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Immunotoxins (ITs), as targeted cancer therapies, confront limitations including 
off-target effects, immunogenicity, and inadequate tumor penetration, hindering 
clinical translation. Advances in tumor microenvironment (TME) understanding and 
genetic engineering have enabled engineered microorganisms such as attenuated 
Salmonella, E. coli Nissle 1917, and modified eukaryotic platforms (e.g., yeast, 
microalgae) to colonize tumors and act as efficient hosts for IT production. By 
integrating ITs into these microbes and employing precise circuits (e.g., phage lysis 
systems, signal peptide fusions), controlled secretion of recombinant immunotoxins 
(RITs) can be achieved. Balanced-lethal systems further enhance plasmid stability 
for sustained therapeutic delivery. This review highlights strategies leveraging 
engineered microbes to amplify IT efficacy, exemplified by preclinical successes 
like Salmonella-delivered TGFα-PE38 and E. coli-expressed anti-PD-L1-PE38. 
However, challenges persist, including dynamic TME interactions, systemic infection 
risks, manufacturing complexities and regulatory uncertainties demand resolution. 
By synergizing microbial targeting with RIT, this approach offers transformative 
potential for cancer therapy, yet requires multidisciplinary innovation to address 
technical, safety, and regulatory barriers for clinical adoption.
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1 Introduction

Cancer remains a global threat, with nearly 20 million new cases and about 10 mil-lion 
deaths yearly (Bray et al., 2024). Despite various anticancer methods and drugs, minimizing 
damage to normal cells while maximizing cancer cell killing remains a constant pursuit 
(Anand et al., 2023; Feo et al., 2022; Katz et al., 2022; Labanieh and Mackall, 2023). Targeted 
therapy, which precisely identifies and targets cancer cell features while sparing normal tissues, 
has garnered significant attention (Lee et al., 2018). ITs and antibody-drug conjugates (ADCs) 
are both effective targeted therapy agents with similar structures. They share almost the same 
targeting components but differ in their cytotoxic payloads and conjugation methods. 
Targeting components, responsible for locating cancer-specific antigens, are usually composed 
of monoclonal antibodies or antibody fragments. ITs also used ligands binding to specific 
receptors, such as cytokines, chemokine receptor ligands and growth factors as targeting units 
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(Babavalian et al., 2019; Janthur et al., 2012; Kreitman, 2006; Spiess 
et al., 2017). The cytotoxic payloads of ITs are typically protein toxins 
or their modified derivatives from bacteria (e.g., Pseudomonas 
aeruginosa exotoxin A, diphtheria toxin, or anthrax toxin), plants (e.g., 
ricin, saporin, or gelonin), humans (e.g., proapoptotic proteins and 
RNA enzymes), or other sources (e.g., chelona toxin) (Bachran and 
Leppla, 2016; Gill et al., 2024; Knödler and Buyel, 2021; Lu et al., 2021; 
Shafiee et  al., 2019). In contrast, ADCs have a broader range of 
cytotoxic payloads, including microtubule inhibitors, DNA-damaging 
agents, RNA inhibitors, immunomodulators, proteasome inhibitors, 
small molecules, multi-drugs, phosphate prodrugs, and proteolysis-
targeting chimeras (PROTACs) (Chen et al., 2020; Phuna et al., 2024; 
Tsuchikama et al., 2024; Wang et al., 2024; Xi M. et al., 2024). Due to 
the nature of their cytotoxic payloads, ADCs usually rely on chemical 
conjugation. ITs, have more flexible conjugation methods, as they can 
be  either chemically conjugated or directly expressed as fusion 
proteins via amino acid linkers (Bacauanu et al., 2023; Khoshbakht 
et  al., 2024; Oghalaie et  al., 2024; You et  al., 2021). Despite their 
similarities, ITs and ADCs have had different outcomes. Over 15 
ADCs have been approved for clinical use, with hundreds more in 
clinical trials. In contrast, only a few ITs have been approved (Colombo 
et al., 2024; Khirehgesh et al., 2021; Kim et al., 2020). The main reason 
is that some key issues in IT design and development remain 
unresolved. These include off-target effects, where normal cells 
expressing the target are attacked, leading to systemic toxicity; 
immunogenicity caused by heterologous toxins and antibody 
molecules; the inability of IT molecules to efficiently permeate solid 
tumors to reach effective therapeutic concentrations; and the lack of 
efficient cytoplasmic delivery pathways after internalization (Balkhi 
et al., 2025; Dhillon, 2018; Markides et al., 2025). Recent studies have 
shown that some microorganisms can colonize cancers and tend to 
proliferate in the hypoxic and immunosuppressive TME, significantly 
influencing tumor progression (Kwon et al., 2024; Xu et al., 2018; Yu 
et al., 2020). Through bioengineering, these microbes can be utilized 
for cancer therapy in various ways, such as specifically infecting tumor 
tissue, activating innate and adaptive immunity, releasing toxins to kill 
cancer cells, competing with cancer cells for nutrients to impede 
tumor growth, or carrying therapeutic agents to treat cancer (Copland 
et al., 2024; Moon et al., 2020; Zhang et al., 2024). This presents a great 
opportunity for ITs, which allows directly expressed and processed in 
engineered hosts through recombinant gene construction (Figure 1). 
Many historical limitations of IT based cancer therapy can now 
be overcome using these microbial hosts. Here, we comprehensively 
review the key considerations for using microorganisms to express 
and deliver ITs for tumor treatment, as well as current research 
progress. We  look forward to strengthening our cancer-fighting 
arsenal and expanding IT-based therapeutic strategies.

2 Immunotoxin therapy for cancer: 
progress and issues

Although conjugation methods are not restricted, most 
immunotoxins currently depend on recombinant expression 
frameworks for direct production across various hosts (Zuppone et al., 
2019). This approach is favored over chemical conjugation as it is more 
likely to yield a uniform product. Consequently, immunotoxins are 
now commonly designated as RITs. Since initial development by 

Thorpe in 1978, RITs have evolved through four iterations, resulting in 
four distinct generations of products (Thorpe et al., 1978). Researchers 
have endeavored to enhance this selective cancer-cell killing agent by 
modifying all of its structures, including the target units, payloads, and 
conjugation methods (Golichenari et al., 2025; Obozina et al., 2025; 
Wang et al., 2025; Wang et al., 2024). For instance, in the third and 
fourth-generation RITs, murine antibodies have been supplanted by 
humanized or fully human antibodies to reduce immunogenicity 
(Hauser et  al., 2023; Waldmann, 2019). Furthermore, complete 
antibodies have been replaced with smaller fragments such as single 
chain antibody (scFv), and even nanobodies (VHH) to improve tumor 
penetration (Morgan et al., 2023; Naemi et al., 2023; Wang et al., 2024; 
Xi X. et al., 2024). Payload optimization has also been pursued, such as 
toxin structure optimization and epitope deletion (Golichenari et al., 
2025; Hu et al., 2016; Mazor et al., 2015). Moreover, internalization 
efficiency, escape speed from vesicles to the cytoplasm, in vivo half-life, 
and administration routes are all optimized (Wang et al., 2025; Wei 
et al., 2018). However, these advancements do not always bring benefits 
and are sometimes accompanied by challenges. Using human toxin 
payloads can lower immunogenicity, but in  vivo activity is often 
hindered by endogenous inhibitors. For example, Granzyme B (GrB) 
is inhibited by serine protease inhibitor B9, which greatly weakens its 
killing effectiveness (Hlongwane et al., 2018). Additionally, compared 
to plant and bacterial toxins, human toxins frequently lack a 
translocation domain, making them more susceptible to lysosomal 
degradation rather than migrating to the cytoplasm for therapeutic 
effect after cell internalization (Mungra et  al., 2019). In summary, 
despite various improvement efforts, the clinical application prospects 
of RITs are still worrying. Some optimization measures beyond RITs 
themselves may solve this situation, such as the engineered 
microorganisms with unique abilities that we are currently focusing on.

3 Engineered microbes: potential 
vehicles for enhancing RIT cancer 
therapy

Research on the tumor microbiome has unveiled a complex 
ecosystem comprising tumor cells and intracellular microbes. This 
complexity is reflected in both the diversity of indigenous microbes, 
which includes various bacteria (e.g., Bacteroides, Enterococcus, 
Faecalibacterium, Ruminococcus, Clostridium, Lactobacillus, and 
Actinomyces), fungi (e.g., Yeast, Candida, Blastomyces, and Malassezia), 
and multiple viruses, and the intricate interrelationships within the 
system (Dohlman et al., 2022; Luca et al., 2021; Nejman et al., 2020; 
Sepich-Poore et al., 2021). On one hand, these microbes shield tumors 
by influencing their occurrence, development, metastasis, 
heterogeneity, and immune evasion. On the other hand, they compete 
with cancer cells for nutrients, activate innate and adaptive immunity 
to kill cancer cells, produce toxins to damage cancer cells, and 
modulate the tumor microenvironment to enhance treatment efficacy 
(Galeano Niño et al., 2022). These “double-edged” microbes, when 
genetically engineered, could maximize benefits and minimize 
drawbacks, holding great potential for future cancer treatment. This 
is why microbe-based cancer therapy (MCT) is gaining increasing 
attention recently (Zheng and Chen, 2024).

MCTs are actually not novel. Over 100 years ago, therapies using 
inactivated Streptococcus and Serratia marcescens (Coley’s toxins) 
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injected into malignant tissues were employed and resulted in sarcoma 
regression (Coley, 1991). Another example is Bacillus Calmette-Guérin 
(BCG), a live attenuated strain of bovis Mycobacterium tuberculosis 
variant initially developed as a tuberculosis vaccine. It has been 
approved by the FDA for the treatment of bladder cancer (Boorjian 
et al., 2021). Unlike past methods using natural microbes or their 
toxins, employing microbes to create antitumor vaccines or deliver 
therapeutic agents shows much greater promise (Shende and Basarkar, 
2019). Many recent studies substantiate this viewpoint. For example, 
using attenuated Salmonella typhimurium (SAM-FC) to deliver ClyA 
and FlaB significantly suppresses metastases and primary tumors, and 
VNP20009 to deliver Sgc8c (nucleic acid aptamer) targeting PTK7 in 
pancreatic cancer shows good effect, engineering Listeria 
monocytogenes secretes phospholipase (plcA, plcB) and hemolysin 
LLO to deliver tumor-specific antigen TAAs to alter TME and increase 
immune killing (Hassan et al., 2019; Nguyen et al., 2024; Xiao et al., 

2024). Many cancer therapies and drugs, such as immune checkpoint 
blockades, antibodies, ADCs, and chemotherapy drugs, have an upper 
limit on their therapeutic effects and scope of application (Schuster 
et  al., 2021). For example, the clinical benefit rate of immune 
checkpoint blockades is typically below 30% (Kalbasi and Ribas, 
2020). However, combining these agents with cancer-colonizing 
microbes and genetic engineering techniques shows a high probability 
of breaking through such limitations. This also applies to RITs. In fact, 
attempts to use engineered microbes to express and deliver RITs have 
already begun.

A few pioneering research projects with ingenious design have 
already achieved promising initial results and are expected to yield 
broader applications in the near future (Table 1). For example, the 
engineered Salmonella typhimurium ΔppGpp strain can express and 
deliver the RIT composed of TGFα (transforming growth factor alpha, 
a ligand targeting epidermal growth factor receptor) and PE38 

FIGURE 1

Schematic diagram of engineered microbes promoting IT cancer therapy. Engineered microorganisms (including bacteria and eukaryotes) with cancer 
colonization or targeting capabilities can serve as hosts for expressing RITs. Loading RITs into these microorganisms, combined with the design of 
specific release circuits, enables the microorganisms to release ITs within tumor tissues. Once released, the IT first binds to the target cell surface 
receptor in a targeted and cell-specific manner, then is internalized into the cell through receptor-mediated endocytosis, and directed to endosomes. 
Subsequently, in the endosomal lumen acidified by an ATPase proton pump, the toxic moiety is cleaved by an endosomal acidic pH-activated protease 
called furin. Taking Pseudomonas Exotixin A as an example, the cleaved PE38 active (catalytic) domain is transported to the trans-Golgi network and 
then the endoplasmic reticulum (ER) via retrograde trafficking before being released into the cytosol. Finally, the PE38’s active (catalytic) domain in the 
cytosol exerts its effector function by inactivating eukaryotic elongation factor 2 (eEF2) through catalyzing adenosine diphosphate (ADP) ribosylation, 
which inhibits protein synthesis and ultimately leads to cell death, thus achieving the killing of cancer cells.
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(Pseudomonas exotoxin A fragment), which can significantly inhibit 
mouse solid tumor growth (Lim et al., 2017). The RIT constructed 
from the non-neutralizing anti-TNF-α antibody Pigbak#2 and PE38, 
produced and delivered by E. coli BL21(DE3) Δlpp, have shown strong 
antitumor activity in mouse melanoma models (Hu et al., 2022). The 
construction of the anti-PD-L1 (programmed cell death ligand 1) 
antibodies and PE38 expression system in the Nissle 1917 strain has 
demonstrated superior suppression effects in mouse subcutaneous 
tumor models via intravenous injection (Li et al., 2025). Although 
“hitchhiking therapy” has shown promising results in mouse models, 
its potential risks, particularly in clinical settings, must be closely 
watched (Tang et  al., 2022). Researchers have implemented many 
sophisticated regulatory circuit designs to avoid risks, enhance 
therapeutic effects, and increase controllability. These designs are 
worth highlighting and promoting. First, host selection is crucial. 
Many microbes preferentially infect tumor tissue, but only those that 
are naturally safe or engineered to be  attenuated can be  used to 
minimize infection and dissemination risks. For example, the 
Salmonella ΔppGpp strain with relA and spoT gene mutations is 
deficient in guanosine 5′-diphosphate-3′-diphosphate synthesis. This 
strain has almost lost its ability to invade mammalian cells and has 
good safety (Liu et al., 2022). The E. coli Nissle 1917 strain is not only 
sensitive to the immune system, does not produce pathogenic 
enterotoxins or cytotoxins, but can also antagonize pathogenic E. coli 
and has a good safety record for in vivo applications (Yu et al., 2020). 
To ensure the host can release RITs, advanced regulatory circuits have 
been introduced. Lim et al. successfully delivered immunotoxins using 
a Salmonella phage lysis system (pLYS) with three Salmonella phage 
genes. They also enabled efficient RIT secretion by fusing a soil 
cellulose-degrading bacterium’s cellulase (Psp) signal peptide to the 
RIT’s N terminus. Similarly, Li et al. fused yebF to the N terminus of 
αPD-L1-PE38 for secretion. In contrast, Hu et al. knocked out Braun’s 
lipoprotein-encoding gene to engineer a leaky strain that continuously 

releases Pigbak#2-PE38 extracellularly. Moreover, RIT recombinant 
genes need stable maintenance in the host without loss in the absence 
of antibiotic pressure. Lim et al. achieved this using a balanced-lethal 
host-vector system, which mutates the essential glmS gene and 
introduces a recombinant GlmS+ plasmid to ensure every surviving 
host carries the RIT and GlmS+ plasmid. In contrast, Hu et  al. 
demonstrated that incorporating kanamycin resistance and a ColE1 
origin into the recombinant plasmid ensures its stability for 8 days 
without antibiotic pressure. Finally, some other designs are also 
effective. For example, Li et al. demonstrated that extending the linker 
sequence between anti-PD-L1 and PE38 can reduce steric hindrance 
and enhance binding affinity. The use of inducible promoters can 
enhance controllable secretion, and adding the KEDL sequence to the 
RIT expression frame is believed to promote immunotoxin retention 
in the cytoplasm and boost toxin efficacy (Hu et al., 2022; Jeong et al., 
2014; Li et al., 2025; Lim et al., 2017).

In summary, engineering microbes to express and deliver RITs for 
cancer therapy shows promise, especially with bacterial hosts. 
Engineered bacteria have successfully targeted and released RITs in 
solid tumors, inducing cancer cell apoptosis and showing good 
therapeutic effects (Shuwen et al., 2024; Tieu et al., 2024). However, 
RITs sometimes require post-translational modifications that bacteria 
cannot perform. Eukaryotic hosts can provide these modifications for 
fully functional RITs, yet there are no studies on using eukaryotic 
vehicles for RIT delivery in cancer treatment, despite their presence 
in tumor tissue (Zuppone et al., 2019). A recent study successfully 
engineered a yeast strain to express and secrete PD-1 high-affinity 
microantibodies. Oral administration targeted and alleviated cancer 
in a mouse intestinal tumor model (Rebeck et al., 2025). Additionally, 
a PDA-CV@PD-1 inhibitor delivery system, using microalgae coated 
with chemicals and loaded with immune checkpoint inhibitors, 
demonstrated the potential of microalgae to deliver drugs to tumors 
(Zeng et  al., 2025). Both yeast and microalgae are promising 

TABLE 1 Immunotoxins loaded by engineered microbes.

Immunotoxin Engineering 
host

Special circuits Tumor type and 
administration route

Reference

TGFα-PE38 S. typhimurium 

△ppGpp

(a) glmS based balanced-lethal system: a hosts with glmS gene deficiency 

rely on a recombinant GlmS+ plasmid for survival, ensuring plasmid 

stability in vivo. (b) pLYS plasmid lysis system: composed of three genes 

from the Salmonella phage (iEPS5), effectively lyses the host and releases 

RIT. (c) Psp secretion system: a novel cellulase 32AA signal peptide from a 

cellulose-degrading bacterium Paenibacillus sp. EC003 allows effective 

release of RIT.

Colon cancer, Breast cancer 

& Tail vein injection

Lim et al. 

(2017)

Pigbak#2-PE38 E. coli 

BL21(DE3)△lpp

(a) “leaky” system: knock out Braun’s lipoprotein gene, construct 

engineered strains with outer membrane integrity deficiency to promote 

the release of cellular contents. (b) “Trojan Horse” tactic: Through 

engineered hosts, on the one hand induce TNF-α overexpression, on the 

other hand release TNF-α -targeting immunotoxins. Via TNF-α, both 

TNF-α receptors and immunotoxins form a sandwich, thereby promoting 

RIT internalization and killing cancer cells.

Melanoma tumor & 

Intratumoral injection

Hu et al. (2022)

αPD-L1-PE38 E. coli Nissle 1917 (a) yebFSP system: the signal peptide of YebF protein is involved and 

ensures effective RIT secretion. (b) Antibody and toxin linker optimization: 

Linkers KASGG, (G4S)2, (G4S)3, A3(G4S)1, A3(G4S)2, and A3(G4S)3 

have been tested to find the optimal one that reduces steric hindrance 

between antibodies and toxins.

Colon cancer & Intratumoral 

and intravenous injection

Li et al. (2025)

https://doi.org/10.3389/fmicb.2025.1603671
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2025.1603671

Frontiers in Microbiology 05 frontiersin.org

eukaryotic platforms for expressing recombinant proteins like RITs, 
offering post-translational modifications for full functionality and 
potentially safer in  vivo applications compared to bacterial hosts. 
Thus, engineered yeast and microalgae could become important 
vehicles for delivering RITs in cancer therapy.

4 Perspectives and challenges of 
IT-loaded microbes

In oncology, microbes have transitioned from being mere suppliers 
of essential anti-tumoral agents, including antibiotics such as 
doxorubicin and bleomycin, enzymes like L-asparaginase and arginine 
deaminase, and toxins such as Coley toxin and diphtheria toxin, to 
being recognized as live therapeutic entities. Their innate ability to 
target and proliferate within tumors significantly boosts their value in 
cancer therapy. This is because they cannot only activate immune 
responses against cancer cells but also serve as precise vehicles for 
delivering therapeutic agents to the TME. As of now, over 50 live 
microbial agents for treating various malignancies have completed 
clinical trials, and this number continues to grow (Nguyen et al., 2024). 
Immunotoxins, due to their facile incorporation into microorganisms, 
are anticipated to considerably augment their anticancer efficacy and 
broaden their applications through these “living agents.”

Despite its great prospects and several successful cases, the clinical 
application of live microbial agents loaded with IT faces the following 
major challenges: Firstly, in terms of the accuracy and controllability of 
drug delivery, although many studies have shown that microbes can 
proliferate rapidly in the TME and many MCTs have ultimately achieved 
significant intratumoral colonization effects in vivo, the main pathways 
and mechanisms by which bacteria reach tumors are still unclear. 
Further research on the main pathways and mechanisms of live 
microbes reaching tumors is of great significance for the clinical 
translation of IT-loaded microbes. In addition, due to the dynamic 
nature of the TME, when these IT-carrying microbes function in the 
tumor, both the TME and the tumor itself may change. This may expand 
bacterial colonies into normal tissues, thereby causing systemic 
infection. The dynamic TME also poses a huge challenge for precisely 
controlling IT release. This is because when tumor tissue declines due 
to treatment, “live microbial agents” and the IT cargo they produce may 
instead increase. More circuit design or additional antibiotic control is 
needed to balance this inconsistency. Moreover, this kind of live drug 
will apparently not follow the conventional pharmacokinetic 
characteristics, which also poses challenges to clinical drug monitoring 
and use. Secondly, regarding safety and patient individual differences, 
despite using attenuated or non-pathogenic microbes, the bacteria can 
still cause infection or excessive immune activation, posing safety risks. 
A patient’s immune status significantly impacts the effectiveness of live 
biotherapeutic products. Those with strong immune systems may 
quickly eliminate therapeutic bacteria, reducing treatment efficacy. 
Conversely, immunocompromised patients face higher infection risks 
and require careful management during treatment. Additionally, human 
microbiota varies between individuals, which can affect the performance 
of live biotherapeutic products. For example, a patient’s gut microbiota 
may interact with therapeutic bacteria, changing their growth, 
metabolism, and pharmacological effects, potentially leading to unstable 
treatment outcomes. Thirdly, in terms of production processes and 
quality control, unlike conventional drugs, the production process of 

these live microbial agents cannot rely on filtration or heat sterilization 
to eliminate other pathogenic bacteria, posing new challenges for 
production and quality control. Although additional resistance genes 
and antibiotics can be introduced during production to control other 
pathogenic bacteria, this approach carries the risk of resistance gene 
transfer within the body, potentially leading to antibiotic resistance. 
Finally, there is a lack of authoritative or official regulatory documents 
specifically targeting these live microbial agents.

5 Conclusion

In conclusion, engineered microbes present a promising and 
innovative approach to enhancing immunotoxin-based cancer 
therapy. Their unique capabilities to target and proliferate within 
tumors offer significant advantages, addressing several limitations 
of traditional immunotoxins. However, the clinical application of 
these live microbial agents faces substantial challenges, including 
ensuring the accuracy and controllability of drug delivery, 
managing safety concerns and patient individual differences, 
overcoming complexities in production processes and quality 
control, and navigating the lack of specific regulatory guidelines. 
Future research needs to focus on optimizing microbial delivery 
systems, improving our understanding of tumor-microbe 
interactions, and establishing appropriate regulatory frameworks. 
Despite these hurdles, the potential of engineered microbes to 
revolutionize cancer treatment and improve patient outcomes 
remains substantial, warranting continued exploration and 
development in this exciting field.
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