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Latitude- and depth-driven 
divergence in protist trophic 
strategies revealed by a machine 
learning model 
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Nicholas J. Hawco 2 , Randelle M. Bundy 1 and 
E. Virginia Armbrust 1* 
1 School of Oceanography, University of Washington, Seattle, WA, United States, 2 Department of 
Oceanography, University of Hawai’i Mānoa, Honolulu, HI, United States 

Protists are ubiquitous across the ocean, holding different roles in the food web 
depending on their trophic capabilities. Many protists are mixotrophs, which 
are capable of both photosynthesizing and ingesting prey. However, there is 
limited knowledge of which protist species are mixotrophs in nature, as well as 
their activity and distribution throughout the ocean. Here, we present Marine 
PRotist In Situ trophic Mode predictor (MarPRISM), a refined XGBoost-based 
machine learning model for predicting the in situ trophic mode (phototrophy, 
mixotrophy, and heterotrophy) of marine protist species based on transcriptional 
profiles. We used MarPRISM to generate 1,462 trophic mode predictions for 
28 environmental protist species based on 335 metatranscriptomes collected 
across the North Pacific Ocean, from the surface to 130 m depth, over the diel 
cycle, and within nutrient-amended incubations. Eight environmental species 
were identified as having mixotrophic capabilities, including six dinoflagellates, 
one bolidophyte, and one haptophyte. The species with mixotrophic capabilities 
varied in how they shifted their trophic mode across the surface ocean and 
in response to the experimental amendment of nitrate and iron. Limited 
light availability appeared to lead one species to shift from mixotrophy at 
the surface toward heterotrophy between 41 and 130 m depth. We used 
transcript abundance to evaluate the abundance of species with different trophic 
capabilities (species with mixotrophic capabilities, phototrophic specialists, and 
heterotrophic specialists). At the surface within the subtropical gyre, transcript 
abundance was similar among protist species with different trophic capabilities. 
In the gyre, the protist community was nitrate-limited, and experimental nitrate 
amendment favored phototrophic specialists. Increasing nitrate availability with 
latitude was correlated with phototrophic specialists being the dominant protist 
trophic group in the transition zone between the subtropical and subpolar gyres 
under high nitrogen availability. In contrast, under lower nitrogen conditions in 
the transition zone, protist species with different trophic capabilities comprised 
equal portions of the surface community. Light and nitrate availability influenced 
the transcript abundance of phototrophic specialists across depth; phototrophic 
specialists had high transcript abundance at 130 m in the subtropical gyre and at 
the surface in the transition zone, while species with mixotrophic capabilities 
and heterotrophic specialists showed less variation in transcript abundance 
with depth. 
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Introduction 

Single-celled eukaryotes (protists) are widespread and 
abundant members of marine planktonic communities. Protist 
species traditionally assumed to be phototrophic due to their 
possession of plastids are increasingly recognized as mixotrophs 
(Flynn et al., 2013), able to rely on both photosynthesis and 
heterotrophy (a strategy known as mixotrophy) or utilize each 
mode independently to acquire carbon, nitrogen, phosphorus, 
and trace elements such as iron and vitamins. Mixotrophic 
plankton are predicted to enhance primary production, trophic 
transfer efficiency, and carbon export (Mitra et al., 2014; Ward 
and Follows, 2016). Further, mixotrophs exert control over lower 
trophic levels, with mixotrophic flagellates estimated to carry 
out 40% or more of bacterivory in oligotrophic surface waters 
(Zubkov and Tarran, 2008). 

Mixotrophic protists compete with strictly phototrophic 
protists for dissolved inorganic nutrients and light, and with 
strictly heterotrophic protists for prey. The requirement of 
mixotrophs to allocate biomass and energy among more functions 
than specialists may lead to greater respiratory demand, lower 
photosynthetic efficiency than phototrophs, and lower grazing rates 
than heterotrophs (Raven, 1997; Berge et al., 2017). Mixotrophs 
are predicted to be favored when the ability to synergistically use 
light, prey, and nutrients through photosynthesis and phagocytosis 
overcomes the limitations experienced by specialists. When prey 
is limiting, mixotrophs can use energy from photosynthesis to 
fix carbon and thus may outcompete heterotrophic specialists. 
When nutrient concentrations are limiting, mixotrophs may 
access nutrients trapped in prey cells to support photosynthesis 
and potentially outcompete photosynthetic specialists. When 
sufficient light is available, mixotrophs may use the excess 
energy generated by photosynthesis for phagocytosis, potentially 
allowing mixotrophs to suppress prey to densities too low for 
heterotrophs to efficiently graze (Hsu et al., 2022). The complexity 
of mixotrophic lineages challenges the application of universal trait 
trade-offs to functional groups (Mitra et al., 2023b). For example, 
obligate mixotrophic species must utilize both photosynthesis 
and phagocytosis to support growth. In contrast, facultative 
mixotrophic species can grow without prey when provided light, 
or in the dark when provided ample prey. Even closely related 
mixotrophic protist species can exhibit different trophic strategies, 
varying in their allocation of resources to photosynthesis and 
grazing (Wilken et al., 2019). 

The study of mixotrophic protists has evolved significantly 
over the years. Prey ingestion has traditionally been detected in 
the lab or at sea using fluorescent prey (naturally fluorescent 
or labeled) and microscopy (e.g., Stoecker et al., 1997; Connell 
et al., 2020), or stable isotope probing (e.g., Frias-Lopez et al., 
2009; Orsi et al., 2018). These methods classify a cell as 
behaving mixotrophically when prey ingestion coincides with the 
presence of a plastid. While informative, these techniques are 
labor-intensive, limiting their applicability for studying diverse 
protist species across vast oceanic regions. Mathematical models 
offer an alternative approach, enabling broader generalizations 
about mixotrophs across different species and oceanic regions. 
Pairing a meta-analysis and dynamic model, Edwards (2019) 

predicted mixotrophic protists to dominate over heterotrophic 
and phototrophic specialists in well-lit, nutrient-poor gyre surface 
waters (Edwards, 2019). Models based on optimal resource 
allocation can predict the optimal trophic behavior of mixotrophic 
protists without having to define trade-offs a priori (Moeller 
et al., 2024). Using this method, Moeller et al. (2024) identified 
phagotrophy as the dominant strategy of mixotrophic protists 
across the oceans, used primarily for nitrogen acquisition. These 
model results generate testable hypotheses that can be explored 
with field data. 

Recent studies examining the distribution of mixotrophic 
protists compared to their specialist counterparts (Edwards et al., 
2023; Dong et al., 2024; Edwards et al., 2024) use relatively few 
cultured isolates to infer trophic capabilities of protists in the 
ocean based on the behavior of their close relatives in culture. 
An alternative approach is to predict trophic capabilities directly 
from sequencing data. Burns et al. (2018) laid the groundwork for 
predicting trophic capabilities based on the presence or absence 
of specific genes. They developed a gene-based model trained 
on 35 eukaryotic genomes, using protein clusters to distinguish 
between phagotrophs and phototrophs. Random Forest models 
were employed for feature selection, and a neural network classifier 
was trained to predict trophic capabilities. To account for genome 
reduction in parasitic phagotrophs, the authors also created 
specialized models. While transcriptomes risk underestimating 
genomic potential, the model was validated on 112 genomes 
and transcriptomes, accurately predicting trophic capabilities 
across diverse eukaryotic species. The model was subsequently 
experimentally validated in green algae (Bock et al., 2021), and used 
to investigate conflicting evidence for phagotrophy by Micromonas 
(Jimenez et al., 2021), predict the potential for phagotrophy 
in Braarudosphaera bigelowii (Suzuki et al., 2021), which was 
later confirmed (Mak et al., 2024), and predict the mixotrophic 
capabilities of Phaeocystis and other haptophytes (Koppelle et al., 
2022). 

The application of machine learning beyond individual species 
and isolates to include meta-omic data offers a promising approach 
to identify and examine diverse mixotrophic protists in their 
natural environments without the need for cultivation. Alexander 
et al. (2023) built a Random Forest model to predict trophic 
capabilities from marine protist metagenomes and -transcriptomes 
based on the presence and absence of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) orthologs (Kanehisa and Goto, 2000). 
Like the Burns et al. (2018) model, their model predicted species’ 
trophic capabilities based on genomic potential rather than gene 
expression. The Alexander et al. (2023) model did not identify 
any species as mixotrophs across the oceans, despite the presence 
of known mixotrophs in the examined regions. To address the 
continuum of protist trophic capabilities, Alexander et al. (2023) 
introduced a heterotrophy index to classify transcriptomes and 
metagenome-assembled genomes along a gradient from highly 
phototrophic to highly heterotrophic. 

To predict the in situ trophic mode rather than the trophic 
capabilities of marine protist species, Lambert et al. (2022) 
developed an Extreme Gradient Boosting (XGBoost) model trained 
on transcriptional profiles rather than genomic content. The 
Lambert et al. (2022) model was trained on transcriptomes 
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generated through the Marine Microbial Eukaryote Transcriptome 
Sequencing Project (MMETSP) (Keeling et al., 2014) based on 
transcriptional patterns grouped at the level of protein families 
(Pfams). A key feature of the Lambert et al. (2022) model is 
its ability to assign multiple trophic modes to a single species 
under different growth conditions, acknowledging the flexibility 
of protist metabolism. The model does not assume that different 
species use the same gene expression strategies when switching 
between trophic modes, nor that any predefined marker genes 
will be important for predicting trophic mode. However, the 
model does assume that protist species regulate their trophic mode 
through changes in gene expression—that is, that transcriptional 
shifts underlie transitions between phototrophy, mixotrophy, and 
heterotrophy. The Lambert et al. (2022) model enabled predictions 
of phototrophy, mixotrophy, and heterotrophy for protist species 
in their natural environment. Recent studies (Lasek-Nesselquist 
and Johnson, 2019; Van Vlierberghe et al., 2021; Groussman et al., 
2023a) have identified entries present in the MMETSP-derived 
training dataset with low sequence abundance and high rates of 
contamination, suggesting that the Lambert et al. (2022) model 
could be further improved. 

We aimed to enhance the model developed by Lambert et al. 
(2022) by incorporating recent advancements in machine learning 
software and addressing the identified issues within the training 
dataset. We broadened the application of the updated model by 
analyzing both the in situ trophic mode (phototrophy, mixotrophy, 
heterotrophy) of marine protist species, and by aggregating these 
trophic mode predictions to predict overall trophic capabilities 
(species with mixotrophic capabilities, phototrophic specialists, 
heterotrophic specialists). We paired the model with quantification 
of transcript abundance to examine the abundance of mixotrophs 
relative to phototrophic and heterotrophic specialists. We sought 
to apply the model to additional metatranscriptomes from 
surface transects, depth profiles (to 130 m), nutrient amendment 
incubations, and diel experiments collected across the North Pacific 
subtropical–subpolar transition zone. The gyre waters south of the 
transition zone enable examination of the composition and trophic 
mode of protists in an oligotrophic environment dominated by 
Prochlorococcus biomass (Hynes et al., 2024), and serve as a contrast 
to the more nitrate-rich waters north of the chlorophyll front where 
net primary and community production are significantly higher 
(Juranek et al., 2012, 2020) and functionally diverse pico- and nano-
eukaryotes are abundant (Juranek et al., 2012; Kavanaugh et al., 
2014; Juranek et al., 2020). 

Methods 

Machine learning model development 

We trained and tested both Random Forest and XGBoost 
(Chen and Guestrin, 2016) machine learning models, using Scikit-
learn version 1.5.1 and XGBoost version 1.7.4, respectively. Both 
models were trained with poly(A)-selected marine eukaryotic 
transcriptomes generated through the MMETSP (Keeling et al., 
2014) (Supplementary Figure S1a). As described by Lambert et al. 
(2022), the assemblies, functional annotations, and mapping results 
for these transcriptomes were derived from re-assembly efforts 
(Johnson et al., 2017; Patro et al., 2017; Johnson et al., 2019). 

Our training dataset included those assemblies from the MMETSP-
generated transcriptomes that passed quality thresholds defined by 
Groussman et al. (2023a): at least 1,200 total sequences, at least 
500 total assigned Pfam domains, and <50% contamination from 
non-target organisms (percent of ribosomal protein sequences 
with taxonomic identity other than the recorded identity) (Lasek-
Nesselquist and Johnson, 2019; Van Vlierberghe et al., 2021; 
Groussman et al., 2023a) (Supplementary Figure S1a). Removal 
of transcriptomes with low sequence abundance or high rates 
of contamination resulted in a training set of 387 MMETSP-
derived transcriptomes that could be assigned a trophic mode 
label: 258 phototrophic, 85 mixotrophic, and 44 heterotrophic 
(Supplementary Data Sheet S1). The trophic mode labels are the 
same as those used by Lambert et al. (2022), but the final set of 
entries in the new training dataset is reduced. The trophic mode 
labels assigned to each transcriptome were based on the trophic 
capabilities of taxa reported in the literature and the specific culture 
growth conditions: a transcriptome was labeled as mixotrophic 
if it came from a taxa known to be capable of mixotrophy that 
was grown in the light with bacteria present, as phototrophic if 
the same species was grown in the light without bacteria, or as 
heterotrophic if the same species was grown in the dark with 
bacteria. Compared to the original Lambert et al. (2022) training 
dataset, the new cleaned training dataset reduced the number 
of phototrophic entries by 17, mixotrophic entries by 8, and 
heterotrophic entries by 34 (Supplementary Data Sheets 1, 2). Input 
to train the machine learning models consisted of transcripts per 
million (TPM) values aggregated by Pfam, species, and sample. A 
machine learning model was also tested based on the TPM values 
converted to binary. Pfams with zero mapped transcripts in a given 
sample were assigned a count of zero for that sample (Lambert et al., 
2022). 

We conducted feature selection on different versions of 
the training dataset (Supplementary Figure S1a). Because the 
training dataset was imbalanced with 258 phototrophic, 85 
mixotrophic, and 44 heterotrophic entries, feature selection was 
conducted on four versions of the dataset after removing the 
contaminated and low-sequence transcriptomes, each with a 
single random subset of phototrophic transcriptomes of different 
subsample sizes (number of phototrophic transcriptomes = 50, 
80, 100, and 120), along with all mixotrophic and heterotrophic 
transcriptomes. This was repeated with TPM values converted to 
binary. We also performed feature selection on four versions of 
the training dataset in which transcriptomes from Micromonas 
species originally labeled as mixotrophic were reclassified as 
phototrophic. In each version, a single random subset of 
phototrophic transcriptomes was selected (number of phototrophic 
transcriptomes = 50, 80, 100, and 120), while all mixotrophic 
and heterotrophic transcriptomes were retained. Finally, we 
ran feature selection on the training dataset containing the 
transcriptomes with low sequence abundance and high rates of 
contamination to enable comparison of model performance with 
and without removal of these transcriptomes from the training 
dataset; feature selection was conducted on four versions of this 
training dataset with a single random subset of phototrophic 
transcriptomes (number of phototrophic transcriptomes = 80, 
100, 120, and 140), along with all of the mixotrophic and 
heterotrophic transcriptomes. 
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The mean decrease in accuracy method was used to 
determine the feature Pfams essential for model performance 
(Supplementary Figure S1a). It was run based on a Random 
Forest or XGBoost (Chen and Guestrin, 2016) model using 
the undersampled training datasets with a custom script 
(https://github.com/armbrustlab/MarPRISM/blob/main/ 
modelDevelopmentTesting/mda.py). The input data was the 
TPM values of the Pfams scaled between zero and one using Scikit-
learn’s MinMaxScaler for the majority of models, while one model 
was tested using TPM values of the Pfams converted to binary. The 
training dataset (one of the four randomly undersampled versions) 
was split into training and test sets with 10 splits (iterations) 
and a test size of 30% randomly selected data using Scikit-learn’s 
ShuffleSplit. The model was fit to the training set, predictions were 
made for the test set, and the F1 score—the harmonic mean of 
precision and recall scores—of predictions was calculated. Then, 
for each Pfam, expression values were randomly shuffled across 
samples, the model re-predicted the target variable, and the F1 
score was recalculated. The importance score was quantified for 
each Pfam: the difference in the F1 score before and after shuffling, 
normalized by the original F1 score [(F1 score – F1 score after 
shuffling)/F1 score]. For each Pfam, the importance scores were 
averaged across the 10 iterations. For each model, Pfams with a 
negative mean importance score (a mean decrease in F1 score after 
shuffling) across iterations for at least one of the four randomly 
undersampled datasets were retained. Thus, Pfams were selected 
for the feature set if their inclusion increased model performance 
by any magnitude. 

Grid searches with Scikit-learn’s GridSearchCV and 5-fold 
cross-validation were conducted to select the best-performing 
hyperparameters for the Random Forest and XGBoost models. 
A custom script (https://github.com/armbrustlab/MarPRISM/ 
blob/main/modelDevelopmentTesting/parameter_gridsearch.py) 
was run on a single randomly sampled set of 100 phototrophic 
transcriptomes, as well as on all mixotrophic and heterotrophic 
transcriptomes from the previously described training datasets. The 
following hyperparameters were evaluated for the Random Forest 
model: n_estimators (10, 100, 1,000, 10,000), max_depth (1, 10, 
1,000, None), min_samples_split (2, 5, 10, 20), min_samples_leaf 
(1, 3, 5, 10), and min_weight_fraction_leaf (0, 0.2, 0.5). For the 
XGBoost model, the following hyperparameters were tested: 
n_estimators (10, 100, 1,000), max_depth (3, 10, 20), learning_rate 
(0.05, 0.1, 0.15, 0.2), gamma (0, 0.5, 1), and reg_lambda (0, 
0.5, 1). Treating the Random Forest and XGBoost models 
separately, the F1 score was calculated for each combination of 
hyperparameters. The set of hyperparameters with the highest 
mean F1 score (averaged across 5-fold cross-validation) was 
selected for each model. 

Performance of different machine learning 
models 

Performance of the Random Forest and XGBoost models 
was estimated using cross-validation (Supplementary Figure S1a), 
where models were trained on 83% of the training dataset and 
tested on the remaining data. For cross-validation, the proportion 

of transcriptomes of each trophic mode in each training and 
test set of transcriptomes was preserved using Scikit-learn’s 
StratifiedShuffleSplit. Cross-validation was performed with six 
splits. Model performance was evaluated with F1 score. Mean F1 
score was calculated for each model across the three trophic modes 
weighted by the number of true instances of each class, and for 
each trophic mode separately with Scikit-learn. The F1 scores of 
different models were compared with one-way analysis of variance 
tests (ANOVAs). 

Separation of the phototrophic, mixotrophic, and heterotrophic 
training dataset transcriptomes was visualized using t-distributed 
stochastic neighbor embedding (t-SNE) with the R package Rtsne 
after scaling the TPM of each Pfam by its mean and standard 
deviation across samples. The clustering of transcriptomes based 
on features in t-SNE space was quantified with silhouette scoring 
using the R package cluster; the silhouette score is a measure of 
the distance in t-SNE space of each training dataset transcriptome 
to transcriptomes in its cluster (trophic mode) compared to the 
distance to transcriptomes in other clusters (trophic modes). 
The phototrophic, mixotrophic, and heterotrophic training dataset 
transcriptomes were also visualized with hierarchical clustering; 
the expression of each feature Pfam, in TPM, was averaged 
(median) across the training dataset transcriptomes of each trophic 
mode, then the trophic modes were hierarchically clustered based 
on Euclidean distance after scaling the median TPM values. 
Additionally, the expression of feature and non-feature Pfams in 
the training dataset transcriptomes was compared with a one-
tailed t-test. 

Transcriptomes not included in the training dataset were 
used for further testing (Supplementary Data Sheet S3). These 
transcriptomes originated from cultures of protists grown under 
varied laboratory conditions (Lie et al., 2017, 2018; McKie-
Krisberg et al., 2018; Onyshchenko et al., 2021; Lambert et al., 
2022; Graff van Creveld et al., 2023; Charvet et al., 2024). 
Some of these transcriptomes were processed and used for 
testing by Lambert et al. (2022), while other transcriptomes, 
from Pterosperma cristatum (Charvet et al., 2024), Amphora 
coffeaeformis, Chaetoceros sp., and Cylindrotheca closterium (Graff 
van Creveld et al., 2023), were newly added as tests in this 
study. In assigning an expected trophic mode to transcriptomes of 
Micromonas polaris, we considered the species to have mixotrophic 
capabilities given its inclusion in the Mixoplankton Database 
(Mitra et al., 2023a); however, we recognize that there is debate 
regarding the mixotrophic capabilities of this species (Jimenez et al., 
2021). We assigned an expected trophic mode of phototrophy 
or mixotrophy to transcriptomes from P. cristatum grown in F/2 
media with bacteria and light, as well as in F/20 media with 
bacteria and light, both sampled on day 11 because prey ingestion 
was not significantly different from the unfed control in these 
treatments but there was a low baseline feeding frequency (∼6 
and ∼13% of cells, respectively) (Charvet et al., 2024). In contrast, 
transcriptomes from P. cristatum grown in F/20 with bacteria and 
light, sampled on day 16 were assigned an expected trophic mode 
of heterotrophy or mixotrophy, as 60% of cells exhibited feeding, 
a significant increase compared to the control, and there was a 
significant reduction or abatement of photosynthetic activity based 
on transcriptomic analysis (Charvet et al., 2024). Ochromonas 
sp. CCMP1393, grown in the dark with bacteria was assigned 
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an expected trophic mode of heterotrophy or mixotrophy, as 
chlorophyll content and gene expression measurements indicated 
that the strain maintained photosynthetic readiness by keeping 
its enzymatic machinery active. In contrast, Ochromonas sp. BG-1 
appeared to shut down its photosynthetic capacity under the same 
conditions and was thus assigned an expected trophic mode of 
heterotrophy. TPM for the additional transcriptomes were derived 
from publicly available salmon mappings (Patro et al., 2017). Pfam 
annotations for these transcriptomes were generated through the 
following: the publicly available assembled transcriptome for each 
species was six-frame translated with transeq (version 6.6.0.0) (Rice 
et al., 2000); the longest reading frame (minimum 100 amino acid 
length) was selected for each contig; the amino acid sequence of the 
longest reading frame was compared to the Pfam database (v34.0) 
(Bateman et al., 2004) with hmmsearch (version 3.3) using “cut_tc” 
trusted cutoff score (Finn et al., 2011); only Pfam annotations with 
an e-value less than 1e-05 were retained; the Pfam annotation 
with the best bitscore for each contig was selected; then, TPM was 
summed by Pfam. Trophic predictions were generated for these 
transcriptomes using the new models, which were then compared 
to the expected trophic mode and trophic predictions made by the 
earlier iteration of the model (Lambert et al., 2022). The MMETSP 
entries removed from the training dataset due to low sequence 
abundance or high rates of contamination were also used for testing 
of the new models (Supplementary Data Sheet S4). 

Sample and environmental data collection 

Samples for metatranscriptomes were collected during four 
oceanographic research cruises in the northeast Pacific Ocean 
(Supplementary Figure S1b, Supplementary Data Sheet S5): a diel 
study (ALOHA diel) conducted (July 2015) ∼100 km NE of Station 
ALOHA (A Long-term Oligotrophic Habitat Assessment) in the 
North Pacific Subtropical Gyre (22.45◦N, 158◦W) (Wilson et al., 
2017), and three Gradients cruises, each of which followed 158◦W. 
Gradients one (G1) transited from 21.45 to 37.8◦N from 20 April 
2016 to 04 May 2016; Gradients two (G2) transited from 21.3 to 
42.43◦N from 26 May 2017 to 13 June 2017; and Gradients three 
(G3) transited from 21.26 to 42.33◦N from 10 April 2019 to 29 
April 2019 (Juranek et al., 2020; Groussman et al., 2024c). During 
the ALOHA diel cruise, samples were collected from 15 m from a 
single water mass, following a Lagrangian drifter, every 4 h over 4 
days. Samples for the surface transects were collected from 15 m 
during G1 and G2, and from 7 m during G3. The majority of the 
Gradients surface metatranscriptomic samples were collected at 
dawn. Three sets of surface water nutrient amendment experiments 
were conducted during G2 at 32.93, 37, and 41.42◦N. The surface 
water community from 15 m was prefiltered through 100 μmmesh,  
then grown in 20 L bottles with different quantities of nitrate, 
phosphate, and dissolved iron added: at 32.93◦N, 0.5 μM nitrate + 
0.05 μM phosphate (+LoNP), 5 μM nitrate + 0.5 μM phosphate 
(+HiNP), 0.5 nM iron + 5 μM nitrate + 0.5 μM phosphate 
(+NPFe); at 37◦N, 1 nM iron (+Fe), 5 μM nitrate + 0.5 μM 
phosphate (+NP), 1 nM iron + 5 μM nitrate + 0.5 μM phosphate 
(+NPFe); and at 41.42◦N, 0.3 nM iron (+LoFe), 2 nM iron 
(+HiFe), 2 nM iron + 10 μM nitrate + 1 μM phosphate (+NPFe) 

(Supplementary Data Sheet S6). Samples from these incubations, 
including from controls (no nutrient amendment), were collected 
for metatranscriptomes along with chlorophyll a measurements 
after 0 and 96 h. A diel study (G3 diel) was conducted during 
G3 at ∼41.6◦N, with samples collected approximately every 4 h 
for 3 days from 15 m following a Lagrangian drifter. During G3, 
samples for metatranscriptomes were collected from depth profiles 
at 32.92, 37, 41.67, and 42.33◦N. The mixed layer depth (MLD) 
was determined from the depth at which potential density was 
0.03 kg/m3 greater than the potential density at 10 dbar (de Boyer 
Montégut et al., 2004) using the Gibbs-SeaWater Oceanographic 
Toolbox (McDougall and Barker, 2011) applied to conductivity, 
temperature, and depth-rosette (CTD) profiles. The euphotic 
zone depth was determined as the depth with 1% of surface 
photosynthetically active radiation (PAR). While we refer to the 
incubations conducted at 32.93◦N during G2 and the depth profile 
at 32.92◦N during G3 as in the gyre, it should be noted that these 
locations are near the southern boundary of the transition zone 
in winter. 

Measurements of nutrients, PAR, temperature, bacteria and 
picoeukaryote biomass, and net community production for the G1– 
G3 surface transects and depth profiles originate from previous 
studies (Ribalet et al., 2019; Juranek et al., 2020; Pinedo-González 
et al., 2020; Park et al., 2023; Hawco et al., 2025) and data 
repositories (Cain et al., 2020a,b,c; Juranek, 2020a,b,c; White, 
2020, 2021; Simons CMAP Curator, 2022; NASA Goddard 
Space Flight Center, Ocean Ecology Laboratory, Ocean Biology 
Processing Group, 2022; Dave Karl Lab, 2023; John, 2023; 
Ribalet et al., 2024) and were downloaded from the Simons 
Collaborative Marine Atlas Project (https://simonscmap.com) 
(Ashkezari et al., 2021) (Supplementary Data Sheet S7). Dissolved 
iron concentrations measured on station not underway were 
measured at depths ≤50 m, and were averaged by station following 
Hawco et al. (2025). Nitrate/nitrite concentrations were taken from 
depths <24 m for the surface transects. Surface PAR was averaged 
daily with a spatial resolution of 9 km from the 469, 555, and 
645 bands of the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Aqua satellite, then averaged by latitude across the 
respective cruise’s sampling dates. The temperature for each surface 
transect was averaged by latitude. Heterotrophic bacteria biomass 
was obtained from an Influx Cell Sorter from depths of ≤15 m, 
then averaged by cruise, latitude, and longitude. Nitrate/nitrite 
concentrations were not available for the same depth profile casts as 
the metatranscriptomes, so casts with nitrate/nitrite measurements 
from the same station were used for each depth profile: station 6, 
cast 1 at 32.93◦N; station 5, cast 1 at 37◦N; station 4, cast 10 at 
41.68◦N; and station 8, cast 3 at 42.33◦N. 

Sequence data processing 

Metatranscriptomic samples were extracted, eukaryotic 
mRNAs were poly(A)-selected, internal standards were prepared, 
and mRNA was used to construct libraries for Illumina RNA 
sequencing, as previously described (Groussman et al., 2024c). 
RNA sequences were trimmed, quality controlled, and de novo 
assembled, and transcripts were mapped against the de novo 
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assemblies according to previously described methods (Groussman 
et al., 2021, 2024c) (Supplementary Figure S1b). Transcripts from 
the G2 incubations were mapped to the G2 surface assembly. 
Contigs were functionally annotated using the Pfam database 
(Bateman et al., 2004) with hmmsearch (Finn et al., 2011) 
using “cut_tc” trusted cutoff score. Additionally, only Pfam 
annotations with an e-value less than 1e-05 were retained. Contigs 
were taxonomically annotated with Diamond last common 
ancestor (Buchfink et al., 2015), retaining hits with an e-value 
less than 1e-05 and within 10% of the best bit score using the 
Marine Functional EukaRyotic Reference Taxa (MarFERReT) 
reference sequence library (Groussman et al., 2023a, 2024c) 
(Supplementary Figure S1b). For the samples not included in the 
North Pacific Eukaryotic Gene Catalog (Groussman et al., 2024c), 
the following software was used: G2 incubations: trimmomatic 
(version 0.36) (Bolger et al., 2014), kallisto (version 0.50.0) (Bray 
et al., 2016); G3 depth profiles: trimmomatic (version 0.39) (Bolger 
et al., 2014), trinity (version 2.15.1) (Grabherr et al., 2011), kallisto 
(version 0.46.1) (Bray et al., 2016), transeq (version 6.6.0.0) (Rice 
et al., 2000), hmmsearch (version 3.3) (Finn et al., 2011) against the 
Pfam database (version 34.0) (Bateman et al., 2004), and diamond 
(version 2.0.5.143). For each metatranscriptomic sample, contigs 
and their mapped transcripts were aggregated into species bins 
based on their taxonomic annotation—reflecting the closest known 
relative in the reference database rather than definitive species 
identities (Groussman et al., 2024c). We subsequently analyzed 
these species bins across samples, while recognizing that identical 
species bin labels may represent distinct species as contigs were 
grouped solely based on their closest species-level annotation. 

To normalize sequence reads to TPM, the estimated number 
of reads mapped to each contig—outputted by the mapping 
software kallisto (Bray et al., 2016)—was divided by the contig 
nucleotide length to generate reads per kilobase (RPK). The RPK 
for each contig was summed by species bin and sample, and then 
divided by 1 million to generate a conversion factor. The RPK, 
divided by the conversion factor, yields the TPM per contig. TPMs 
were summed by Pfam for each species bin and each sample 
(Supplementary Figure S1b). Feature Pfams with zero transcripts 
mapped in a given species bin/sample were assigned TPM counts 
of zero. The TPM counts were scaled between zero and one with 
Scikit-learn’s MinMaxScaler. 

Criteria for application of the model to 
environmental metatranscriptomes 

We made trophic predictions for environmental species bins 
only because the models were trained on transcriptomes from 
individual species. The transcriptional completeness of species 
bins was evaluated using the eukaryotic Core Transcribed Genes 
(CTG), the 605 Pfams present in translated transcriptomes of 
≥95% of the eukaryotic species in the MarFERReT reference 
library (Groussman et al., 2023a). We required each species bin 
to have at least one mapped read to ≥70% of the CTGs in a 
given sample for a trophic prediction to be made; this cutoff 
was chosen as 70% completeness is the standard for high-quality 
metagenome-assembled genomes (Benoit et al., 2024). The scaled 

TPM data for each species bin and sample that met this criterion 
was used as input for the trained machine learning model to 
generate trophic predictions. To exclude predictions likely resulting 
from model failure—since phototrophy and heterotrophy should 
not be expected for the same species bin under the same 
conditions—for the G1–G3 surface samples, we removed all trophic 
predictions for a species bin at a given latitude if both phototrophy 
and heterotrophy each accounted for more than 25% of predictions 
across replicates and size fractions (Supplementary Figure S1b). A 
similar exclusion criterion was applied to G3 depth profile samples 
(per latitude and depth), G2 incubation samples (per latitude, 
treatment, and time point), and ALOHA and G3 diel samples (per 
date) (Supplementary Figure S1b). 

We determined the trophic capabilities of species bins based 
on the variety of their in situ trophic mode predictions across 
metatranscriptomic samples, rather than using a model trained to 
predict inherent trophic capabilities. This approach was necessary 
because transcriptomes reflect gene expression at the time of 
sampling, not the full genetic potential (genome) of the species. 
Specifically, a species bin was labeled as having mixotrophic 
capabilities if ≥23% of its predictions aggregated across the G1– 
G3 surface, ALOHA diel, G2 incubation, G3 diel, and G3 depth 
samples (after excluding trophic predictions determined to be 
model failure) differed from its dominant trophic mode (trophic 
mode with the most predictions for the species bin across the G1– 
G3 surface, ALOHA diel, G2 incubation, G3 diel, and G3 depth 
samples), and the different trophic predictions were not just split 
between replicates or size fractions. If >77% of a species bin’s 
trophic predictions aggregated across metatranscriptomic samples 
were for mixotrophy, the species bin would also be labeled as 
having mixotrophic capabilities. If a species bin was not determined 
to have mixotrophic capabilities, it was labeled a phototrophic 
or heterotrophic specialist based on its dominant trophic mode 
across predictions. 

We integrated in situ trophic predictions of species bins with 
mixotrophic capabilities across the G1–G3 surface transects with 
surface measurements of nitrate/nitrite, iron, PAR, temperature, 
and the biomass of Prochlorococcus, Synechococcus, heterotrophic 
bacteria, and picoeukaryotes. Observations were aligned based on 
cruise and proximity in latitude (within 0.5◦), selecting the closest 
metadata measurement or averaging in the case of ties. Generalized 
Additive Models (GAMs) were then applied to quantify the 
partial effects of these environmental variables on the number 
of predictions for each trophic mode. To account for multiple 
hypothesis testing across environmental variables and trophic 
modes, we applied the Benjamini–Hochberg method. There were 
not enough trophic predictions to apply a similar analysis to the G3 
depth profiles. 

Distribution of environmental species bins 
based on transcript abundance 

Transcript concentrations of species bins across the North 
Pacific Ocean were calculated following the methods of Groussman 
et al. (2024c). Trimmed paired-end reads were merged with Fast 
Length Adjustment of SHort reads (FLASH) (minimum overlap 
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150 bp, maximum overlap 250 bp, and maximum mismatch 
ratio 25%) (Magoˇ c and Salzberg, 2011), then merged reads were 
mapped to the spiked-in custom standards using bowtie2 with 
default parameters (Langmead and Salzberg, 2012). For the samples 
not included in the North Pacific Eukaryotic Gene Catalog 
(Groussman et al., 2024c), the following software was used: G2 
incubations: FLASH (version 1.2.11) (Magoˇ c and Salzberg, 2011) 
and bowtie2 (version 2.5.2) (Langmead and Salzberg, 2012); G3 
depth profiles: FLASH (version 1.2.11) (Magoˇ c and Salzberg, 
2011) and bowtie2 (version 2.5.2) (Langmead and Salzberg, 2012). 
Transcript abundance was summed between size fractions when 
different size fractions of metatranscriptomes were collected from 
the same sample. The number of transcripts per liter was calculated 
based on counts of the custom standards (Groussman et al., 2024c). 
Transcript concentrations correlate with cellular carbon biomass 
across broad taxonomic groups, with dinoflagellates containing 6.4 
times more transcripts per unit of carbon biomass compared to 
other plankton taxonomic groups (Coesel et al., 2025). To compare 
abundance across taxonomic groups using transcripts, we scaled 
down the dinoflagellate transcript concentrations by a factor of 6.4. 

Changes in transcript abundance across latitude were analyzed 
for each trophic group (species bins with mixotrophic capabilities, 
phototrophic specialists, and heterotrophic specialists) using 
GAMs. Additionally, for each surface transect, a GAM assessed 
the effect of latitude on transcript abundance, while another 
incorporated an interaction term to allow the relationship to 
vary among trophic groups. An ANOVA was used to compare 
these models, testing whether the effect of latitude on transcript 
abundance differed significantly among trophic groups. The same 
analysis was run separately for each cruise for the latitudes south 
and north of the salinity isohaline (34.82). 

Bulk chlorophyll a was compared between control and nutrient 
amendment treatments across the G2 incubations grouping by 
station with ANOVAs followed by post-hoc Tukey tests. Transcript 
abundance of species bins was compared between control and 
nutrient amendment treatments across the G2 incubations with 
one-tailed t-tests followed by multiple hypothesis testing correction 
grouped by latitude and treatment using the Benjamini–Hochberg 
method. Transcript abundance across depth profiles for each 
trophic group was compared with one-way ANOVAs. Transcript 
abundance between trophic groups at each depth of the depth 
profiles was evaluated with one-way ANOVAs. 

Results 

Model development and testing 

Since the development of the original Lambert et al. (2022) 
machine learning model to predict the in situ trophic mode of 
marine protist species based on the expression of Pfams, high 
contamination levels or low sequence abundance were identified 
for ∼13% (59/446) of the MMETSP-derived transcriptomes in 
the training dataset (Lasek-Nesselquist and Johnson, 2019; Van 
Vlierberghe et al., 2021; Groussman et al., 2023a). We evaluated 
whether model performance was improved with a refined version 
of the training dataset that was trained using fewer but only 

high-quality transcriptomes. We compared two MMETSP-derived 
training datasets—one that consisted of the TPM expression 
of Pfams for the 446 transcriptomes that could be assigned a 
trophic mode as described by Lambert et al. (2022), and another 
that consisted of the TPM expression of the Pfams for the 387 
transcriptomes that could be assigned a trophic mode and passed 
the metrics of at least 1,200 total sequences, at least 500 total 
assigned Pfam domains, and <50% non-target sequences. Both 
datasets were used to train XGBoost and Random Forest models. 
The best-performing hyperparameters were selected for each model 
and training dataset (Supplementary Data Sheet S8). We evaluated 
model performance given the different training datasets and 
software versions of the XGBoost (0.90 vs. 1.7.4) and Random 
Forest (0.21.3 vs. 1.5.1) models. 

First, we compared the number of features identified via mean 
decrease in accuracy between the originally used and updated 
software versions of the XGBoost and Random Forest models 
using the original training dataset that included the contaminated 
and low-sequence transcriptomes. We expected a reduction in the 
number of feature Pfams with the updated software versions, as we 
predicted algorithmic improvements would enhance the models’ 
ability to filter out less informative features. Use of the updated 
software versions decreased the number of feature Pfams identified 
with the XGBoost model from 265 to 260. Similarly, the number of 
feature Pfams identified with the Random Forest model decreased 
from 901 to 593. A reduction in feature Pfams also occurred 
when the cleaned training dataset, rather than the original training 
dataset, was used along with updated software: the number of 
features identified with the XGBoost model was reduced from 260 
to 183, and the number of features identified with the Random 
Forest model was reduced from 593 to 511. Thus, for the XGBoost 
model, the greatest reduction in features resulted from the use of 
the cleaned training dataset, whereas for the Random Forest model, 
the greatest reduction in features resulted from the use of updated 
software. We used the updated software versions of the models for 
further evaluation. 

We next examined whether the XGBoost or Random Forest 
models yielded better performance based on F1 score when the 
two models were trained with the original or the cleaned training 
dataset. There was no significant difference (one-way ANOVAs, 
p-values > 0.05) in performance of the XGBoost and Random 
Forest models in overall performance or performance by trophic 
mode, depending on whether the original or cleaned training 
dataset was used (Supplementary Figure S2). Further, we found 
no significant difference (one-way ANOVAs, p-values > 0.05) in 
performance of the XGBoost model based on overall performance 
or performance by trophic mode when the feature set contained 
only the Pfams determined essential for the XGBoost model or 
the union of features determined essential for the XGBoost and 
Random Forest models (Supplementary Figure S2). Overall model 
performance was high—mean F1 scores >0.9—across all of these 
model variations (Supplementary Figure S2a). Each of the models 
had the lowest performance for mixotrophic transcriptomes, 
although each still had a mean F1 score >0.8 for this trophic 
mode (Supplementary Figure S2b). We chose the cleaned dataset 
for training, the XGBoost model, and the 183 XGBoost feature 
Pfams for subsequent analyses as this combination performed 
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well overall (mean F1 score = 0.94, standard error = 1.5e-02), 
individually for mixotrophy predictions (mean F1 score = 0.89, 
standard error = 2.5e-02), and relied on the fewest feature Pfams. 
We name this model MarPRISM (https://github.com/armbrustlab/ 
MarPRISM). 

The assignment of trophic mode labels to the transcriptomes 
in the training dataset may contain errors. One specific case of 
uncertainty in the training dataset is Micromonas, for which the 
literature is divided regarding its mixotrophic capabilities (e.g., 
McKie-Krisberg et al., 2018; Jimenez et al., 2021). We performed 
cross-validation on a modified version of the training dataset—in 
which Micromonas transcriptomes originally labeled mixotrophic 
were labeled phototrophic, and observed no significant difference 
(oneway ANOVAs, p-values > 0.05) in overall or trophic mode-
specific performance (Supplementary Figure S2). 

To evaluate the impact of feature expression on model 
performance, we compared MarPRISM using TPM-based Pfam 
expression values to a version of the model using binarized 
expression (where TPM > 0 was set to 1). MarPRISM identified 
183 feature Pfams when using TPM values, whereas 245 feature 
Pfams were required when using binarized expression data. 
Thirty-seven of the Pfams were features used by both models. 
Using hyperparameters optimized for the binarized expression 
model (Supplementary Data Sheet S8), we observed no significant 
difference (one-way ANOVAs, p-values > 0.05) in overall or 
trophic mode-specific performance between the TPM- and binary-
based XGBoost models (Supplementary Figure S2). We selected 
MarPRISM for downstream analysis because it uses continuous 
expression data—which contains more information—and achieved 
comparable performance with fewer features, suggesting it captures 
trophic mode signals more efficiently. 

Cross-validation was further used to explore the performance 
of MarPRISM. A cumulative confusion matrix based on cross-
validation showed that MarPRISM most often correctly predicted 
the expected trophic mode (Supplementary Figure S3a). The most 
common error was misclassifying mixotrophic transcriptomes 
as phototrophic (Supplementary Figure S3a). Other errors were 
rare, including a few phototrophic transcriptomes predicted 
as mixotrophic, and even fewer predicted as heterotrophic 
(Supplementary Figure S3a). The previous version of the 
model (Lambert et al., 2022) also most often predicted the 
correct trophic mode, but shared the same primary error: 
mixotrophic transcriptomes being misclassified as phototrophic 
(Supplementary Figure S3b). Like MarPRISM, it made few errors 
overall, including occasional phototrophic-to-mixotrophic and 
phototrophic-to-heterotrophic misclassifications of transcriptomes 
(Supplementary Figure S3b). However, unlike MarPRISM, it also 
misclassified a small number of heterotrophic transcriptomes as 
mixotrophic (Supplementary Figure S3b). 

MarPRISM’s sensitivity to the number of transcriptomes used 
for training was quantified with cross-validation. The mean F1 
score increased with the proportion of the cleaned training dataset 
used for training, leveling off but never decreasing for each trophic 
mode, suggesting the model was not overfit (Figure 1A). Even with 
only 75% of the training dataset used, F1 scores remained close 

to those obtained using the full dataset for each trophic mode 
(Figure 1A). 

The number of feature Pfams used by MarPRISM was reduced 
from the previous version of the model (Lambert et al., 2022), 
from 1,046 to 183. To evaluate the impact of this reduction, we 
analyzed how the training dataset transcriptomes separated based 
on different feature sets using t-SNE analysis. The training dataset 
transcriptomes separated more clearly based on silhouette score 
(silhouette scores range from −1 to 1) when t-SNE analysis was 
performed on the scaled TPM expression of the 183 feature Pfams 
(mean silhouette score = 0.17) than when performed on either 
the 1,046 previous feature Pfams (mean silhouette score = 0.12) 
or all of the Pfams present in the training dataset transcriptomes 
(mean silhouette score = 5.6e-02) (Figure 1B). The phototrophic 
and heterotrophic transcriptomes separated well based on the 183 
MarPRISM feature Pfams; however, there was still some overlap 
between trophic modes (Figure 1B). 

We analyzed MarPRISM’s feature Pfams 
(Supplementary Data Sheet S9) to evaluate how these Pfams 
distinguished between species behaving heterotrophically, 
mixotrophically, and phototrophically. Around 65% (117/183) 
of the feature Pfams used by MarPRISM were also used by the 
previous version of the model (Lambert et al., 2022). Around 20% 
(36/183) of the feature Pfams were eukaryotic CTGs (Groussman 
et al., 2023a). The mean TPM of the 183 feature Pfams (307.22) 
was significantly higher (two-tailed t-test, p-value = 1.5e-113) 
than the mean TPM of the other Pfams in the cleaned training 
dataset (39.54). We evaluated the expression of MarPRISM’s 
feature Pfams across the cleaned training dataset (Figure 1C, 
Supplementary Data Sheet S9). The largest proportion of feature 
Pfams, 72/183 (39%), had non-zero median expression across 
each set of transcriptomes: phototrophic, mixotrophic, and 
heterotrophic—indicating expression in at least half of the 
transcriptomes in each set. Around 35% (63/183) of the feature 
Pfams had non-zero median expression in two trophic modes. 
Of the feature Pfams expressed in two trophic modes, the largest 
proportion was shared between the mixotrophic and heterotrophic 
transcriptomes (32/183, 17%), followed by the phototrophic and 
mixotrophic transcriptomes (29/183, 16%); two feature Pfams were 
shared between the phototrophic and heterotrophic transcriptomes 
(2/183, 1%). Approximately 16% (29/183) of the feature Pfams had 
non-zero median expression in just one trophic mode: 17/183 (9%) 
in the mixotrophic, 7/183 (4%) in the phototrophic, and 5/183 
(3%) in the heterotrophic transcriptomes. 

Based on annotation, we categorized ∼60% (106/183) of 
the feature Pfams into six broad functions: carbon metabolism, 
motility, phagocytosis, photosynthesis, signaling, and transcription 
and translation (Figure 1C, Supplementary Data Sheet S9). We 
examined the expression of these feature Pfams across the training 
dataset transcriptomes. Photosynthesis-related feature Pfams were 
characteristic of phototrophic and mixotrophic transcriptomes: 
13/15 (87%) photosynthesis-related feature Pfams had non-
zero median expression in the phototrophic and mixotrophic 
transcriptomes compared to 3/15 (20%) in the heterotrophic 
transcriptomes (Figure 1C, Supplementary Data Sheet S9). 
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FIGURE 1 

Performance of MarPRISM evaluated using the training dataset. (A) Mean F1 [2 ×precision × recall/(precision + recall)] score by trophic mode for 
MarPRISM against the proportion of MarPRISM training dataset transcriptomes used for training, determined from 6-fold cross-validation. Error bars 
represent the standard error of 6-fold cross-validation. (B) Separation of the heterotrophy, mixotrophy, and phototrophy training dataset entries 
based on t-distributed stochastic neighbor embedding (t-SNE) using the 183 feature Pfams of MarPRISM, 1,046 feature Pfams of the previous version 
of the model (Lambert et al., 2022), or all Pfams present in the MarPRISM training dataset. The expression of Pfams in transcripts per million (TPM) 
was normalized by mean and standard deviation, then averaged (median) by trophic mode label across the training dataset transcriptomes. Contours 
represent 2D-kernel density estimations for transcriptomes of each trophic mode. The mean silhouette score, a measurement of consistency within 
clusters, is included for each set of Pfams. (C) Median TPM averaged by trophic mode for the 183 MarPRISM feature Pfams in the MarPRISM training 
dataset transcriptomes. The median TPM values of the feature Pfams were natural log-transformed, scaled, and then the trophic modes were 
hierarchically clustered based on Euclidean distance. The feature Pfams were arranged based on the trophic modes for which they had non-zero 
median expression, and their maximum median expression. Feature Pfams were manually grouped into broad functional categories: carbon 
metabolism (pink), motility (orange), phagocytosis (navy), photosynthesis (green), signaling (gray), and transcription and translation (yellow). 

One of the feature Pfams, the ELMO/CED-12 family, is a 
domain involved in phagocytosis of apoptotic cells in mammals 
(Gumienny et al., 2001) (Figure 1C, Supplementary Data Sheet S9). 
This Pfam had non-zero median expression across all three 
trophic modes but exhibited higher median expression in the 
heterotrophic (42.53 TPM) and mixotrophic (29.64 TPM) 
transcriptomes than the phototrophic transcriptomes (18.21 
TPM) (Figure 1C, Supplementary Data Sheet S9). Motility-
related feature Pfams were characteristic of mixotrophic and 

heterotrophic transcriptomes: a third (7/21) of the motility-
related feature Pfams had non-zero median expression in 
the phototrophic transcriptomes compared to almost all of 
the motility-related feature Pfams in the mixotrophic and 
heterotrophic transcriptomes, 19/21 (90%) and 18/21 (86%), 
respectively (Figure 1C, Supplementary Data Sheet S9). The feature 
Pfams related to carbon metabolism, signaling, and transcription 
and translation did not show clear patterns across the training 
dataset transcriptomes (Figure 1C, Supplementary Data Sheet S9). 
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We quantified the performance of MarPRISM by testing 
its ability to make trophic predictions for 27 cultured 
protist transcriptomes not included in the training dataset. 
MarPRISM correctly predicted the expected trophic mode 
across all transcriptomic replicates for 78% (21/27) of 
the protist cultures (Supplementary Data Sheet S3). When 
replicates were considered individually, MarPRISM correctly 
predicted the expected trophic mode for 79% (60/76) of the 
transcriptomes (Supplementary Data Sheet S3). For comparison, 
the previous version of the model (Lambert et al., 2022) correctly 
predicted the expected trophic mode for 81% (22/27) of the 
protist cultures across all of the transcriptomic replicates, 
and 82% (62/76) of the individual replicate transcriptomes 
(Supplementary Data Sheet S3). MarPRISM and the previous 
version of the model differed in which cultures they correctly 
predicted. Unlike the previous version of the model, MarPRISM 
accurately predicted Ochromonas sp. CCMP1393 grown 
with bacteria in the dark to be behaving mixotrophically 
(expected trophic mode was mixotrophy or heterotrophy) 
(Supplementary Figure S4, Supplementary Data Sheet S3). Unlike 
the previous version of the model, MarPRISM incorrectly 
predicted Ochromonas sp. BG-1 grown with bacteria in the dark 
to be behaving mixotrophically rather than heterotrophically, 
and Chrysochromulina sp. AL-TEMP12 grown with bacteria 
in the light sampled at night to be growing phototrophically 
rather than mixotrophically (Supplementary Figure S4, 
Supplementary Data Sheet S3). Notably, both models correctly 
predicted the non-photosynthetic diatom Nitzschia sp. Nitz4 
to be growing heterotrophically (Supplementary Figure S4, 
Supplementary Data Sheet S3), despite all diatom transcriptomes 
in the training dataset being derived from phototrophically 
growing species. Also of interest, given the ongoing debate 
about Micromonas’ trophic capabilities (McKie-Krisberg et al., 
2018; Jimenez et al., 2021), both models predicted M. polaris— 
when grown in the light with bacteria under both high and 
low nutrient conditions—to be growing mixotrophically 
(expected trophic mode for high nutrient conditions was 
phototrophy or mixotrophy) (Supplementary Figure S4, 
Supplementary Data Sheet S3). We acknowledge that the measured 
accuracy of the models—based on their performance on the test 
transcriptomes—depends on the expected trophic mode labels 
we assigned to those transcriptomes. If we followed the findings 
of Jimenez et al. (2021) and assumed that Micromonas lacks 
mixotrophic capabilities, we would label all of the M. polaris 
transcriptomes used for testing as phototrophic. Given this change, 
MarPRISM would correctly predict the expected trophic mode of 
70% (19/27) of protist cultures across all transcriptomic replicates 
and 68% (52/76) of individual transcriptomes. If we excluded 
M. polaris from the test transcriptomes, MarPRISM’s accuracy 
would be 76% for both protist cultures across all transcriptomic 
replicates (19/25) and individual transcriptomes (52/68). 

Finally, we tested the ability of MarPRISM to predict 
the expected trophic mode of MMETSP-derived transcriptomes 
removed from the training dataset due to low sequence abundance 
or high rates of contamination (Supplementary Data Sheet S4). 
MarPRISM correctly predicted the expected trophic mode of 
78% (46/59) of these transcriptomes, which is comparable to the 

accuracy of MarPRISM’s predictions for the 27 cultured protist 
transcriptomes despite the potential noisiness of the transcriptomes 
removed from the training dataset. MarPRISM’s performance 
was not compared to the previous version of the model for 
these transcriptomes, as these contaminated or low-sequence 
transcriptomes were included in the training of the Lambert et al. 
(2022) model. Overall, MarPRISM and the previous version of the 
model performed comparably, correctly predicting the expected 
trophic mode for ∼80% of the test transcriptomes. We estimate a 
potential error rate of 23% for MarPRISM, with more confidence in 
predictions that align between replicates and size fractions. 

Confidence in trophic predictions for 
environmental species bins 

We defined sufficient coverage for a trophic mode prediction to 
be generated as the expression of at least 70% of eukaryotic CTGs 
(Groussman et al., 2023a) within a given environmental species bin 
and sample. We noted that the transcriptomes for some species bins 
were split between size fractions, likely reflecting species whose size 
distribution spanned the 3 μm filter fraction. The total number of 
trophic predictions and the number of species-level taxa for which 
predictions were possible depended on the cutoff used to define 
sufficient species bin coverage for assigning a trophic prediction 
(Supplementary Figure S5). However, the selected 70% CTG 
recovery threshold lies near the tail end of the distributions, where 
both metrics plateaued (Supplementary Figure S5). Consequently, 
the number of predictions and species-level taxa with trophic 
predictions varied little around this threshold. 

We used multiple approaches to quantify the reliability of 
MarPRISM trophic predictions for species bins within the North 
Pacific Ocean metatranscriptomes. First, we examined trophic 
predictions for species bins that were split between phototrophy 
and heterotrophy across replicates and size fractions and were 
thus excluded, as these predictions were hypothesized by Lambert 
et al. (2022) to conflict with model decision boundaries. Given 
this criterion, 0–9% of predictions for species bins/sample pairs 
were excluded (Supplementary Data Sheet S10). For the G1 and G2 
surface samples, ∼7% of species bin/sample pairs were excluded 
(G1: 21/315; G2: 21/298). For the G3 surface and depth samples, 
∼1.5% (3/211) and 3% (4/146) of species bin/sample pairs were 
excluded, respectively. For both diel studies, 0% of species bin/time 
point pairs were excluded (ALOHA diel: 0/162; G3 diel: 0/147). 
Approximately 9% (23/255) of the species bin/treatment/time point 
pairs were excluded from the G2 incubation samples. Eight species 
bins had trophic predictions excluded, and the following four 
species bins had high percentages of predictions excluded: 20–33% 
of predictions for Brandtodinium nutricula, Scrippsiella trochoidea, 
Pelagodinium beii, and Prorocentrum minimum resulted in split 
predictions of heterotrophy and phototrophy between replicates 
and size fractions (Supplementary Data Sheet S11). We excluded 
these trophic predictions that were split between phototrophy and 
heterotrophy between replicates and size fractions. 

Second, we evaluated whether the reduced number of feature 
Pfams used by MarPRISM resulted in sensitivity to sequencing 

Frontiers in Microbiology 10 frontiersin.org 

https://doi.org/10.3389/fmicb.2025.1602162
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Thomas et al. 10.3389/fmicb.2025.1602162 

coverage. For each species bin that met the 70% CTG recovery 
cutoff, we quantified the proportion of trophic predictions in 
agreement across replicate metatranscriptomes and size fractions— 
after excluding trophic predictions assumed to have resulted 
from model failure—under the premise that divergence in these 
predictions reflected prediction uncertainty. Above the cutoff of 
70% CTG recovery, the proportion of trophic predictions in 
agreement across replicates and size fractions was significantly 
but weakly negatively correlated (Kendall rank correlation test, 
tau = −0.13, p-value = 2.4e-04) with CTG coverage of the 
species bins (Supplementary Figure S6). Thus, above the 70% CTG 
recovery cutoff, species bins with lower CTG coverage did not 
receive more uncertain trophic predictions than species bins with 
higher CTG coverage. Most trophic predictions were in agreement 
across replicates and size fractions (Supplementary Figure S6). 
Phototrophy (mean = 0.98) and heterotrophy predictions (mean 
= 0.93) had more agreement among replicates and size fractions 
than mixotrophy predictions (mean = 0.80). 

Lastly, we evaluated the reproducibility of trophic predictions 
in two diel studies in which samples were collected with Lagrangian 
tracking every 4 h for either 4 (ALOHA diel) or 3 (G3 diel) days. 
Two species bins from the ALOHA diel study—Karenia brevis and 
Karlodinium veneficum—and three species bins from the G3 diel 
study—Bathycoccus prasinos, Triparma pacifica, and Oxytricha 
trifallax—received highly reproducible trophic predictions over the 
diel cycle (Supplementary Figure S7). The species bins identified 
as K. brevis, K. veneficum, and O. trifallax were consistently 
predicted as heterotrophic in situ, even for those time points 
where a single replicate could be tested (Supplementary Figure S7). 
The B. prasinos and T. pacifica species bins were consistently 
predicted as phototrophic (Supplementary Figure S7c). Two 
species bins corresponding to Azadinium spinosum and P. 
minimum received a mix of trophic predictions across the ALOHA 
diel study (Supplementary Figure S7a). Few samples had sufficient 
sequencing coverage for the S. trochoidea and Prymnesium polylepis 
species bins to make trophic predictions across the ALOHA diel 
study (Supplementary Figure S7a). Trophic predictions for a given 
species bin did not consistently differ across the diel cycle or days 
(Supplementary Figure S7), suggesting that the trophic mode of 
these species bins was stable over the daily cycle. In line with this, 
Connell et al. (2020) found no diel pattern in the grazing activity 
of mixotrophic nanoplankton at Station ALOHA. This allowed for 
a comparison of trophic predictions across G1–G3 in instances 
where samples were collected at different times of day. 

Trophic predictions elucidated the trophic 
capabilities of environmental species bins 

A total of 28 environmental species bins had sufficient 
sequencing depth, as defined by ≥70% CTG recovery, to receive 
trophic predictions. After excluding predictions split between 
phototrophy and heterotrophy as previously described, a total of 
1,462 trophic predictions were made for these 28 species bins across 
335 metatranscriptomic samples (Supplementary Data Sheets 12, 
13). Most trophic predictions were for dinoflagellate species bins 
(676), followed by pelagophytes (203), ciliates (184), chlorophytes 

(167), bolidophytes (109), haptophytes (86), dictyochophytes 
(36), and MAST-4 cells (1) (Supplementary Data Sheet S13). 
The 28 species bins with trophic predictions were abundant 
(Supplementary Data Sheet S14), representing 47% of the 
transcript abundance of protists identified at the species level 
across the ALOHA diel samples, 76% across the G1 surface 
transect, 67% across the G2 surface transect, 45% across the G2 
incubation samples, 71% across the G3 surface transect, 61% across 
the G3 diel samples, and 55% throughout the G3 depth profiles. 

We aimed to identify which species bins displayed mixotrophic 
capabilities—i.e., the ability to shift trophic mode between 
phototrophy, mixotrophy, and/or heterotrophy in response to 
environmental conditions. MarPRISM had an accuracy rate 
of ∼77% when tested on cultured protist transcriptomes not 
included in the training dataset (Supplementary Data Sheets S3, 
S4), indicating an estimated 23% error rate for our trophic 
predictions. This could result in a species bin appearing to have 
variable trophic predictions across field samples due to model 
error rather than a true biological signal. No species bin received 
primarily mixotrophy predictions. Thus, for a species bin to be 
labeled as having mixotrophic capabilities, ≥23% of the species 
bin’s predictions aggregated across all of the field samples had to 
differ from its dominant trophic mode (the trophic mode with the 
most predictions across all of the field samples). This threshold 
is statistically justified as it corresponds to the estimated model 
error rate, thereby accounting for prediction noise. To ensure that 
observed trophic variability was reproducible, we required that 
the different trophic predictions could not be attributed solely 
to replicates or size fractions for a species bin to be labeled as 
having mixotrophic capabilities (Supplementary Figure S1b). This 
approach minimized false positives arising from model error. 

Based on this criterion, eight species bins were defined 
as having mixotrophic capabilities (Figure 2). These species 
bins were phylogenetically diverse, with the closest relatives 
Triparma sp. 1657, Chrysochromulina sp. KB-HA01 and the 
dinoflagellates A. spinosum, K. veneficum, P. beii, P. minimum, 
S. trochoidea, and Tripos fusus (Figure 2). The proportion 
of phototrophy, mixotrophy, and heterotrophy predictions 
varied across these species bins. P. beii was the only species 
bin to have a relatively similar number of predictions for each 
trophic mode (Figure 2, Supplementary Data Sheet S15). Both 
the Triparma sp. 1657 and Chrysochromulina sp. KB-HA01 
species bins received ∼75% phototrophy and 25% mixotrophy 
predictions (Figure 2, Supplementary Data Sheet S15). The 
P. minimum and S. trochoidea species bins received ∼50% 
phototrophy, 30% heterotrophy, and 20% mixotrophy predictions 
(Figure 2, Supplementary Data Sheet S15). The K. veneficum 
species bin received ∼75% heterotrophy predictions and 25% 
mixotrophy predictions (Figure 2, Supplementary Data Sheet S15). 
The A. spinosum species bin received ∼50% heterotrophy, 
40% phototrophy, and 10% mixotrophy predictions (Figure 2, 
Supplementary Data Sheet S15). The T. fusus species bin received 
∼50% mixotrophy, 25% phototrophy, and 25% heterotrophy 
predictions (Figure 2, Supplementary Data Sheet S15). Thus, three 
of these species bins were around the threshold for being labeled 
as having mixotrophic capabilities: Triparma sp. 1657 had 25% of 
predictions differing from its dominant trophic mode, while both 
Chrysochromulina sp. KB-HA01 and K. veneficum had 27%. 
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FIGURE 2 

Number of trophic predictions and trophic capabilities of environmental species bins across five cruise datasets: G1–G3 surface, ALOHA diel, G2 
incubation, G3 diel, and G3 depth profile samples. Trophic predictions were summed by species bin across replicates and size fractions. Species bins 
are labeled with the species name of their closest relative based on last common ancestor analysis, and whether previous literature (Nygaard and 
Tobiesen, 1993; Chang and Carpenter, 1994; Jacobson and Andersen, 1994; Havskum and Riemann, 1996; Li et al., 1996; Stoecker et al., 1997; Li 
et al., 1999, 2001; Jeong et al., 2005; Calbet et al., 2011; Tillmann et al., 2014; Gast et al., 2018; Glibert et al., 2009; Avrahami and Frada, 2020; 
Koppelle et al., 2022; Lambert et al., 2022; Li et al., 2022), many collected by Mitra et al. (2023a), indicated their closest relative to be a phototroph (P), 
heterotroph (H), constitutive mixotroph (CM), or plastidic specialist non-constitutive mixotroph (pSNCM), followed by? if the trophic capabilities were 
uncertain due to disagreement or low taxonomic resolution in the literature, or whether the trophic capabilities of their closest relative were 
unknown (no label). Trophic capabilities of the species bins were defined as follows. Mixotrophic capabilities (purple circle): ≥23% of its predictions 
were assigned trophic mode(s) different from its majority trophic mode, and the different trophic predictions were not solely split between replicates 
or size fractions. Heterotrophic (orange circle): received all or almost all heterotrophy predictions (<23% non-heterotrophy predictions). 
Phototrophic (green circle): received all or almost all phototrophy predictions (<23% non-phototrophy predictions). Trophic predictions that did not 
lead to a species bin being labeled as having mixotrophic capabilities are marked with high transparency: heterotrophy and mixotrophy predictions 
for Pelagomonas calceolata and mixotrophy predictions for Karenia brevis. 

For the species bins not found to have mixotrophic capabilities, 
the dominant trophic mode across the species bin’s aggregated 
predictions determined its trophic specialization. Fifteen species 

bins were defined as phototrophic specialists, including all 
the pelagophyte, chlorophyte, and the majority of haptophyte 
species bins, as well as one bolidophyte, one dictyochophyte, 
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and one dinoflagellate species bin (Figure 2). Of these, only 
the species bin identified as Pelagomonas calceolata displayed 
predictions−5% (8/155)—other than phototrophy (Figure 2, 
Supplementary Data Sheet S15). Five species bins were defined as 
heterotrophic specialists: the dinoflagellates Dinophysis acuminata, 
Gymnodinium catenatum GC744, and K. brevis, the ciliate O. 
trifallax, and the MAST-4 flagellate Stramenopiles sp. TOSAG23-2 
(Figure 2). Of these, only the K. brevis species bin displayed 
predictions –2% (2/100)—other than heterotrophy (Figure 2, 
Supplementary Data Sheet S15). 

We compared trophic predictions for the environmental 
species bins to literature-reported trophic capabilities of their 
closest relatives. Of the eight species bins predicted to have 
mixotrophic capabilities, seven had a closest relative either 
known or hypothesized to be a constitutive mixotroph with 
the ability to photosynthesize and ingest prey (Figure 2, 
Supplementary Data Sheet S15). Trophic predictions found 
the species bin identified as A. spinosum to have mixotrophic 
capabilities (Figure 2, Supplementary Data Sheet S15). Although 
little is known about the mixotrophic capabilities of Azadinium 
in the literature, so far, the genus has not been found to 
ingest prey (Tillmann et al., 2014). Of the 15 species bins we 
identified as phototrophic specialists, eight had a closest relative 
shown to be an obligate phototroph, six had a closest relative 
known or hypothesized to be a constitutive mixotroph, and 
one had a closest relative with no literature reports (Figure 2, 
Supplementary Data Sheet S15). Of the five species bins identified 
as heterotrophic specialists, two species bins had closest relatives 
known to be strictly heterotrophic, and three had closest relatives 
described as plastidic specialist non-constitutive or constitutive 
mixotrophs (Figure 2, Supplementary Data Sheet S15). The 
overall concurrence between our predictions and literature 
reports provided further confidence in the use of MarPRISM 
to predict the in situ trophic mode for species bins with high 
sequencing coverage. 

Intraspecies trophic changes observed 
across the surface ocean, nutrient 
incubations, and depth 

We next examined whether the trophic predictions for the eight 
species bins with mixotrophic capabilities displayed trophic shifts 
across the G1–G3 surface transects. We hypothesized that species 
would shift their trophic mode toward phototrophy with latitude, 
as Lambert et al. (2022) had found this to be the case for three 
species bins across the G1 surface transect, presumably due to 
higher nitrate availability in the transition zone reducing the need 
for prey ingestion. The K. veneficum species bin showed the most 
consistent trophic shifts across the three cruise transects. In the 
gyre, the K. veneficum species bin was predicted to be heterotrophic. 
In contrast, at the more northern stations, the species bin received 
only mixotrophy predictions or a combination of mixotrophy and 
heterotrophy predictions (Figure 3A). During G3, the T. fusus 
species bin showed a similar pattern to the K. veneficum species 
bin, as it was predicted to shift from heterotrophy within the 

gyre to mixotrophy predictions at the more northern stations. The 
Chrysochromulina sp. KB-HA01 and Triparma sp. 1657 species 
bins only had enough trophic predictions during G1 to analyze, 
and both displayed a shift from phototrophy toward mixotrophy 
with increasing latitude (Figure 3A). The P. beii species bin 
shifted from phototrophy to mixotrophy and heterotrophy with 
increasing latitude during G1 and G2 (Figure 3A). Neither the 
A. spinosum, P. minimum, nor S. trochoidea species bin displayed 
consistent trophic shifts with latitude (Figure 3A). Consistent 
with different species bins exhibiting distinct latitudinal shifts 
in in situ trophic mode, across the surface transects, for the 
species bins with mixotrophic capabilities, we did not find any 
significant partial effects (GAMs assessing partial effects, adjusted 
p-values > 0.05) between the number of predictions for each 
trophic mode and nitrate/nitrite, iron, PAR, temperature, or the 
biomass of Prochlorococcus, Synechococcus, heterotrophic bacteria, 
or picoeukaryotes (Supplementary Figure S8). 

To disentangle the effects of nitrate and iron availability on 
trophic shifts, we examined trophic predictions of the K. veneficum 
and P. beii species bins across a series of on-deck experiments 
(Figure 3B). These were the only species bins with mixotrophic 
capabilities that had enough predictions across incubations to 
analyze. Three sets of nutrient amendment experiments of the 
surface water community, collected from 15 m, were conducted 
during G2: one with seawater samples at the gyre’s northern edge 
at 32.93◦N where macronutrient concentrations were low, one in 
the transition zone at 37◦N where macronutrient concentrations 
continued to be low, and one in the transition zone at 41.42◦N 
where nitrate was present in micromolar concentrations. At the 
gyre station, in the control treatment sampled after 96 h, the 
K. veneficum species bin was predicted to be heterotrophic, and 
none of the nutrient amendments resulted in a change in its trophic 
predictions (Figure 3B). In the control treatment at 37◦N, sampled 
at 96 h, the species bin was also predicted to be heterotrophic. 
The addition of iron (+Fe) resulted in 80% of predictions for 
heterotrophy and 20% for mixotrophy for the K. veneficum species 
bin. Given that MarPRISM has a potential error rate of 23%, 
the mixotrophy prediction in the +Fe treatment could be due to 
model error. However, the addition of nitrate and phosphate (+NP) 
resulted in a mix of heterotrophy and mixotrophy predictions 
that surpassed the potential error rate (Figure 3B). At 41.42◦N, 
the K. veneficum species bin received mixotrophy predictions in 
the control treatment and when iron was added in low (+LoFe) 
and high amounts (+HiFe) (Figure 3B). The combined addition 
of nitrate, phosphate, and high amounts of iron (+NPFe) resulted 
in a mix of mixotrophy and phototrophy predictions; however, 
only 17% of predictions were for phototrophy, which could be 
due to model error (Figure 3B). The P. beii species bin showed 
the opposite pattern to the K. veneficum species bin across 
the surface transects, shifting from phototrophy to mixotrophy 
to heterotrophy predictions with increasing latitude (Figure 3A). 
Fewer nutrient amendment samples could be analyzed for the 
P. beii species bin due to fewer samples meeting the 70% CTG 
recovery cutoff, and more predictions being excluded for being split 
between phototrophy and heterotrophy, yet the general trend for 
this species bin was also different from that of the K. veneficum 
species bin in response to experimental nutrient amendment. 
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FIGURE 3 

In situ trophic predictions across the surface ocean and G2 nutrient amendment incubations for the species bins defined as having mixotrophic 
capabilities. (A) Top panel: surface nitrate/nitrite (blue, μmol/L) and dissolved iron concentrations (red, nmol/L) across latitude. Lower panels: number 
of trophic predictions for species bins (taxonomy is indicated on the right side of panels; note genus abbreviation Chryso. is  Chrysochromulina) 
across latitude, summed across replicates and size fractions. Red dashed line: location of salinity isohaline (34.82); black dashed line: location of 
transition zone chlorophyll front (0.15 mg m−3 chlorophyll). (B) Trophic predictions across G2 nutrient amendment incubations for the Karlodinium 
veneficum and Pelagodinium beii species bins summed across replicates and size fractions. K. veneficum and P. beii were the only species bins with 
mixotrophic capabilities that had sufficient trophic predictions across the G2 incubations to analyze. Different ratios of iron, nitrate, and phosphate 
were added to incubations of the surface water community collected from 15 m at 32.93, 37, and 41.42◦N during G2. The control (no nutrient 
amendment) and nutrient-amended treatments were sampled after 96 h. 
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In the gyre incubations, the P. beii species bin shifted from 
phototrophy predictions to a mix of phototrophy and mixotrophy 
predictions with the combined addition of low amounts of nitrate 
and phosphate (+LoNP) (Figure 3B). At 37◦N, trophic predictions 
were not possible for the P. beii species bin in the control 
treatment, although the in situ predictions for this species bin at 
this site were all mixotrophic (Figures 3A, B). The addition of iron 
(+Fe) and macronutrients (+NP) both resulted in a majority of 
phototrophy predictions and one mixotrophy prediction whereas 
the addition of all three nutrients in combination (+NPFe) 
resulted in a majority of mixotrophy predictions (Figure 3B). At 
41.42◦N, the control treatment and addition of low amounts of 
iron (+LoFe) resulted in all phototrophy predictions (Figure 3B). 
When high amounts of iron were added (+HiFe), predictions 
for the P. beii species bin shifted from all phototrophic to 
all heterotrophic (Figure 3B). In the gyre, experimental nitrate 
amendment affected the trophic mode of the P. beii species bin, 
while in the transition zone, both nitrate and iron amendment 
exerted control over the trophic mode of the K. veneficum and 
P. beii species bins. The trophic shifts for these species bins 
in response to experimental nitrate amendment mirrored their 
trophic shifts from the gyre to the transition zone with increasing 
nitrate availability. 

At four sites (32.92, 37, 41.67, and 42.33◦N) on G3, we 
investigated trophic predictions across depth (down to 130 m), 
a transition across which both nutrient and light availability 
vary. K. veneficum was the only species bin determined to have 
mixotrophic capabilities with sufficient trophic predictions across 
the depth profiles to examine. At the surface, at 7 and 15 m, 
the K. veneficum species bin received heterotrophy predictions 
in the gyre compared to a mix of heterotrophy and mixotrophy 
predictions in the transition zone (Figure 4). In contrast, at 
depths from 41 to 130 m, spanning within and below the 
euphotic zone, only heterotrophy was predicted, suggesting that 
heterotrophy was more prevalent for this species bin under low 
light (Figure 4). 

Abundance of species bins across the 
surface ocean varied with trophic 
capabilities 

For the 28 species bins with trophic predictions, we examined 
whether species bins with mixotrophic capabilities and trophic 
specialists were differentially distributed across the North Pacific 
surface ocean by quantifying transcript abundance (Figure 2). We 
hypothesized that the abundance of species bins with different 
trophic capabilities would differ in response to nutrient availability. 
Poly(A) sequencing, which was used to generate the eukaryotic 
metatranscriptomes in this study, introduces bias in transcript 
representation (Viscardi and Arribere, 2022), which could influence 
the transcript abundance of different taxa. However, Coesel et al. 
(2025) demonstrated—using several of the same datasets analyzed 
here—that poly(A)-selected transcript abundance correlates with 
estimated carbon biomass across broad taxonomic groups, with 
dinoflagellates producing ∼6.4 times more transcripts per unit 
carbon biomass than other eukaryotes. After accounting for this 

FIGURE 4 

In situ trophic predictions across G3 upper-ocean depths for the 
Karlodinium veneficum species bin. Trophic predictions for the K. 
veneficum species bin throughout the G3 surface transect and G3 
depth profiles were summed across replicates and size fractions. K. 
veneficum was the only species bin with mixotrophic capabilities 
that had enough predictions to analyze for the G3 depth profiles. 
Red dashed line: location of salinity isohaline (34.82); black dashed 
line: location of transition zone chlorophyll front (0.15 mg m−3 

chlorophyll). 

offset, our transcript data can be interpreted as a semi-quantitative 
proxy for comparing biomass across taxa. During all three cruises, 
there was a significant difference in the relationship between total 
transcript abundance and latitude across the eight species bins 
with mixotrophic capabilities, 15 phototrophic species bins, and 
five heterotrophic species bins (ANOVAs on GAMs to determine 
significance of trophic group as a predictor, p-values ≤ 0.05) 
(Figure 5A). In the oligotrophic gyre, the three trophic groups of 
species bins had similarly low transcript abundance (ANOVAs on 
GAMs to determine significance of trophic group as a predictor 
at latitudes south of salinity isohaline (34.82), p-values > 0.05), 
making up relatively equal proportions of transcript abundance 
(Figure 5). Across the transition zone, nutrient availability and 
the transcript abundance of species bins with different trophic 
capabilities varied between the three cruises. Nitrate availability 
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FIGURE 5 

Transcript abundance across the G1–G3 surface transects for the 28 species bins for which trophic predictions were possible. (A) Top panel: surface 
net community production (green, mmol O2 m−2 day−1 ), nitrate/nitrite (blue, μmol/L), and dissolved iron concentrations (red, nmol/L) across 
latitude. Lower panel: Average transcript abundance of species bins by trophic group across surface waters. Transcript abundance was summed 
across five heterotrophic species bins (orange), eight species bins with mixotrophic capabilities (purple), and 15 phototrophic species bins (green), 
then averaged across replicates. Transcripts per liter for dinoflagellate species bins were corrected by dividing by 6.4 (Coesel et al., 2025). Error bars 
represent standard error. An asterisk signifies a significant difference (p-value ≤ 0.05) in total transcript abundance for the respective trophic group 
(asterisk color) across latitude, as determined by generalized additive models (GAMs). A significant difference in the relationship between transcript 
abundance and latitude across trophic groups (ANOVA on GAMs to determine significance of trophic group as a predictor, p-value ≤ 0.05) is marked 
with a black asterisk. (B) Proportion of transcript abundance by trophic group. The total transcript abundance for each trophic group was averaged 
across replicates, then divided by the total transcript abundance of the 28 species bins at each latitude. Red dashed line: location of salinity isohaline 
(34.82); black dashed line: location of transition zone chlorophyll front (0.15 mg m−3 chlorophyll). 

increased with latitude during all three cruises but reached higher 
concentrations in the transition zone during G1 and G3 than 
G2, while dissolved iron concentrations and net community 
production were higher in the transition zone during G2 and 
G3 than G1 (Figure 5A). All three trophic groups significantly 
increased (GAMs, p-values ≤ 0.05) in total transcript abundance 
with latitude, but phototrophic species bins increased to a greater 
extent than the other trophic groups during all three cruises 
(GAMs, predicted transcript abundance ranges) (Figure 5A). The 
total transcript abundance of the phototrophic species bins 

followed a similar pattern to nitrate availability along the transects 
(Figure 5A). In the transition zone during all three cruises, there 
was a significant difference in transcript abundance across the three 
trophic groups (ANOVAs on GAMs to determine significance of 
trophic group as a predictor at latitudes north of salinity isohaline 
(34.82), p-values ≤ 0.05), and the phototrophic species bins reached 
the highest total transcript abundances (Figure 5A). This led the 
phototrophic specialists to comprise the majority of transcript 
abundance of the species bins of interest in the transition zone 
during G1 and G3 (Figure 5B). In contrast, during G2 when nitrate 
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concentrations were lower in the transition zone, the three trophic 
groups represented similar proportions of transcript abundance 
in the transition zone. This was due to an enhanced increase in 
the total transcript abundance with latitude of both the species 
bins with mixotrophic capabilities and heterotrophic species bins 
during G2 compared to G1 and G3 (GAMs, predicted transcript 
abundance ranges) (Figure 5). 

Of the 28 species bins with trophic predictions, a few 
species bins had particularly high transcript abundance in the 
surface ocean. Transcript abundance of the species bins with 
mixotrophic capabilities was dominated by the species bins most 
closely related to Chrysochromulina sp. KB-HA01, K. veneficum, 
and P. beii (Supplementary Figure S9). Of the phototrophic 
species bins, the P. calceolata species bin and, to a lesser 
extent, the B. prasinos species bin had the highest transcript 
abundance (Supplementary Figure S9). During G1 and G3, the P. 
calceolata species bin had particularly high transcript abundance 
across much of the transition zone (Supplementary Figure S9). 
In contrast, during G2, the P. calceolata species bin had high 
transcript abundance at a single location, near the transition zone 
chlorophyll front (Supplementary Figure S9), which contributed 
to the observed rise and fall in total transcript abundance of 
phototrophic species bins across the transition zone (Figure 5A). 
The species bin most closely related to O. trifallax made up a large 
proportion of the transcript abundance of the heterotrophic species 
bins (Supplementary Figure S9). 

To identify the limiting nutrients across the North Pacific 
surface ocean and disentangle the effects of nutrient availability 
on the transcript abundance of species bins with mixotrophic 
capabilities compared to phototrophic and heterotrophic 
specialists, we again analyzed the nutrient amendment incubations 
of the surface water community conducted during G2. At the 
gyre station at 32.93◦N, after 96 h, the combined addition of 
0.5 μM nitrate and 0.05 μM phosphate (+LoNP) did not result 
in a significant difference (post-hoc Tukey test, p-value = 0.14) in 
chlorophyll a or significant increases (one-tailed t-tests, adjusted 
p-values > 0.05) in the transcript abundance of any of the 28 
species bins (Figure 6). The addition of an order of magnitude 
more nitrate and phosphate, with or without 0.5 nM iron (+HiNP 
or +NPFe), resulted in >4-fold significant increases (post-hoc 
Tukey tests, p-values ≤ 0.05) in chlorophyll a and significant 
increases (one-tailed t-tests, adjusted p-values ≤ 0.05) in the 
transcript abundance of 12 and 14 of the phototrophic species 
bins, respectively (Figure 6). There was no significant difference 
(post-hoc Tukey test, p-value = 0.16) in chlorophyll a between the 
+HiNP and +NPFe treatments (Figure 6A). The P. calceolata, 
Emiliania huxleyi, and B. prasinos species bins had >5-fold 
significant increases in transcript abundance in response to both 
the +HiNP and +NPFe treatments, with the P. calceolata species 
bin increasing over 17- and 15-fold, respectively (Figure 6B). While 
the phototrophic species bins had the largest increases in transcript 
abundance, there were also significant increases (one-tailed t-tests, 
adjusted p-values ≤ 0.05) in the transcript abundance of two 
species bins with mixotrophic capabilities in the +HiNP treatment 
and seven species bins with mixotrophic capabilities and one 
heterotrophic species bin in the +NPFe treatment (Figure 6B). At 
37◦N, the addition of 1 nM iron (+Fe) did not result in a significant 

difference in chlorophyll a (post-hoc Tukey test, p-value = 0.97) or 
significant increases (one-tailed t-tests, adjusted p-values > 0.05) in 
the transcript abundance of any of the target species bins (Figure 6). 
The addition of 5 μM nitrate and 0.5 μM phosphate (+NP) did 
not result in a significant difference in chlorophyll a (post-hoc 
Tukey test, p-value = 0.94) but did lead to significant increases 
(one-tailed t-tests, adjusted p-values ≤ 0.05) in the transcript 
abundance of five phototrophic species, from ∼1.5- to 5.5-fold, 
and of two species bins with mixotrophic capabilities, from ∼1.5-
to 2-fold (Figure 6). The addition of 1 nM iron with nitrate and 
phosphate (+NPFe) led to a significant increase (post-hoc Tukey 
test, p-value = 3.1e-02) of ∼3-fold in chlorophyll a and significant 
increases (one-tailed t-tests, adjusted p-values ≤ 0.05) in the 
transcript abundance of five phototrophic species bins, from ∼3-
to 10.5-fold, with the species bins corresponding to Aureococcus 
anophagefferens, Ostreococcus sp. ‘lucimarinus,’ B. prasinos, and 
P. calceolata significantly increasing more than 6-fold (Figure 6). 
At 41.42◦N, the addition of small (0.3 nM, +LoFe) and large 
amounts of iron (2 nM, +HiFe) did not result in significant 
differences (post-hoc Tukey tests, p-values > 0.05) in chlorophyll 
a or significant increases (one-tailed t-tests, adjusted p-values > 
0.05) in the transcript abundance of any of the target species bins 
(Figure 6). The addition of 2 nM of iron with nitrate and phosphate 
(+NPFe) resulted in a significant (post-hoc Tukey test, p-value 
= 1.5e-06) yet modest—<2-fold—increase in chlorophyll a but 
no significant increases (one-tailed t-tests, adjusted p-values > 
0.05) in the transcript abundance any of the target species bins 
(Figure 6). These nutrient-amended incubations showed that at 
32.93◦N in the gyre, the surface water protist community was 
limited by nitrate while at 37 and 41.42◦N in the transition zone, 
protists were co-limited by nitrate and iron. 

Abundance of species bins from 15 to 
130 m varied with trophic capabilities 

We evaluated transcript abundance across depth profiles for 
the 28 species bins under the hypothesis that across depth, 
both light and nitrate availability would affect the transcript 
abundance of species bins with different trophic capabilities. 
The metatranscriptomes were collected at three depths at each 
of four latitudes. At 32.92◦N, nitrate concentrations remained 
low until ∼99 m, after which they increased, and the euphotic 
zone (1% surface PAR) extended to 113 m (Figure 7). At this 
latitude, transcript abundance was low at both 15 and 75 m, with 
no significant difference (one-way ANOVAs, p-values > 0.05) 
observed between the three trophic groups (Figure 7). At 130 m 
(0.42% surface PAR), the transcript abundance of species bins 
with mixotrophic capabilities and heterotrophic species bins was 
low and comparable, while phototrophic species bins exhibited a 
maximum in transcript abundance, surpassing the other trophic 
groups; only one metatranscriptomic replicate for 130 m prevented 
significance testing (Figure 7). At 37◦N, the euphotic zone extended 
to 69 m, while nitrate concentrations increased with depth, 
showing a steeper rise below 45 m (Figure 7). At the two most 
shallow depths sampled at this latitude (15 and 55 m), transcript 
abundance of the phototrophic species bins was significantly 
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FIGURE 6 

Change in chlorophyll a concentration, and change in transcript abundance for the 28 species bins for which trophic predictions were possible 
across G2 nutrient amendment incubations. (A) Change in average chlorophyll a concentration between control (no nutrient amendment) and 
nutrient-amended treatments after 96 h. Different ratios of iron, nitrate, and phosphate were added to the surface water community collected from 

(Continued) 
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FIGURE 6 (Continued) 

15 m at 32.93, 37, and 41.42◦N during G2. The control and nutrient-amended treatments were sampled after 96 h. Asterisks indicate that the 
chlorophyll a concentration was significantly different between the control and nutrient amendment (ANOVA followed by post-hoc Tukey test, 
p-value ≤ 0.05). Different letters signify that the chlorophyll a concentration was significantly different between treatments, grouped by station 
(ANOVA followed by post-hoc Tukey test, p-value ≤ 0.05). (B) Average change in transcripts per liter for five heterotrophic species bins (orange), 
eight species bin with mixotrophic capabilities (purple), and 15 phototrophic species bins (green) between the control and nutrient-amended 
treatments after 96 h. Transcripts per liter for dinoflagellate species bins were corrected by dividing by 6.4 (Coesel et al., 2025). Species bins are 
marked with an opaque circle (rather than a circle with high transparency) if their change in transcript abundance was significantly greater in the 
nutrient amendment than the control (one-tailed t-test, multiple hypothesis testing correction grouped by latitude and treatment using 
Benjamini–Hochberg method, adjusted p-value ≤ 0.05). Species bins with significantly higher transcript abundance in the nutrient amendment than 
the control, and one of the three highest changes in transcript abundance for the respective latitude and treatment, are taxonomically labeled. Error 
bars represent the standard error of the change in transcript abundance in the nutrient amendment vs. the control. Dashed lines at one on the y-axes 
represent no change between the control and nutrient amendment. 

FIGURE 7 

Transcript abundance throughout the G3 depth profiles for the 28 species bins for which trophic predictions were possible. Transcript abundance 
was summed across five heterotrophic species bins (orange), eight species bin with mixotrophic capabilities (purple), and 15 phototrophic species 
bins (green), then averaged across replicates. Transcripts per liter for dinoflagellate species bins were corrected by dividing by 6.4 (Coesel et al., 
2025). Two replicates were collected at three depths for each depth profile except 130 m at 32.92◦N, which had just one replicate. Error bars 
represent standard error. A black asterisk signifies a significant difference (p-value ≤ 0.05) in total transcript abundance between the trophic groups 
at the respective depth, as determined by one-way ANOVA. An asterisk at the bottom of the plot signifies a significant difference (p-value ≤ 0.05) in 
total transcript abundance for the respective trophic group (asterisk color) between the three depths, as determined by one-way ANOVA. 
Nitrate/nitrite concentrations (blue, μmol/L) and percentage surface photosynthetically active radiation (PAR, red) are plotted throughout depth. The 
approximate mixed layer depth (MLD) and euphotic zone depth (EZD, 1% surface PAR) are labeled for each depth profile. 

greater (one-way ANOVAs, p-values ≤ 0.05) than the other 
trophic groups (Figure 7). Transcript abundance of each trophic 
group significantly decreased (one-way ANOVAs, p-values ≤ 0.05) 
with depth, leading to a low total transcript abundance, and 
no significant difference (one-way ANOVA, p-value = 0.40) in 
transcript abundance between trophic groups at 125 m (0.08% 

surface PAR) (Figure 7). At 41.67◦N, the euphotic zone depth was 
66 m, and nitrate concentrations were high throughout the sampled 
depths (Figure 7). Transcript abundance of the phototrophic 
species bins decreased significantly (one-way ANOVA, p-value = 
3.1e-02) with depth, but was still significantly higher (one-way 
ANOVA, p-value = 6.2e-05) than the other trophic groups at 
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75 m (0.59% surface PAR) (Figure 7). At 42.33◦N, the euphotic 
zone extended to 50 m, and nitrate concentrations remained 
high throughout the sampled depths (Figure 7). The transcript 
abundance of the phototrophic species bins decreased significantly 
(one-way ANOVA, p-value = 1.5e-02) with depth (Figure 7). 
The phototrophic species bins had significantly higher (one-way 
ANOVA, p-value = 3.2e-03) transcript abundance than the other 
trophic groups at 41 m, while at 75 m (0.17% surface PAR), the 
three trophic groups did not significantly differ (one-way ANOVA, 
p-value = 8.0e-02) in transcript abundance. 

A number of the species bins with high transcript 
abundance across the surface transects had high transcript 
abundance throughout the depth profiles as well. Of the 
species bins with mixotrophic capabilities, the K. veneficum 
species bin had the highest transcript abundance below 15 m 
(Supplementary Figure S10). Of the phototrophic species bins, 
the P. calceolata species bin and to a lesser extent, the B. prasinos, 
Phaeocystis antarctica, and T. pacifica species bins had high 
transcript abundance below 15 m (Supplementary Figure S10). The 
P. calceolata species bin made up a large portion of the total 
transcript abundance of the target species bins at 130 m in the gyre 
(Supplementary Figure S10). The species bins corresponding to O. 
trifallax and Stramenopiles sp. TOSAG23-2 were the heterotrophic 
species bins with the highest transcript abundance below 15 m 
(Supplementary Figure S10). 

Discussion 

We set out to expand the diversity and number of 
metatranscriptomic samples analyzed for the in situ trophic 
mode of marine protist species, incorporating newly available 
metatranscriptomes from the North Pacific Ocean, which span 
diel experiments, surface transects, depth profiles (to 130 m), 
and nutrient-amended incubations. The study region, located at 
the subtropical gyre to the subtropical–subpolar transition zone, 
features gradients in nutrients, light, temperature, prey availability, 
and plankton community structure, thus serving as a natural 
laboratory to examine the in situ trophic mode and abundance of 
marine protist species. 

Refined model to predict the in situ trophic 
mode of marine protist species 

MarPRISM performed well overall and for each trophic mode 
despite the MMETSP-derived transcriptomes not representing a 
gold-standard dataset for training a model to predict in situ 
trophic mode. Trophic mode labels were assigned based on 
the trophic capabilities of taxa known from the literature and 
culture conditions (e.g., light vs. dark, presence vs. absence of 
bacteria) rather than through direct measurement of trophic 
mode. The assignment of trophic mode labels involved several 
assumptions: (1) that the specific strain used for sequencing 
possesses mixotrophic capabilities if it belongs to a taxon with 
members documented to have mixotrophic capabilities, and (2) 
that species with mixotrophic capabilities cultured in the light 

and with prey were actively engaged in phagotrophy, rather 
than solely photosynthesis, the latter of which could have been 
more favorable in nutrient-rich culture. In addition, some species 
may have been mischaracterized in the literature—for example, 
erroneously identified as having mixotrophic capabilities. Despite 
these potential sources of error, model performance remained high 
overall and for each trophic mode. Potential errors in the trophic 
mode labeling of individual transcriptomes likely had a limited 
impact on model performance. One specific example of potential 
error in the training dataset labels involves Micromonas, a genus for 
which the literature is divided regarding its mixotrophic capabilities 
(e.g., McKie-Krisberg et al., 2018; Jimenez et al., 2021). However, 
model performance was not sensitive to the trophic mode labeling 
of Micromonas strains in the training dataset. Furthermore, the 
ability of MarPRISM to perform well when trained on just 75% of 
its training dataset suggests that the model captured generalizable 
transcriptional patterns across protist species, such that accurate 
predictions can be made even for species that are not closely related 
to those in the training dataset. Supporting this, the transcriptome 
from a culture of the non-photosynthetic diatom Nitzschia sp. 
Nitz4 was correctly predicted by MarPRISM to be heterotrophic, 
despite all diatom transcriptomes in the training dataset being 
phototrophic. 

Despite similar accuracy to the previous version of the model 
(Lambert et al., 2022), MarPRISM made trophic predictions 
using a substantially reduced set of feature Pfams—183 Pfams 
compared to the original 1,046. This refinement enabled more 
precise identification of the Pfams with transcriptional patterns that 
influence protist trophic mode. It is possible that the expression 
of contigs unannotated by the Pfam database could aid trophic 
predictions; however, we were able to achieve high accuracy 
without including functionally unannotated contigs. We compared 
feature selection and model performance between TPM-based 
expression values and binarized data (where TPM > 0 was set to 1) 
to assess whether the features used by MarPRISM reflected nuanced 
differential expression vs. simple presence or absence of expression. 
The binarized model required more feature Pfams (245 vs. 183) to 
achieve comparable performance, suggesting that continuous TPM 
values carry additional information useful for trophic predictions. 
Unexpectedly, only 37 feature Pfams overlapped between the 
two models. Because it uses the full information contained in 
continuous expression data and relies on fewer features, we selected 
MarPRISM over the binary-based model. Importantly, the lack of a 
significant difference in model performance between the two input 
types does not imply applicability of a version of the model to 
genome-derived data as the binarized expression of feature Pfams 
was still based on transcriptomes and thus reflects gene expression 
rather than the genomic presence or absence of Pfams. 

Pfams utilized as features by MarPRISM provide insights 
into the moleccular functions associated with different trophic 
strategies. As expected, photosynthesis-related Pfams were 
indicative of phototrophic and mixotrophic transcriptomes. 
Motility-related Pfams were characteristic of mixotrophic 
and heterotrophic transcriptomes, suggesting the importance 
of motility for protists that ingest prey. One feature Pfam 
characteristic of mixotrophic and heterotrophic transcriptomes 
was associated with phagocytosis of apoptotic cells in mammals 
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(Gumienny et al., 2001), and thus may play a role in the 
phagocytosis of prey by protists. The inability to directly link 
feature Pfams to prey ingestion could stem from limited functional 
annotations for protists or from overlaps between Pfams involved 
in motility and prey ingestion, and carbon metabolism and prey 
ingestion. While we could not discern links between some of the 
feature Pfams and trophic mode, their transcriptional patterns 
were still essential to model performance. This demonstrates that 
the trophic mode of marine protist species cannot be predicted 
by the expression of specific genes alone—especially genes 
chosen a priori—but rather, is governed by complex, interacting 
transcriptional patterns. Further functional characterization of the 
183 feature Pfams through targeted laboratory experiments will 
enable greater insight into these patterns. 

Trophic capabilities of species determined 
from aggregated trophic predictions 

Our classifications of species bins’ trophic capabilities, 
determined from trophic predictions aggregated across samples, 
were largely in line with the known trophic abilities of their 
closest relatives in culture. Differences between our classifications 
and laboratory culture observations may highlight ecological 
dynamics specific to the ocean that are not replicated in controlled 
settings. For example, laboratory-cultured protists may lose their 
mixotrophic capabilities after being grown in light and high 
nutrient conditions for long periods of time (Flynn et al., 2019; 
Blossom and Hansen, 2020). Our trophic predictions also provide 
insights into species that remain understudied in laboratory 
research. The taxonomic annotations in our study rely on available 
reference sequences, which is an important limitation, given that 
even closely related protist species can differ in trophic strategy (Lie 
et al., 2018). As a result, species bins predicted to have mixotrophic 
capabilities could have originated from closely related taxa with 
different trophic modes. Additionally, our classifications of species 
bins’ trophic capabilities may differ from the known trophic 
capabilities of their closest relatives in the literature because the 
actual taxonomy of these species bins may differ from that of their 
taxonomic annotation. For example, the species bin identified as 
T. pacifica, which we predicted to be a phototrophic specialist, may 
differ in taxonomy and/or behavior from the only Triparma strain, 
identified at the genus level, shown to ingest prey in culture (Li 
et al., 2022). In contrast to the T. pacifica species bin, which only 
received phototrophy predictions, we found its close relative, the 
species bin identified as Triparma sp. 1657, to have mixotrophic 
capabilities. Similarly, little is known about the trophic capabilities 
of P. antarctica. The  Burns et al. (2018) model, trained to predict 
trophic capabilities from the presence or absence of genes, 
predicted three P. antarctica strains to have a high likelihood of 
mixotrophy and another strain to have an intermediate probability 
of mixotrophy (Koppelle et al., 2022), but phagocytosis by this 
species has not been directly observed. In contrast to Burns 
et al. (2018), we found the species bin most closely related to P. 
antarctica to be a phototrophic specialist. The trophic capabilities 
of Dictyocha speculum, which our predictions suggested to be 
strictly phototrophic, are also uncertain in the literature. One 

study found that D. speculum did not uptake fluorescently labeled 
bacteria (Havskum and Riemann, 1996), while another found 
operational taxonomic units similar to Dictyocha to be putatively 
mixotrophic (Gast et al., 2018). Although limited experiments 
have not yet observed Azadinium to ingest prey (Tillmann et al., 
2014), MarPRISM’s trophic predictions indicated that the A. 
spinosum species bin had mixotrophic capabilities. Our results 
provide insights into protist species like T. pacifica, P. antarctica, 
D. speculum, and A. spinosum whose trophic capabilities are not 
well-studied. It is also possible that for some of the species bins, 
we did not sample the marine conditions that induce other trophic 
modes. This would be most likely for the species bins identified 
as D. acuminata, G. catenatum GC744, Calcidiscus leptoporus, P. 
antarctica, Phaeocystis globosa, and P. polylepis, as few trophic 
predictions were possible for these species bins. Additionally, 
we may not have detected mixotrophic capabilities for species 
bins that utilize phagocytosis at low rates, as MarPRISM likely 
reflects the dominant trophic mode of the population. This may 
explain why the species bins most closely related to C. leptoporus 
and E. huxleyi were classified as phototrophic specialists, despite 
previous observations of infrequent and sporadic prey ingestion 
by these species in laboratory cultures: Avrahami and Frada (2020) 
found <1% of cultured cells from both species to contain prey, 
with no significant differences observed between nutrient-replete 
and nutrient-limited conditions. These findings suggest that 
MarPRISM may not detect heterotrophy and mixotrophy when 
phagotrophy occurs at a low frequency within a population. 
MarPRISM’s detection of only the dominant trophic mode of 
cells may explain why species bins with closest relatives identified 
in the literature as constitutive mixotrophs—K. veneficum, P. 
beii, P. minimum, S. trochoidea, and T. fusus—were sometimes 
predicted to be heterotrophic. Although these taxa retain plastids 
and cannot discard them, they may have been photosynthesizing at 
very low rates during instances in which they were predicted to be 
heterotrophic. The fact that MarPRISM’s predictions aligned with 
the known trophic capabilities of the closest relative in the literature 
for the majority of species bins supports the model’s application 
to field samples. Instances where MarPRISM’s predictions diverge 
from literature expectations highlight the model’s potential to 
provide insights into understudied species or to uncover trophic 
capabilities present in nature but absent in laboratory cultures. 

Mixotrophs showed species-specific 
trophic responses to nutrient and light 
availability 

The species bin identified as K. veneficum exhibited the 
clearest trophic shifts across environmental gradients; however, 
it is possible such patterns could reflect different, but closely 
related, strains grouped under the same species bin. Because 
contigs and their mapped transcripts were aggregated based on 
the closest known taxonomic relative in the reference database, 
species bins may represent distinct taxa, each with potentially 
different distributions and trophic strategies. In the surface ocean, 
from the gyre to the transition zone, the K. veneficum species 
bin transitioned from heterotrophy to a mix of heterotrophy 
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and mixotrophy predictions. With the experimental amendment 
of nitrate and iron at transition zone stations, the K. veneficum 
species bin displayed a shift from heterotrophy to more mixotrophy 
and phototrophy predictions. These results align with what is 
known about K. veneficum (previously known as Gyrodinium 
galatheanum) from laboratory studies. The species can grow as 
a phototroph in the absence of a food source (Li et al., 1999), 
and some strains can sustain heterotrophic growth for months 
(Calbet et al., 2011). Phagocytosis serves as a strategy for K. 
veneficum to supplement nitrate and phosphate to carry out 
photosynthetic carbon assimilation (Li et al., 2000), consistent with 
our observations of heterotrophy predictions in the oligotrophic 
gyre and more mixotrophy predictions in the transition zone. 
Trophic predictions across the nutrient amendment incubations 
showed that the K. veneficum species bin may also use phagocytosis 
to acquire iron. Additionally, the species bin identified as 
K. veneficum may compensate for reduced light availability at 
depth by increasing prey ingestion to acquire carbon, as exclusively 
heterotrophy predictions were observed below 15 m down to 130 m 
for the species bin. Cohen et al. (2021) hypothesized that across the 
tropical Pacific, autotrophic/mixotrophic Kareniaceae (the family 
containing K. veneficum) species reside at euphotic depths in 
contrast to heterotrophic Kareniaceae species that reside in the 
mesopelagic zone. This hypothesis may hold true, but we add to 
the complexity by predicting a trophic shift within one Kareniaceae 
species—the species bin with the closest relative K. veneficum— 
across depths of the upper 130 m of the ocean, including within and 
below the euphotic zone. 

Protist species bins with mixotrophic capabilities showed 
varied trophic responses across the North Pacific Ocean. In 
contrast to the K. veneficum species bin, within the surface 
ocean, we found three species bins, Chrysochromulina sp. KB-
HA01, Triparma sp. 1657, and P. beii, to shift from phototrophy 
toward mixotrophy or heterotrophy from the gyre to the transition 
zone. Very little is known about the factors that regulate 
the trophic mode of these taxa. Only recently were P. beii 
and a strain of Triparma shown to ingest prey (Li et al., 
2022). While some species of Chrysochromulina increase prey 
ingestion under nutrient limitation, there is a large spectrum 
of mixotrophic strategies across Chrysochromulina species (Jones 
et al., 1993). Few studies have investigated the balance of 
photosynthesis and grazing by mixotrophic protists in response 
to environmental changes within natural communities. However, 
laboratory experiments have demonstrated that mixotrophic 
protist species differ in which resources modulate their trophic 
mode. Some mixotrophic species increase grazing under nutrient 
limitation, while primarily phagotrophic species rely more on 
photosynthesis when prey is scarce (Rothhaupt, 1996). Other 
species enhance prey ingestion under low light to offset reduced 
photosynthetic carbon assimilation (Sibbald and Albright, 1991; 
Jones et al., 1993). This diversity in mixotrophic strategies may 
explain the species-specific variations in trophic shifts we observed 
across the North Pacific Ocean, which hosts changes in temperature 
and the availability of light, prey, and macro- and micronutrients. 

Enhanced data availability and improved taxonomic 
annotations likely allowed us to identify the diversity of intraspecies 
trophic shifts across the North Pacific Ocean. Lambert et al. (2022) 

observed a shift toward phototrophy from the gyre to the transition 
zone in all three species bins they analyzed for trophic shifts 
across latitude: Chrysochromulina rotalis, Chrysochromulina 
brevifilum, and Micromonas pusilla. C. rotalis, C. brevifilum, and 
M. pusilla lacked sufficient coverage in our samples to receive 
trophic predictions. We used a more stringent coverage cutoff 
for species bins to receive a trophic prediction—at least 70% of 
CTGs expressed vs. at least 800 Pfams expressed—than Lambert 
et al. (2022), and we used a different database for taxonomic 
annotations—MarFERReT vs. a reference database created by 
Coesel et al. (2021). This led to different species bins passing the 
coverage threshold for trophic predictions between our study 
and Lambert et al. (2022). Our use of MarFERReT for improved 
taxonomic annotations, our analysis of a greater number of species 
bins with varied trophic predictions (eight vs. three), and our 
examination of surface transects spanning 3 years instead of one 
likely allowed us to capture a broader diversity of responses of 
mixotrophic species to environmental conditions than Lambert 
et al. (2022). 

Phototropic specialists dominated the 
protist community in regions with high 
nitrate availability 

The transcript abundance patterns we observed support the 
hypothesis that an increase in nutrient availability under well-
lit conditions favors phototrophic protists over protists with 
mixotrophic capabilities (Edwards et al., 2023). In the low nitrate 
conditions of the gyre surface ocean, total transcript abundance 
of the 28 target species bins was low and was not dominated 
by any particular trophic group. Nitrate availability increased 
with latitude across the G1–G3 surface transects, reaching the 
highest concentrations at the northern latitudes. This increase in 
nitrate availability was associated with the greatest increase in the 
transcript abundance of phototrophic species bins. Incubations 
showed that at 32.93◦N, in the gyre, the surface community was 
nitrate-limited, and the addition of nitrate favored the phototrophic 
specialists, particularly P. calceolata. Of the target species bins, 
P. calceolata also increased the most in transcript abundance 
across the surface ocean from the gyre to transition zone. In 
the transition zone, at 37 and 41.42◦N, incubations demonstrated 
that the surface community was co-limited by nitrate and iron, 
as has been previously found for the transition zone in spring 
(Hawco et al., 2025). The addition of macronutrients and iron 
favored phototrophic specialists at 37◦N in the transition zone. 
Protist species specialized in phototrophy were best poised to take 
advantage of enhanced nitrate availability with increasing latitude 
across the surface ocean. Under high nitrate availability in the 
transition zone during G1 and G3, this led to phototrophic species 
bins dominating over the other protist trophic groups. 

Different trends in nutrient availability and protist community 
composition across the surface ocean were observed during G2 
compared to G1 and G3, likely due to nitrate-iron co-limitation and 
bloom seasonality. Dissolved iron concentrations were higher in 
the transition zone during G2 and G3 than in G1 (Park et al., 2023; 
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Hawco et al., 2025). The differences in iron distributions across G1 
(April to May 2016) and G2 (May to June 2017) were likely driven 
by seasonality in the deposition of natural and anthropogenic 
aerosols originating from Asia, which deliver soluble iron to the 
transition zone (Pinedo-González et al., 2020; Park et al., 2023). 
This seasonal iron supply allows the plankton community to bloom 
and draw down nitrate concentrations, as observed on G2, which 
occurred later in the seasonal cycle. G2 was distinct from G1 and 
G3 in that the species bins with mixotrophic capabilities and the 
heterotrophic species bins increased in transcript abundance with 
latitude to a greater extent. Given that net community production 
was high in the transition zone during G2, net community 
production was calculated based on O2/Ar (Juranek et al., 2020), 
and oxygen’s residence time in the mixed layer is around 2 weeks, 
we likely captured protist community dynamics soon after nitrate 
was depleted. During this phase, heterotrophic specialists may 
thrive by feeding on bloom remnants. At the same time, protists 
with mixotrophic capabilities may gain an advantage either from 
having more to feed on or by competing more effectively with 
phototrophic specialists under lower nitrate conditions. 

Species bins with mixotrophic capabilities comprised a greater 
share of the protist community in the nutrient-limited gyre 
and during a transient period of nutrient limitation in the 
transition zone. Species with mixotrophic capabilities likely help 
maintain steady, though moderate, primary production in the 
gyre, supporting year-round carbon export and energy transfer to 
higher trophic levels. While in the transition zone, species with 
mixotrophic capabilities may extend the duration of heightened 
primary production and associated carbon export and energy 
transfer to higher trophic levels further into the spring, beyond the 
main bloom. 

Light and nutrient availability shaped the 
protist community across the upper-ocean 
depths 

Light and nitrate availability, in combination, shaped protist 
community composition from 15 to 130 m through effects on 
phototrophic specialists. In the subtropical gyre, phototrophic 
species bins reached their highest transcript abundance at 130 m, 
where they had higher transcript abundance than the other trophic 
groups. However, the availability of a single replicate at 130 m 
precluded significance testing. Depth within the gyre did not appear 
to affect the transcript abundance of heterotrophic specialists 
and species bins with mixotrophic capabilities. In the subtropical 
gyre, phototrophic specialists may have reached higher transcript 
abundance at 130 m than at the surface due to increased nitrate 
availability at depth and their ability to efficiently photosynthesize 
under low-light conditions. In contrast, mixotrophs must distribute 
their biomass and energy across multiple trophic functions, which 
may increase respiratory demand and reduce photosynthetic 
efficiency compared to phototrophic specialists (Raven, 1997; Berge 
et al., 2017). At the surface across the transition zone during 
G3, phototrophic specialists had higher transcript abundance 
than the other trophic groups. At the transition zone stations 
with depth profiles (37, 41.67, and 42.33◦N), phototrophic 

specialists decreased in transcript abundance with depth. Nitrate 
concentrations were high in the transition zone during G3, which 
may have made it advantageous for phototrophic specialists to 
be at the surface, where there was greater light availability than 
at depth. As was observed in the gyre, the transcript abundance 
of heterotrophic specialists and species bins with mixotrophic 
capabilities was less sensitive to depth than the phototrophic 
specialists. In the transition zone, the phototrophic specialists often 
had higher transcript abundance than the other trophic groups at 
depths between 41 and 75 m. This may again reflect the ability of 
phototrophic specialists to more efficiently photosynthesize than 
mixotrophs under low-light conditions. The protist community 
was balanced across the three trophic groups at 125 m at 37◦N, 
likely because only 0.08% of surface PAR was available at this 
depth. A low percentage of surface PAR (0.17%) may also explain 
why the protist community was balanced at 75 m at 42.33◦N. 
Very low irradiances like these likely prevented the phototrophic 
specialists from reaching higher transcript abundances than the 
other trophic groups. As irradiance decreased and light attenuation 
throughout depth increased with latitude, phototrophic specialists 
became restricted to shallower depths. 

Conclusion 

North Pacific protists displayed intraspecies trophic mode shifts 
across surface transects, upper-ocean depths, and in response to 
experimental amendment of nitrate and iron, with trophic shifts 
varying across species. These shifts may reflect true intraspecies 
flexibility or the presence of distinct, closely related strains grouped 
within the same species bin due to limited taxonomic resolution. 
At the surface, the protist community was nitrate-limited in 
the gyre and nitrate and iron co-limited in the transition zone. 
Nitrate availability emerged as a key factor driving the protist 
community from a balanced mix of species with mixotrophic 
capabilities, phototrophic specialists, and heterotrophic specialists 
in the gyre to a transition zone under high nitrate availability 
dominated by phototrophic specialists. Both nitrate and light 
availability influenced protist community composition across 
depth, down to 130 m, through effects on phototrophic specialists. 
Phototrophic specialists had high transcript abundance at 130 m 
in the subtropical gyre due to deep nitrate availability and at the 
surface in the transition zone where nitrate was abundant. In 
contrast, the transcript abundance of species bins with mixotrophic 
capabilities and heterotrophic specialists was relatively insensitive 
to depth, down to 130 m. These findings underscore the importance 
of metatranscriptomes and machine learning models such as 
MarPRISM in enhancing our understanding of the trophic 
capabilities, in situ activity, and abundance of protist species across 
diverse marine ecosystems. 
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