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Introduction: Coffee is among the most sought-after and valued commodities 
because it has a high market value and serves as a soothing beverage. However, 
organically grown coffee remains limited. Most coffee farmers still use 
agrochemicals which, pose harmful effects. Therefore, alternative methods are 
needed to produce healthier crops, such as utilizing rhizobacteria, which are 
environmentally friendly and safe for human health.

Methods: Through this study, rhizobacteria treatment was applied to coffee 
plants to enhance growth, phytochemical content, and antioxidant activity. 
The present study aimed to determine the influence of rhizobacteria on the 
growth, production, and phytochemical content of Balinese robusta coffee 
plants. The research utilized a randomized group approach with four different 
treatments, six repetitions, and three units, resulting in a total of 72 experimental 
plants. F0 represents the control group with untreated soil, while F1, F2, and F3 
correspond to treatments with 2% Bacillus nitrificans, 2% Bacillus velezensis, and 
a consortium of 2% Bacillus nitrificans and 2% Bacillus velezensis, respectively.

Results: The results indicated that the F1, F2, and F3 treatments showed a notable 
distinction in comparison to the control. The F3 treatment proved to be  the 
most efficient in enhancing growth, antioxidant activity, alkaloid content, tannin 
levels, caffeine concentration, and coffee production, whereas the F2 treatment 
resulted in the highest flavonoid content. Both types of rhizobacteria can 
generate IAA, facilitate nitrogen fixation, and solubilize phosphorus. Moreover, 
all four rhizobacteria are capable of colonizing the roots of Robusta Bali coffee.

Discussion: The two rhizobacteria, B. nitrificans and B. velezensis, can function 
as biofertilizers and biostimulants for Robusta coffee plants in Bali, as they 
enhance growth, yield, and phytochemical content. When combined, these 
rhizobacteria produce better results compared to control and single treatments, 
as they generate a greater amount of biofertilizers and biostimulants. Therefore, 
these rhizobacteria are highly suitable for supporting sustainable agriculture.
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Introduction

One of the most promising commodities for economic 
development is coffee (Al Islami et al., 2024). Many coffee products 
from Bali have been developed for tourism. Nevertheless, the 
majority of coffee products in Bali remain non-organic since farmers 
still rely on synthetic fertilizers and pesticides, leading to substantial 
environmental harm (Romero-González, 2021; Iqbal et  al., 2023; 
Zafar et al., 2024). Pesticide residues in food (Romero-González, 
2021) can cause several serious diseases, such as cancer, degenerative 
disorders, and autoimmune diseases (Hua and Liu, 2024). To address 
this issue, innovative solutions are needed, such as the use of 
biological pesticides and fertilizers (Dzvene and Chiduza, 2024) 
which are highly safe and specifically target harmful organisms 
(Fasusi et  al., 2021). These alternatives are not only safe for 
consumption but also environmentally friendly (Daniel et al., 2022). 
To enhance coffee quality, it is essential to cultivate it organically 
(Dimitrijević et al., 2024).

The development of coffee products has been extensively 
explored (Bevilacqua et  al., 2023) due to coffee’s ability to boost 
immunity, as it contains antioxidants (Franca et al., 2024). However, 
most commercially available coffee is still not organic, as pesticides 
and chemical fertilizers are commonly used in the cultivation process. 
To produce organic coffee, innovative approaches are needed, 
including the application of natural fertilizers and biopesticides, 
ensuring coffee products are safe for consumption (Castro-d et al., 
2025). Agricultural biotechnology can play a crucial role in organic 
coffee production (Lachenmeier et al., 2022) particularly through the 
application of superior rhizobacteria to promote the phytochemical 
and antioxidant content of coffee. Research (Suriani et  al., 2023) 
demonstrates that applying rhizobacteria can enhance the antioxidant 
and phytochemical content in Piper caninum herb plants. Mandavikia 
et  al. (2019) reported that natural fertilizers and rhizobacteria 
enhance catalase enzyme performance, leading to an increase in 
antioxidant levels in basil plants. Furthermore, the introduction of 
the rhizobacterium Bacillus lentus has been found to improve mineral 
absorption and elevate proline levels in basil plants under stressful 
conditions. Studies have also shown that organic fertilizers and 
rhizobacteria aid in boosting antioxidant performance in vegetation 
susceptible to drought stress (Su et al., 2024). Furthermore, the use 
of biofertilizers enhances phenolic content, flavonoids, secondary 
metabolites, and antioxidant activity in aquatic environments (Liu 
et al., 2024a). Research conducted on the influence of rhizobacteria 
on coffee plants from 2021 to the present shows that rhizobacteria 
can improve root compactness, leaf count, plant height, and overall 
production. The use of rhizobacteria in plants can improve plant 
growth, production, and health (Vacheron et al., 2013; Basu et al., 
2021) because rhizobacteria can intensify nitrogen, dissolve 
phosphate, potassium, and zinc, siderophores, organic acids, as well 
as rhizobacteria can produce hormones as biostimulants and can also 
produce enzymes, metabolic components that are antagonists 
(Jabborova et al., 2025; Hamid et al., 2021).

The present study aimed to determine the influence of 
rhizobacteria on the growth, production, and phytochemical content 

of Balinese robusta coffee plants. The treatment utilizing two 
rhizobacteria in this study, selected from 40 isolates obtained from 
plant roots, demonstrates that these rhizobacteria are capable of 
producing IAA hormones, fixing nitrogen, solubilizing phosphate, and 
generating protease enzymes. Their application is believed to enhance 
growth and boost the phytochemical and antioxidant content of Bali 
Robusta coffee, which will eventually be utilized as a key component 
in organic coffee production.

Materials and methods

Source of microbial cultures

Bacterial cultures, namely B. nitrificans (F1) and B. velezensis (F2), 
used in this study were obtained from the Back2nature laboratory, 
Kuala Pilah, Malaysia.

Time and location of research

The present study was carried out during January 2022 and 
October 2024 at the Udayana University, and in Munduk Paku 
Village, Senganan, Penebel, Tabanan, Bali, Indonesia (8°22′49.3” 
S, 115°09′43.2″E), 600 m above sea level. Schmidt and Ferguson 
claim that this region has a Type A climate, with an average of 
155.6 wet days and 2,000–2,800 mm of annual precipitation. The 
Back2nature laboratory at Kuala Pilah, Malaysia (Latitude: 2.73878, 
Longitude: 102.249 2° 44′20″ North, 102° 14′56″E · 93 m · 
Equatorial climate) (Climate classification Köppen: Af). The area 
has 5 dry months and 4–10 wet months annually. Additionally, the 
average air temperature typically falls within the range of 25–28°C 
(Suriani et al., 2024).

Research design

The agricultural site used a systematic block arrangement with 
six repetitions as well as four treatment groups, resulting in 24 test 
setups. Each unit comprised three clumps, amounting to 72 clusters. 
F0 functioned as the reference group, representing unmodified soil, 
whereas F1, F2, and F3 represented different treatment variations: 
2% Bacillus nitrificans (Accession No. OR244031), 2% Bacillus 
velezensis (Accession No. OR244032), and a 2% consortium of 
Bacillus nitrificans and Bacillus velezensis, respectively (Suriani 
et al., 2020).

Screening for indole acetic acid production

The bacterial cultures were first incubated in a 5 mL of sample vial 
filled with tryptic soy broth for 48 h at 28°C without exposure to light. 
Following the incubation, 1 mL of Salkowski’s reagent and observed 
for a change to a pink hue as an indication of indole acetic acid (IAA). 
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The IAA concentration was subsequently quantified through 
spectrophotometric analysis at 520 nm (Akhtyamova et al., 2023).

Screening for nitrogen fixation

The bacterial strains were cultured in a nitrogen-free bromothymol 
blue malate medium, at 28°C for 48 h. Following the incubation, 
inoculated media were observed for the formation of yellow-hued 
colonies, signifying the nitrogen-fixing ability of the rhizobacterial 
cultures (Gallart et al., 2021).

Screening for phosphate solubilization

Rhizobacteria cultures were grown on Pikovskaya’s media at 28°C 
for 48 h. Following the incubation, the inoculated media was observed 
for the presence of a clear zone of phosphate around the colony as an 
indication of the phosphate solubilization ability of the cultures 
(Damo et al., 2024).

Production of rhizobacterial biomass/
inoculum

The bacterial cultures, B. nitrificans (F1) and B. velezensis (F2), 
were cultured on nutrient agar (NA) medium. To generate 1 liter of 
bacterial culture, five Ose culture needles are utilized and maintained 
at a temperature of 30°C for incubation over 3 days. The discentrifugal 
solution is used for 10 min at a speed of 4,000 rpm until the bacterial 
pellets are obtained. The bacterial pellets were then added to 0.9% 
NaCl until the turbidity level was equivalent to the McFarland 
standard of 0.5, where the cell density was equal to 1.5 × 108 cells/mL 
(Suriani et al., 2024; Mahesh et al., 2025).

Analysis of NPK, Pb, Cd, and Cu contents of 
soil

A 0.5 g sample was added into a Kjeldahl flask followed by adding 
25 mL of sulfuric-salicylic acid solution was introduced, and allowing 
the mixture to stand overnight. The solution was slowly warmed up until 
effervescence ceased, followed by the addition of 4 grams of sodium 
metabisulfite pentahydrate (Na₂S₂O₅·5H₂O). The heat was progressively 
raised to a peak of 300°C over approximately 2 h before allowing the 
solution to cool. After cooling, the solution was moved to a 500 mL 
volumetric flask and mixed with distilled water, thoroughly stirred, then 
brought to the desired volume. The distillation continued until 1 mL of 
distillate was collected. Then, 25 mL of the collected distillate was 
transferred into a distillation flask and combined with 150 mL of 
distilled water. Additionally, 10 mL of 40% sodium hydroxide and 20 mL 
of a 1% boric acid solution were added, followed by three drops of the 
selected indicator. Titration was conducted using 0.05 N H₂SO₄ until a 
color transition from green to pink indicated the endpoint. Throughout 
the procedure, any unresolved issues in the solution were carefully 
addressed. Finally, nitrogen concentration was analyzed using a UV–Vis 
spectrophotometer set at 400 nm (Liu et al., 2022).

A 0.5-gram soil sample is incinerated through treatment with 
concentrated H₂SO₄ and HNO₃, followed by applying heat using a hot 
plate. Then, 2.5 mL of concentrated H₂SO₄ is added, making the 
sample appear as ash. Gradually, concentrated HNO₃ is introduced 
until smoke emission ceases and the sample turns black. This process 
continues with the addition of HNO₃ until no more black smoke is 
produced. Once ashing is complete, 50 mL of distilled water is 
introduced into the sample and mixed thoroughly. The mixture is then 
filtered, and 54 mL of the filtrate is transferred into an Erlenmeyer 
flask. Another portion of the filtrate is added to the same container, 
then 2.5 mL of vanadate-molybdate reagent is included, which results 
in a yellow coloration. Finally, the phosphorus concentration was 
spectrophotometrically measured at 400 nm (Javaid et al., 2023).

A total of 2.5 grams of the sample were weighed in a 250 mL flask. 
For potassium (K) analysis, 50 mL of a 4% ammonium oxalate solution, 
along with 125 mL of distilled water, was incorporated. The solution 
was brought to a boil, held for 30 min, and then allowed to cool. Once 
cooled, the volume was adjusted in the flask and moved into a 250 mL 
graduated flask, then subsequently mixed with distilled water. A 15 mL 
sample was either filtered or left undisturbed to clarify. The clarified 
solution was then transferred to a 100 mL volumetric flask for analysis. 
For every 1% potassium oxide, 2 mL of 20% sodium hydroxide, 5 mL 
of formaldehyde, and 1 mL of sodium tetraphenylborate were added. 
The mixture was then diluted with distilled water to the specified level 
in the flask and stirred for 5 to 10 min. Finally, the solution was filtered 
using Whatman filter paper No. 12, and approximately 50 mL of the 
filtrate was collected for further analysis (Liang et al., 2022).

To determine Pb, Cu, and Cd content, 0.5 g of soil in Kjeldahl 
flask was acid digested with 5 ml of HNO3 and H2SO4 to obtain soil 
content (Pb, Cu, and Cd) was analyzed using 0.5 g samples put in a 
Kjeldahl flask with 5 mL of concentrated HNO3 and H2SO4 a dark, 
slightly yellow powdered solution. This solution was diluted to 100 
ml and subjected to AAS to measure the concentration of Pb, Cu, and 
Cd using mineral standards (Suriani et  al., 2024; Aslanidis and 
Golia, 2022).

Scanning electron microscopy (SEM) test 
of rhizobacteria on the roots of coffee

This study used scanning electron microscopy (SEM) to evaluate 
the impact of rhizobacterial treatment on bacterial colonization in 
plant roots. Root samples from untreated coffee plants served as 
controls, while treated samples were immersed in a 2% rhizobacteria 
solution for 3 days. The samples then underwent an 8-h dehydration 
process, followed by a 1-week drying phase at 50°C until achieving a 
constant weight. Root structures were analyzed using a field-emission 
scanning electron microscope (FE-SEM) equipped with an energy-
dispersive X-ray spectrometer (EDS). The microscope operated 
under vacuum conditions with a beam current ranging from 0.2 to 
30 kilovolts (kV) and a current intensity between a few picoamperes 
(pA) and 300 nanoamperes (nA). Imaging was performed at an 
acceleration voltage of 3 kV, while energy-dispersive X-ray (EDX) 
analysis was conducted at 15 kV. For surface analysis, a 10 keV 
acceleration was determined to be sufficient. The study was carried 
out at the Laboratory of Universitas Gadjah Mada (UGM) (Zhang 
et al., 2020; Suriani et al., 2024).
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Field trials

Preparation of planting medium
Coffee seedlings (Robusta Coffee Bali No. 204) were obtained 

from a local market in Pupuan Village, Tabanan, Bali, Indonesia. 
Seedlings were planted in land bored 30 cm deep, and were planted 
with a planting distance of 1 meter between each group. Each hole is 
filled with 1 kg of compost (Compost is made in-house from cow 
manure, goat manure, and agricultural waste).

Planting
Rhizobacteria are utilized for seedling preparation and treatment 

before planting. Before the seeds are planted, the roots are dipped in 
rhizobacteria for 30 min. The seedlings, which are free from pests and 
diseases, have a uniform height of 50 cm and are in a healthy 
condition. The planting process was conducted vertically at an 
approximate depth of 30 cm (Suriani et al., 2019).

Application
As per the predetermined schedule, rhizobacteria were 

administered every 4 weeks after planting. The control group received 
only water, whereas each treated plant was watered with a 2% 
(1.5 × 108 cells/mL) rhizobacteria solution, with 200 mL applied to 
each coffee plant every month for 1 year and every 3 months the 
following year (Suriani et  al., 2024). Plant management involves 
several important tasks, including watering, weeding, fertilizing with 
1 kg of compost every 3 months per plant, and pruning. Embroidery-
based plant designs are generally crafted for plants that grow 
uniformly and without irregularities. The plants undergo 
pre-conditioning to promote uniform growth. Watering is done once 
a week in the morning to promote plant resilience and induce stress. 
Weeding is crucial to prevent undesirable plants from growing and 
competing for nutrients, aiding in sustaining optimal plant 
development and protecting against harm (Vafa et al., 2021).

Harvest
Harvesting takes place within 2 years of planting the coffee plants. 

Coffee begins to flower BBCH 60 at the age of 1.8 months, then young 
fruits appear BBCH 71 after 1.5 months at the age of 2 years, then after 
6 months the coffee fruit begins to turn red (ready to harvest) BBCH 
81 when the coffee plant is 2.5 years old. After harvesting, the fruit is 
cleaned and dried outdoors until fully dry. The coffee is then separated 
from the skin and roasted in an oven at 200°C.

Measurement of plant growth parameters and 
soil nutrients

The on-site evaluations include measuring plant height, root 
length, and leaf area. The laboratory analyses involved the assessment 
of the concentrations of N, P, K, Cu, Cd, and Pb present in the soil 
medium. Additionally, phenolic content, flavonoid levels, and 
antioxidant activity were examined.

Extract manufacturing
Before performing chemical analysis, powdered coffee was 

initially soaked in ethanol, followed by concentrating using a rotary 
evaporator (Lee et  al., 2021). The solution was used for further 
analysis. Finally, the leaves were analyzed to determine their phenolic, 
flavonoid, and antioxidant contents.

Polyphenols
The total phenolic content colorimetrically using calibration curve 

of gallic acid having concentrations 10, 20, 30, and 50 ppm was 
determined. For the gallic acid standard assay, 0.4 mL of Folin–
Ciocalteu reagent was added to each concentration, the solution was 
stirred for 4 to 8 min, followed by addition of 4.0 mL of the 7% 
Na₂CO₃ solution and incubation at room temperature for 2 h followed 
by measuring absorbance at 744.8 nm. For coffee extract analysis, 
10 mg of the extract was weighed and dissolved in 10 mL of ethanol 
to prepare the sample solution. The total phenolic content was 
determined by combining 1 mL of coffee extract solution with 0.4 mL 
of Folin–Ciocalteu reagent and 4.0 mL of the 7% Na₂CO₃ solution, 
followed by stirring for 4 to 8 min. Later, 10 mL of distilled water was 
added, and the solution was left at room temperature for 2 h. 
Absorbance was measured at 744.8 nm. The procedure was repeated 
three times, and the phenolic content of each extract was expressed in 
milligrams of gallic acid equivalent (Costea et al., 2022).

Flavonoids
The total flavonoid content was measured using a colorimetric 

method, with quercetin (QE) as the reference compound. A 1000 ppm 
quercetin solution was prepared by dissolving 8 mg of quercetin in 
10 mL of ethanol. This stock solution was then diluted with 10 mL of 
high-purity ethanol (p.a.) to obtain a 1.3 ppm quercetin solution. 
Further dilutions were made to produce solutions with concentrations 
of 10, 20, 30, 40, and 50 ppm. For each standard solution, 3 mL of 
quercetin solution was mixed with 0.2 mL of a 10% aluminum 
chloride (AlCl₃) solution, 0.2 mL of potassium acetate, and distilled 
water until the total volume reached 10 mL. The mixture was then 
incubated at room temperature for 30 min. Finally, the absorbance 
was measured at 431 nm using a UV–Vis spectrophotometer. To 
determine the total flavonoid content in the sample, 100 mg of coffee 
extract was dissolved in 10 mL of ethanol. Then, 0.2 mL of 10% AlCl₃, 
0.2 mL of potassium acetate, and 10 mL of distilled water were added. 
The sample was incubated for 30 min at room temperature in a light-
controlled environment, after which the absorbance was recorded at 
431 nm using UV–Vis spectrophotometry. To determine the total 
flavonoid content in the sample, a 100 mg coffee extract was dissolved 
in 10 mL of ethanol. Then, 0.2 mL of 10% AlCl3, 0.2 mL of potassium 
acetate, and 10 mL of distilled water were added. The sample was 
incubated for 30 min at room temperature in a light-restricted 
environment, followed by an absorbance measurement at 431 nm 
using UV–Vis spectrophotometry. Flavonoid levels were expressed as 
quercetin equivalents, and three replicate samples of each solution 
were prepared concurrently (Perisoara et al., 2022).

Antioxidant
Gallic acid concentrations ranging from 0 to 2 mg/L were 

prepared. A total of 0.05 g of the substance was weighed and dissolved 
in 99.9% ethanol, then moved into a 5 mL volumetric flask. The 
solution was then subjected to centrifugation at 3000 rpm for 15 min. 
After centrifugation, 0.5 mL of 0.1 mM DPPH (dissolved in 99.9% 
ethanol) was added to the test tube containing the standard solution 
and the supernatants. The mixture was subsequently incubated at 
25°C for 30 min to facilitate the reaction between DPPH and the 
hydrogen atoms in the antioxidants. Finally, the absorbance was 
recorded at 517 nm, and the antioxidant capacity (y) was determined 
using the following linear regression equation (Kreatsouli et al., 2019).
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Data analysis

The experiment data were quantitatively examined using SPSS 
Analysis and followed by analysis of variance. To evaluate whether the 
treatments produced significant variations in the observed variables, 
Duncan’s multiple range test was conducted at a 5% significance 
threshold (Hosseini et al., 2022).

Results

IAA production, nitrogen fixation, and 
phosphate solubilization

Both bacterial strains exhibited positive results for IAA production, 
nitrogen fixation, and phosphate solubilization (Table 1). B. velezensis 
(F1 treatment) demonstrated increased levels of IAA (688.32 ppm) and 
phosphate solubilization activity compared to B. nitrificans and the 
consortium. The presence of B. velezensis supports the growth of plants 
by facilitating IAA production, nitrogen fixation, and phosphate 
dissolution. Bacillus sp.BPSAC6 produces phytohormones including 
IAA (Passari et al., 2016). Single and combined application effects of 
four PGPR strains: Rhizobium daejeonense Enterobacter cloacae 
Pseudomonas putida, and E. cloacae, exhibited IAA production, N2 
fixation and P solubilization solubilizes phosphate, and can also dissolve 
potassium (Habibi et  al., 2023). B. velezensis F9 exhibited broad-
spectrum antifungal activity against eight plant pathogenic fungi, with 
inhibition ratios ranging from 62.66 to 88.18%. Additionally, the strain 
displayed the ability to produce IAA (5.97 ± 1.75 μg/mL), fix nitrogen, 
produce siderophores, and form biofilms. In vitro growth promotion 
assays demonstrated that different concentrations of B. velezensis F9 
significantly promoted cucumber seedling growth (Ta et al., 2024).

Soil analysis

Soil analysis revealed significant differences between the control 
and the treatments (Table 2). The F3 treatment exhibited the highest 
nitrogen, phosphate, and potassium concentrations. Heavy metals 
such as cadmium (Cd) and lead (Pb) were not detected, with cadmium 
levels being especially low in the F3 treatment (Table 2). Rhizobacteria 
exert beneficial effects on soil quality (Bhandari et al., 2024). The 
utilization of plant growth-promoting rhizobacteria (PGPR) is 
becoming more common due to their various abilities to detoxify and 
degrade toxins such as Pb, Cd, and Cu, as well as their significant 
effects on plant growth promotion (Saeed et  al., 2021). This is 
attributed to the ability of B. nitrificans and B. velezensis to fix nitrogen 

from the air and dissolve phosphate, thereby increasing their 
availability in the soil (Table  1). Microbial activity is essential for 
enhancing plant growth and maintaining soil quality, as it facilitates 
the elimination of metals (Bender et  al., 2025). Treatment with 
rhizobacteria also increased the soil nutrient content and improved 
the nutrient status of tomato plants (Rehan et al., 2022). In a study, 12 
strains of rhizobacteria that promote growth were tested on tomato 
plants, resulting in increased plant growth and enhanced macro- and 
micronutrient content in the soil (Hern et al., 2024). Additionally, 
rhizobacteria combined with biochar increased soil phosphate, 
nitrogen, and potassium content, enhancing the physicochemical 
characteristics of the soil while promoting the growth of eucalyptus 
plants in Guangxi, China (Ren et al., 2022).

Plant growth promotion studies in coffee 
plants

The impact of rhizobacterial treatment on coffee plant growth was 
most evident in the consortium treatment (F3), followed by F2 
(Figure 1). All treatments exhibited significant differences compared to 
control (Table 3). After 5 months of growth, parameters such as plant 
height, leaf area, and root length showed notable variations between 
treated and untreated plants. This effect is attributed to the rhizobacteria’s 
ability to produce IAA, fix nitrogen, and dissolve phosphate (Table 1). 
Applying Bacillus sp. is known to enhance plant height, leaf area, and 
wet and dry weight (Sagar et al., 2022a; Sagar et al., 2022b; Suriani et al., 
2024). Jähne et  al. (2023) noted, Brevibacillus sp. is a plant growth 
enhancer. Applying B. velezensis in Prunus davidiana plants improves 
growth and enhances soil nutrient content by dissolving phosphates and 
potassium, stimulating nitrogenase enzyme activity, and inducing IAA 
hormone production. Additionally, it aids in lowering soil acidity, which 
benefits the environment (Shi et al., 2022).

Plant-associated Bacillus sp. contribute to plant growth by 
supplying essential nutrients (Nithyapriya et al., 2021; Manasa et al., 
2021), producing growth hormones (Ilyas et al., 2022; Sagar et al., 
2022a; Sagar et al., 2022b), and acting as antagonists to suppress plant 
diseases (Krishna et al., 2023; Saravanan et al., 2023; Vinothini et al., 
2024; Alkilayh et al., 2024; Praveen et al., 2024; Dave et al., 2024; Sun 
et al., 2024). Rhizobacteria play a vital role in enhancing nutrient 
absorption and improving plant resilience to environmental stress, 
ultimately boosting overall productivity (Al-Turki et al., 2023; Bhat 
et  al., 2023; Praveen et  al., 2024). For instance, the rhizobacterial 
strains Pseudomonas paralactis (KBendo6p7), Sinorhizobium meliloti 
(KBecto9p6), and Acinetobacter radioresistens (KBendo3p1), when 
adjusted to a concentration of 1 × 108 CFU mL−1, have been found to 
enhance cucumber growth under greenhouse conditions. These 
improvements include increased plant height, root length, biomass, 
and fruit size (Zapata-Sifuentes et  al., 2022). Incorporating 
rhizobacteria in vegetable cultivation promotes growth by supplying 
essential nutrients, producing phytohormones, and offering protection 
against certain plant diseases (Kumar et  al., 2021). Acinetobacter 
calcoaceticus AC06 and Bacillus amyloliquefaciens BA01 can increase 
plant height, root length, wet weight, and dry weight of peanut plants 
(Arachis hypogaea L.) because these rhizobacteria can produce IAA 
growth hormone (Eswaran et al., 2024). Using zinc-solubilizing vent 
rhizobacteria can improve crop yield, plant health, and nutritional 
quality of plant products (Sethi et  al., 2025). The Pseudomonas 

TABLE 1 Plant beneficial metabolites produced by islates.

No Isolate IAA (ppm) N2 
fixation

P 
solubilization

1 B. nitrificans 687 + +

2 B. velezensis 688.32 ++ +
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monteilii strain MN759447 can promote the growth of D. sissoo 
plantation forest plants at the Agroforestry Research Centre, 
Pantnagar, Uttarakhand, India, as it can produce siderophores 
(Srivastava et al., 2022). Plant growth-promoting (PGP) can increase 
the germination percentage and vigor index of rice seeds, which are 
claimed to be stimulators of rice plants (Mir et al., 2022).

Analysis of phytochemicals and 
antioxidants of coffee beans

Phytochemical evaluation demonstrated notable variations 
between the control and treatment groups. The highest 
phytochemical content for phenols, tannins, and caffeine was 
found in the F3 treatment (rhizobacterial consortium 
treatment), with the highest antioxidant capacity (2530.46 ppm) 
also observed in the F3 treatment (Table 4). This demonstrated 
that rhizobacteria treatment substantially impacts the 

phytochemical content and antioxidant capacity of coffee fruits. 
Rhizobacteria can produce the hormone IAA and increase 
nitrogen, phosphorus, and potassium content in the soil 
(Table  2). Furthermore, rhizobacteria have been shown to 
enhance the expression of antioxidant genes, resulting in a rise 
in antioxidant levels in plants (Koza et  al., 2022). Plant 

FIGURE 1

Effect of PGPR inoculation (a) F3 consortium, (b) F1 B. nitrificans, (c) F2. B. velezensis, and (d) control. Scale: 9:65.

TABLE 3 Growth of coffee plants after 5 months of planting period$

Treatments Height 
(cm)

Leaf area 
(cm2)

Root length 
(cm)

F0 52.32 ± 0.25a 116.17 ± 0.37a 11.32 ± 0.52a

F1 60.21 ± 0.14b 122.21 ± 0.11b 13.35 ± 0.12b

F2 62.43 ± 0.23c 124.30 ± 0.12c 15.41 ± 0.71c

F3 65.16 ± 0.18d 128.12 ± 0.13d 20.11 ± 0.34d

F0 – control, F1–2% B. nitrificans, F2–2% B. velezensis, F3–2% consortium of B. nitrificans and B. 
velezensis. Values represent the average of triplicates, with ± indicating the standard deviation. 
Different letters denote significant differences between the values at a p-value of >0.05.

TABLE 2 Soil analysis after 2 years of treatment.

Parameters Treatment

F0 F1 F2 F3

Nitrogen (N) (%) 0.32 ± 0.72a 0,47 ± 0.31b 0,47 ± 0.21b 0,67 ± 0.42c

Phosphorus (P) (mg/kg) 1.265.352 ± 0.32a 1.511,125 ± 0.76b 1.586.976 ± 0.0.41b 1.600.412 ± 0.12c

Potassium (K) (mg/kg) 560,821 ± 32a 970,281 ± 12b 968,621 ± 31b 1,001,934 ± 41b

Cadmium (Cd) (mg/kg) No detected No detected No detected No detected

Copper (Cu) (mg/kg) 41,306 ± 0.37a 32,912 ± 0.44b 34,121 ± 0.44b 30,633 ± 0.72b

Lead (Pb) (mg/kg) No detected No detected No detected No detected

F0 – control, F1–2% B. nitrificans, F2–2% B. velezensis, F3–2% consortium of B. nitrificans and B. velezensis. Values represent the average of triplicates, with ± indicating the standard deviation. 
Different letters denote significant differences between the values at a p-value of >0.05.
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growth-promoting rhizobacteria (PGPR) in cucumber plants 
have been demonstrated to increase total phenols by 9% and 
antioxidant content by 29%, highlighting their potential as a 
sustainable agriculture practice (Pérez-García et  al., 2023). 
Linear azotobacter, in particular, is known to increase tomato 
fruit size and lycopene content (Sun et  al., 2024), and the 
application of microorganisms in cantaloupe and cherry plants 
has been found to increase lycopene levels and boost antioxidant 
activity (de la Osa et al., 2021). PGPR has also been found to 
enhance essential oil and aromatic oil content in oregano plants 
in Turkey (Çakmakçı et al., 2023). Additionally, PGPR-induced 
Cucumis sativus plants showed a significant increase in phenol, 
flavonoid, and antioxidant capacity content, with increases of 
117, 126, and 150%, respectively (Chiranjeevi et  al., 2024). 
Pseudomonas fluorescens applied to peanut plants can increase 
nutrient uptake, plant growth, such as root length, leaf length, 
wet weight, and dry weight of the plant, carotenoid, chlorophyll, 
and oil content when compared to a control without treatment 
(Nithyapriya et  al., 2024). Plant growth-promoting bacteria 
(PGPB) in soils with salinity stress can increase the content of 
photosynthesis in plants and the content of antioxidants (Sagar 
et al., 2022a; Sagar et al., 2022b). Streptomyces sp. DBT34 strain 
can produce antioxidants that can reduce oxidative stress in host 
plants (Passari et al., 2020).

Scanning electron microscope (SEM) of 
rhizobacteria in the coffee plant root

The colonization of rhizobacteria on coffee plant roots exhibited 
notable differences between the control and treatment groups, with 
rhizobacteria-treated plants showing higher colonization levels. The 
most substantial colonization occurred in the treatment involving 
a rhizobacterial consortium (T6 and T7) (Figure 2). Root exudates 
are essential in facilitating plant–microbe interactions and 
rhizobacterial colonization, contributing to sustainable agricultural 
practices (Chen and Liu, 2024). The process of root colonization is 
essential for rhizobacteria to fulfill plant functional roles (Liu et al., 
2024b). This process of colonization includes chemotactic 
movement, attachment, and establishment within both the 
rhizosphere and endosphere, facilitated by the synthesis of 
exopolysaccharides (Sayyed et al., 2015), biofilm generation (Bright 

et al., 2025), and signaling compounds (Uyi et al., 1970). PGPR can 
colonize the roots of both monocotyledonous and dicotyledonous 
plants, promoting growth through various mechanisms ( Sagar 
et al., 2024; Vafa et al., 2024; Suriani et al., 2024; Eswaran et al., 
2024; Nithyapriya et  al., 2024; Ferioun et  al., 2025). PGPR can 
protect plants from abiotic stress by colonizing roots, so that growth 
can be increased (Srivastava et al., 2022).

Conclusion

The two rhizobacteria, B. nitrificans and B. velezensis, as well 
as their consortium, had a substantial effect on the development, 
yield, and phytochemical composition of Robusta Bali coffee, 
compared to the control group. Best results for growth, 
production, phytochemical content, and antioxidant capacity were 
observed in the F3 (consortium) treatment. These rhizobacteria 
can produce IAA hormones, fix nitrogen, and dissolve 
phosphorus, all of which contribute to the improved performance 
of the plants. Additionally, both rhizobacteria were able to 
effectively colonize the roots of Robusta Bali coffee plants. The 
use of these two rhizobacteria supports sustainable agriculture to 
provide the healthy, chemical-free food that the world of the 
future is looking forward to.
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Caffeine (%) 2.31 ± 0.0b 2.01 ± 0.0b 1.79 ± 0.0a 1.74 ± 0.0a

F0 – Control, F1–2% B. nitrificans, F2–2% B. velezensis, F3–2% consortium of B. nitrificans and B. velezensis. Values represent the average of triplicates, with ± indicating the standard deviation. 
Different letters denote significant differences between the values at a p-value of >0.05.

https://doi.org/10.3389/fmicb.2025.1602940
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Suriani et al. 10.3389/fmicb.2025.1602940

Frontiers in Microbiology 08 frontiersin.org

& editing. RS: Formal analysis, Validation, Writing  – review & 
editing. JB: Formal analysis, Validation, Writing – review & editing. 
TH: Formal analysis, Validation, Writing – review & editing. YY: 
Formal analysis, Writing – review & editing. HE: Writing – review 
& editing, Formal analysis.

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This work was 
supported and funded by Deanship of Scientific Research at 
Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant 
number IMSIU-DDRSP2501).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Correction note

This article has been corrected with minor changes. These changes 
do not impact the scientific content of the article.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed 
or endorsed by the publisher.

FIGURE 2

SEM colonization rhizobacteria, (F1) = B. nitrificans, (F2) = B. nitrificans, consortium (F3), a = colonies bacteria, b = root of coffee plant. 5,000x 
magnification.
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