 
compared to the non-roughage-added group, indicating that adding 
roughage to the diet may enhance the integrity of the rumen 
epithelium. These findings underscore the importance of dietary 
composition in modulating gene expression related to rumen 
health. The upregulation of both SLC9A3 and GCNT3 in response 
to roughage supplementation suggests a potential mechanism 
through which dietary strategies can be  employed to optimize 
rumen function and overall animal health. Further investigations 
are warranted to elucidate the precise pathways involved and to 
explore the implications of these findings for improving feed 
efficiency and animal performance. Additionally, the interaction 
between FNDF/starch levels and roughage types could provide 
valuable insights into formulating diets that maximize the benefits 
of roughage while minimizing potential negative effects associated 
with high-starch diets. Future research should also consider the 
long-term effects of these dietary modifications on rumen 
morphology and microbial populations, as these factors are critical 
for sustaining optimal digestive health in ruminants.

Conclusion

This study explored the effects of different FNDF/starch ratios 
in diets on the growth performance, rumen microbiota, 
metabolome and epithelial transcriptome of Hu sheep. The results 
showed that adding alfalfa hay and oat hay improved the average 
daily weight gain of Hu sheep. A diet with an FNDF/starch ratio 
of 0.23 was more beneficial to the morphological development of 
rumen tissues, while groups C and D (FNDF/starch = 0.56 and 
1.12) exhibited greater microbial diversity, enhancing the stability 
of the rumen ecosystem. Bacteroidota, Firmicutes, and 
Proteobacteria were the dominant phyla, accounting for over 90% 
of the microbial community, consistent with previous studies. The 
Firmicutes/Bacteroidota ratio was higher in group C, indicating 
improved feed efficiency. Notably, the relative abundance of 
Firmicutes significantly increased when the FNDF/starch ratio 
reached 1.12, suggesting their crucial role in fiber degradation. At 
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the genus level, Prevotella and Prevotella_7 were predominant, 
with contrasting abundance trends as FNDF/starch increased, 
implying their differential utilization of structural and 
non-structural carbohydrates. The abundance of Ruminococcus, a 
cellulose-degrading bacterium, increased with higher FNDF/
starch ratios, indicating enhanced colonization of fiber-degrading 
bacteria in high-fiber diets. Metabolite analysis revealed that 
different FNDF/starch ratios affected the levels of short-chain 
fatty acids, vitamins, and antioxidant-related substances. 
Transcriptome sequencing identified differentially expressed 
genes related to immunity, energy metabolism, and rumen 
epithelial integrity, such as PTX3, TPK1, and FABP4. The study 
concluded that the FNDF/starch ratio in the diet significantly 
influenced the growth performance and rumen health of Hu sheep 
by regulating the rumen microbiota, metabolites and host 
gene expression.
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