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Background: Cholera remains a public health challenge in Kenya. To

better understand its dynamics, we analyzed Vibrio cholerae genomes from

clinical and environmental samples collected during the 2022–2023 outbreak.

These strains were compared with historical genomes from Kenya, Uganda,

Tanzania, and Haiti to inform strategies for cholera prevention, control, and

elimination in Kenya.

Methods: Clinical (stool) and environmental (wastewater, drinking water, and

household effluent) samples were collected from Nairobi county. Samples were

analyzed for V. cholerae using culture and real time PCR. The environmental

(n = 17) and clinical (n = 70) isolates were then subjected to phenotypic

antimicrobial susceptibility testing using the Kirby-Bauer disk diffusion method.

Whole genome sequencing was employed to characterize the genome, detect

antimicrobial resistance genes, virulence factors, and mobile genetic elements.

Phylogenetic analysis was performed to assess the genetic relationship and

diversity of isolates from 2022 to 2023 outbreak, comparing them with isolates

from historical outbreaks.

Results: Clinical isolates carried key virulence genes (ctxA, ctxB7, zot, and hlyA)

and were 100% resistant to multiple antibiotics, including ampicillin, cefotaxime,

ceftriaxone, and cefpodoxime, but remained susceptible to gentamicin and

chloramphenicol. In contrast, environmental isolates lacked ctxB gene but

harbored toxR, als, and hlyA, showing variable antibiotic resistance (59% to

ampicillin, 41% to trimethoprim-sulfamethoxazole, and 47% to nalidixic acid).

All clinical isolates from 2022 to 2023 outbreak harbored IncA/C2 plasmids and

several antimicrobial resistance genes including blaPER−7. Phylogenetic analysis

revealed high genetic diversity in environmental strains, clustering outside the

7th pandemic El Tor lineage, while clinical isolates were highly clonal. Genomes
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from 2022 to 2023 outbreak were closely related to Kenyan cholera outbreak

genomes from 2016 (15 single nucleotide polymorphisms, T13 lineage).

Conclusion: The 2022–2023 outbreak likely resulted from re-emergence of

previously circulating strains rather than a new introduction. While the role of

environmental reservoirs as a source of human infection remains unclear in

our study, environmental isolates possess virulent and antimicrobial resistance

genes that may spread via horizontal gene transfer. This highlights the need

for continuous genomic surveillance to monitor V. cholerae evolution, track

transmission patterns, and mitigate the spread of antimicrobial resistance.

KEYWORDS

cholera, antimicrobial resistance, whole genome sequencing, phylogenetic analysis,
virulence

1 Introduction

Vibrio cholerae, the causative agent of cholera is transmitted
through consumption of contaminated water or food (Harris et al.,
2012). Globally, the burden of cholera in endemic countries is
estimated at 1.3–4 million infections with 143,000 mortalities
annually (Ali et al., 2015). Out of the 209 different serogroups
of V. cholerae, only serogroups O1 and O139 are known to
potentially cause epidemics (Chun et al., 2009). Non-O1/non-O139
(NOVC) serogroups are considered environmental strains and
part of the normal flora in aquatic ecosystems. However, certain
NOVC strains can cause cholera outbreaks characterized by mild
diarrhea as reported in a number of countries (Dalsgaard et al.,
1999; Chatterjee et al., 2009; Onifade et al., 2011). V. cholerae
O1 is categorized into El Tor and classical biotypes based on
their phenotypic traits (Tappero and Tauxe, 2011). The classical
biotype was associated with the previous six pandemics experienced
between 1817 and 1923. These pandemics spread from the Indian
subcontinent to other continents (Tappero and Tauxe, 2011). In
1935, EI Tor biotype was found to be the major cause of cholera
outbreak in Indonesia. It caused a major pandemic in Asia in 1961
spreading to a number of African countries including Zambia,
Zimbabwe, Tanzania, and Uganda, slowly replacing the classical
biotype (Banerjee et al., 2014). The two biotypes are further divided
into Ogawa, Inaba, and Hikojima serotypes based on antigenic
factors (Raychoudhuri et al., 2008). Since 1971 when the first
outbreak was reported in Kenya, 16 different cholera outbreaks
have been reported up to the year 2015 (Tauxe et al., 1995; Shapiro
et al., 1999; Mugoya et al., 2008; Scrascia et al., 2009; Shikanga et al.,
2009; Kigen et al., 2020). Its recurrence in 2022 clearly indicates that
this disease is a major public health threat in Kenya. According to
Kenya’s Ministry of Health, the recent 2022–2023 cholera outbreak
affected 27 counties (57%) resulting in 12,123 reported cases and
202 fatalities (IFRC, 2024). The ongoing seventh cholera pandemic
El Tor strain (7PET) began in Southeast Asia and so far, three
transmission waves (I, II, and III) have been identified globally by
phylogenetic analysis of which wave III has the largest number of
clusters (Weill et al., 2017).

The ability to express virulence factors is essential for
V. cholerae O1 or O139 to cause epidemics. Several genes have

been proposed as virulence markers based on in vivo and in vitro
studies with cholera toxin and toxin coregulated pilus identified
as key pathogenic determinants of V. cholerae (Faruque et al.,
2003). Cholera toxin (Ctx) encoded by ctxA and ctxB genes and
carried on the CTXϕ prophage is the cause of the severe watery
diarrhea seen in cholera patients (Davis and Waldor, 2003). The
toxin-coregulated pilus (tcp) is responsible for synthesis of fimbriae
important for adherence of V. cholerae to the intestinal epithelium
of the host (Karaolis et al., 1998). In rare cases, toxin coregulated
pili (tcpA) and cholera toxin (ctxA) have been reported in NOVC
strains (Singh et al., 2001). Other virulence genes encoding
Zonula occludens toxin (Zot), accessory cholera enterotoxin (Ace),
hemolysin (hlyA), repeats-in-toxin A toxin (rtxA), and mannose-
sensitive hemagglutinin pilus (mshA) have been associated with the
endemic disease (Feng et al., 2004; Abana et al., 2019).

Mild to moderate cases of cholera are primarily treated by
oral or intravenous hydration (WHO, 2024). Antibiotics such as
doxycycline and ciprofloxacin are recommended in patients with
severe dehydration and those with underlying conditions. Studies
have shown that use of antibiotics in this group of patients decreases
the duration of diarrhea, volume of stool and the length of shedding
of V. cholerae (Leibovici-Weissman et al., 2014). A major concern
that is linked to this is the emergence of antimicrobial resistant
(AMR) strains. Furthermore, the acquisition of mobile genetic
elements (MGEs) such as plasmids, transposons, integrons, and
integrative conjugative elements (ICEs) plays a significant role
in spread of antimicrobial resistance genes (Lassalle et al., 2023;
Bhandari et al., 2021).

The pathogenesis and virulence patterns of cholera have been
studied both globally and regionally (Chaguza et al., 2024; Kimani
et al., 2014; Kiiru et al., 2013; Feng et al., 2004; Abana et al.,
2019). Even though surveillance of cholera outbreaks has been
done in Kenya, the evolutionary trend and mechanisms driving
the emergence and spread of virulent AMR strains remain poorly
understood. This study aimed at comprehensively analyzing the
genomic data of clinical and environmental V. cholerae isolates
from the recent 2022–2023 cholera outbreak in Kenya. We
performed whole genome sequencing for the isolates in this
outbreak and compared them with historical genomes from Kenya,
Uganda, Tanzania, and Haiti. We generated data that provides
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important insights into predicting disease transmission patterns,
especially between bordering countries, monitoring the evolution
of new variants, and identifying the emergence of virulent and
AMR strains. These findings are expected to inform public health
strategies for preventing, controlling, and eventually eliminating
cholera in Kenya.

2 Materials and methods

2.1 Sample collection

Environmental samples (wastewater, drinking water, and
household effluent) were collected from Mukuru informal
settlement in Nairobi county (Figure 1). Clinical samples (stool)
were collected from Mukuru and other regions in Nairobi county
including Kayole, Mathare, Eastleigh, and Dandora. Mukuru
informal settlement, the main sampling site has a population of
770,467 people with 97,890 households according to the 2019
national census report. One percent of residents in Mukuru have
access to a private toilet and individual water source (Muriithi
and Obare, 2017). Poor hygiene, limited access to clean water,
inadequate toilets and poor waste disposal system increase the risk
for diarrheal diseases including cholera outbreaks in the study area.

2.2 Sampling procedure

2.2.1 Environmental samples
A total of 121 environmental samples were collected during

the epidemic period of January to March 2023 from randomly
identified households in the study area. These included 40
drinking water samples, 41 wastewater samples and 40 household
effluent samples. Drinking water samples were collected in sterile
100 ml Whirl-Pak bags with or without sodium thiosulfate tablets,
following determination of chlorine concentration. Chlorinated
water was collected into Whirl-Pak bags with sodium thiosulfate
tablets. Household effluents, which majorly included gray water
from kitchens, laundry facilities, and baths, were collected using a
sterile ladle. Upon ensuring the samples were free of sediments, we
carefully transferred the samples into 2-L sterile labeled Whirl-Pak
bags. Wastewater containing human waste and household effluent
was collected from open drains using the same method as described
above for household effluent sampling. All samples in the Whirl-
Pak bags were transported to the Centre for Microbiology Research
Laboratory at Kenya Medical Research Institute (KEMRI) in cool
boxes packed with ice for processing within 6 h of collection.

2.2.2 Clinical samples
Stool samples were collected in clean disposable polypots from

suspected cholera patients (patients aged 2 years or more with acute
watery diarrhea with or without vomiting) attending hospitals in
the study areas in November and December 2022. This was based
on Integrated Disease Surveillance and Response Standard case
definitions.1 Diarrheal stool samples were transported to the Centre

1 https://www.nphi.go.ke/sites/default/files/2024-02/IDSR%
20Clinicians%20Handbook.pdf

for Microbiology Research Laboratory at KEMRI using Cary Blair
transport media (Oxoid, Thermo Fisher Scientific, USA) within
2 h of collection.

2.3 Laboratory analysis

2.3.1 Environmental samples
We measured the Turbidity and PH of each of the samples

upon receipt in the laboratory in order to assess sample quality
and identify any physicochemical characteristics that could affect
V. cholerae recovery. For drinking water, 10 ml of each sample
was filtered through a membrane filter of 0.45 µm pore diameter
(Millipore, Bedford, MA, United States). The filter paper was
transferred into 10 ml Alkaline Peptone Water (APW), well shaken
and incubated at 37◦C for 18 h. Twenty-five (25) ml of each
sample of wastewater and household effluent was added to 25 ml of
APW in a conical flask and incubated at 37◦C for 18 h. Following
enrichment, we streaked the samples onto thiosulfate citrate bile
salts sucrose agar (TCBS) plates (Oxoid Ltd.) and incubated at
37◦C for 18 h. Characteristic small to large yellow colonies were
subcultured on Muller Hinton (MH) agar and incubated for 18 h.
Purified isolates were then subjected to oxidase test as described
previously by Hounmanou et al. (2016). Those that turned positive
were presumed to be V. cholerae isolates. We extracted DNA
from pure cultures of suspected V. cholerae colonies using the
Zymo Quick-DNA fungal/bacterial Miniprep kit (The Epigenetics
Company, CA, United States). Extracted DNA was subjected
to Real Time PCR for detection of V. cholerae species-specific
gene hlyA based on a highly specific protocol by Huang et al.
(2009). Briefly, the 25 µl master-mix comprised 0.4 µM of each
hlyA forward and reverse primers, 12.5 µl Bio-Rad iQ Multiplex
Powermix, 5 µl molecular water, 0.2 µM hlyA probe, and 5 µl of
DNA template. AMPLIRUN V. cholerae DNA control (VIRCELL
Microbiologists, MBC118) served as the positive control while
nuclease-free water was used as the negative control. Quantitative
PCR was run on a Magnetic Induction Cycler (MIC) using the
following conditions: activation (at 95◦C for 15 min) and 40 cycles
of 95◦C for 15 s, 55◦C for 40 s, and 72◦C for 30 s. PCR reactions
were duplicated for each sample. We classified cultures with Ct
values of 20 or lower and a difference of less than 2 between
duplicate Ct values as positive.

2.3.2 Clinical samples
Stool samples were streaked onto TCBS agar plates (Oxoid

Ltd.) following enrichment in APW and incubated at 37◦C for
18 h. Characteristic small to large yellow colonies were subcultured
on MH agar and incubated for 18 h. Purified isolates were then
subjected to oxidase test as described by Hounmanou et al. (2016).
Those that turned positive were presumed to be V. cholerae isolates.
In order to confirm serotype identity, serology was carried out using
polyvalent, anti-Ogawa, and anti-Inaba antisera (Denka Seiken,
Tokyo, Japan). A similar protocol for DNA extraction and Real
Time PCR as for environmental samples was employed for clinical
sample analysis.

A total of 100 µl DNA aliquots for 137 positive cultures
of clinical (n = 120) and environmental (n = 17) isolates were
shipped on dry ice to Ohio State University for library preparations
and whole genome sequencing. We stored all confirmed positive
isolates at −80◦C for further analysis.
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FIGURE 1

Map showing location of Mukuru informal settlement in Nairobi county.

2.4 Phenotypic antimicrobial
susceptibility testing for clinical and
environmental samples

We screened 70 clinical and 17 environmental isolates for
antimicrobial susceptibility using the Kirby-Bauer disk diffusion
method (Biemer, 1973). The 70 clinical samples screened for AST
were randomly selected from the 120 positive isolates with each of

the sampling sites represented. The following antimicrobial agents
were used; ampicillin (10 µg), gentamicin (30 µg), ciprofloxacin
(5 µg), nalidixic acid (30 µg), ceftazidime (30 µg), trimethoprim
sulfamethoxazole (25 µg), ceftriaxone (30 µg), cefpodoxime
(30 µg), tetracycline (30 µg), azithromycin (15 µg), amoxicillin-
clavulanate acid (30 µg), chloramphenicol (30 µg), cefotaxime
(30 µg), and Kanamycin (25 µg). Potency of the antibiotic discs and
growth of bacteria was tested using Escherichia coli ATCC 25922 as
the control.
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Briefly, V. cholerae isolates were grown on MH agar plates
for 24 h at 37◦C. Colonies were emulsified into normal saline to
achieve a 0.5 MacFarland suspension. This suspension was evenly
spread onto MH agar (Oxoid, Basingstoke, UK) and allowed to
air dry. After air drying the antibiotic disks were applied on the
agar and incubated at 37◦C for 24 h. We measured the diameter
of the inhibition ring and determined susceptibility based on 2018
Clinical and Laboratory Standards Institute (CLSI) M45 established
guideline for infrequently isolated or fastidious bacteria (CLSI,
2018). We classified isolates showing resistance to at least three
categories of antibiotics as multidrug resistant (MDR). Whole
genome sequencing analysis was used to detect AMR genes.

2.5 Whole genome sequencing

Genomic DNA of 137 isolates [environmental (n = 17) and
clinical (n = 120)] were subjected to whole genome sequencing.
We included one clinical isolate from the 2016 cholera outbreak.
Library preparation was done using an Illumina paired-end DNA
library preparation kit. Briefly, the 4150 Tapestation system was
used to determine library size and concentration (Agilent, MA,
USA). In order to amplify the tagged DNA and introduce
sequencing indexes, the limited-cycle PCR was subsequently
employed. We incorporated PhiX Control v3 (Illumina, Inc., San
Diego, CA, USA) into each sample prior to library preparation
to facilitate a limit of detection assessment for each sample.
The prepared libraries were loaded onto a reagent cartridge and
subjected to clustering on the NextSeq 2000 System. Subsequently,
a paired-end sequencing run with 2 × 150 bp reads was
executed using the NextSeq 2000 platform. Raw sequences
have been deposited in the National Centre for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) BioProject
number PRJNA1235657. The SRA accession numbers and other
metadata for each sample are provided in Supplementary Table 1.

2.6 Genomic analysis

2.6.1 Serotyping, biotyping, identification of
major virulence genes and sequence types,
characterization of pathogenicity islands, and
assessment of phage susceptibility

Assembly of the raw paired-end reads was done using SPAdes
assembler (Bankevich et al., 2012). The assembled sequences
were analyzed using CholeraeFinder 1.0 tool in the Centre for
Genomic Epidemiology (CGE) platform.2 We confirmed cholera
species based on the species-specific ompW gene (Siriphap et al.,
2017) with a threshold set at 98% identity. This tool further
identified V. cholerae serogroup-specific genes (rfbV-O1 and wbfZ-
O139), biotype-specific genes (ctxB, rstR, and tcpA), the gene
specific for the 7th pandemic (VC2346), and putative virulence
genes. Detection of Vibrio pathogenicity islands mainly VPI-
1, VPI-2, VSP-1, VSP-2, and PICI like elements responsible
for phage susceptibility (PLE1 and PLE2) was also carried out

2 https://cge.food.dtu.dk/services/CholeraeFinder/

using CholeraeFinder 1.0. Multilocus sequence typing was done
using the bactopia bacterial analysis pipeline available from https:
//bactopia.github.io/latest/ for short paired-end reads. In the
bactopia pipeline, contigs were subjected to the “MLST_MODULE”
to determine the sequence type. Briefly, the contigs were
queried against a custom Multilocus Sequence Typing (MLST)
database (build 2.23.0-20240325) using MLST (version 2.23.0) with
automatic detection of scheme, 100% identity, minimum depth
of sequence coverage of 10 and minimum alignment score of 50.
Additionally, the assembled contigs were annotated using prokka
version 1.14.6.

2.6.2 Identification of antimicrobial resistance
genes and mobile genetic elements

Antimicrobial resistance genes in the assembled contigs
were detected using amrfinderplus (version 3.12.8) against the
amrfinderplus-database (build 2024-01-31.1) in the bactopia
pipeline. Additional search for MGEs, the different classes of
integrons and mutations in gyrA and parC genes (Siriphap et al.,
2017) was done by CholeraeFinder on the CGE platform. The
PlasmidFinder 1.3 tool of the bactopia pipeline in CGE was used
to search for plasmid replicons.

2.6.3 Single nucleotide polymorphism-based
phylogenetic analysis

In order to identify the phylogenetic relatedness within and
between clinical and environmental V. cholerae isolates, high
quality assembled genomes were mapped against a reference
genome strain of V. cholerae N16961 (GenBank accession
numbers NZ_LT906614 and NZ_LT906615) using Snippy (version
4.6.0).3 Single nucleotide polymorphisms (SNPs) were called
with Freebayes (version 1.3.2) using these parameters: minimum
mapping quality 60, minimum base quality 13, minimum read
coverage 4, and minimum proportion of variant evidence of 75%.
With the called SNPs, a core-SNP alignment was then generated.
A distance matrix of the SNPs was computed using snp-dists
(version 0.8.2) and recombination masked with Gubbins version
3.3.1 (Croucher et al., 2015). A maximum likelihood phylogenetic
tree was constructed using IQTREE version 2.2.2.7 (Nguyen et al.,
2015) with 1000 ultrafast bootstrap replicates under the HKY model
(Posada and Crandall, 2001) and the final tree amended in iTOL.

2.6.4 Global phylogenetic analysis
To understand the evolutionary and temporal dynamics

of V. cholerae beyond the 2022–2023 sequenced genomes, we
retrieved genomic data of V. cholerae isolated in different countries
from pathogen watch.4 The dataset of complete genomes of
V. cholerae used in evolutionary and temporal dynamics comprised
606 isolates (study isolates: n = 105; pathogenwatch isolates:
n = 501). The 501 included sequences from Kenya (n = 106),
Tanzania (n = 69), Uganda (n = 17), and Haiti (n = 308), with
the M66 strain used as an outgroup. M66 strain genome was
the earliest and ancestral sequence among the seventh pandemic
isolates, collected in Indonesia in 1937. We applied the bactopia
main module to generate assemblies followed by variant calling

3 https://github.com/tseemann/snippy

4 https://pathogen.watch/
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with Snippy as described above with inclusion of high-quality
genome assemblies. The masked core SNP alignment (n = 322)
with 60800 SNPs was used for phylogenetic analysis with M66
strain as an outgroup.

To understand the temporal dynamics of V. cholerae in Kenya,
we randomly grouped the genomes by collection time (year),
then selected at least 20 genomes per year yielding 37 sequences
spanning from 1985 to 2022. For the “global” dataset comprising
sequences from the other countries (Kenya, Tanzania, Uganda,
and Haiti), we subsampled the genomes by year and selected
12 genomes per sampling time, yielding 94 isolates. For each
dataset, maximum phylogenetic inference was performed using
IQTREE with generalized time reversible (GTR) applied as the
optimal substitution model for evolution (Substitution Models,
2024). To perform phylodynamic analysis, we assessed the temporal
signal of the subsampled genome sequences by regressing the
genetic distances against collection time (years). Having ascertained
sufficient temporal signal, we performed phylodynamic analysis
incorporating the sampling locations as traits for phylogeographic
reconstructions for dispersal dynamics. For the genomes generated
in this study, we inferred the longitude and latitude coordinates
using “tidygeocoder” in R using the sampling sites as locations. The
associated metadata of the pathogenwatch retrieved genomes were
bundled with longitude and latitude information as other relevant
annotations. We used Bayesian evolutionary analysis sampling
trees (BEAST) version 1.10.4 (Suchard et al., 2018) to perform
phylodynamic analysis. For both subsampled datasets, we applied
the sampling date (in years) as the tip dates, GTR as the best
evolution and Skyline demographic/population models. We used
continuous phylogeographic inference by adding the location traits
given as longitude and latitude geographical coordinates under
a Cauchy distribution model. For the subsampled isolates from
Kenya, we run BEAST for 100 million chains, sampling every
10,000th step while the global dataset was run for 300 million
generations with sampling at every 30,000th step. We assessed
the mixing properties of the relevant estimates for convergence,
ensuring effective sample sizes (ESS) > 200 was attained using
Tracer version 1.7.2 (Rambaut et al., 2018). Maximum clade
credibility trees were obtained using Tree Annotator version 1.10.4
(Rambaut et al., 2018) with a 10% burn-in. Estimates of parameters
of interest were reported as median values at 95% highest posterior
density or credible interval.

The Phylogenetic tree was constructed using IQ-Tree version
2.0.3 with M66 used as an outgroup and the final tree amended in
iTOL (Letunic and Bork, 2021). Accession numbers of strains used
in the SNP tree are reported in Supplementary Table 2.

2.7 Ethics statement

Ethical approval for this study was obtained from the Kenyatta
National Hospital-University of Nairobi Ethical Review Committee
(KNH-UON ERC). The Institutional Review Board reviewed the
procedures outlined in this study to ensure the protection of
human subjects, the privacy of participants, and the ethical conduct
of research (Approval ID: P731/09/2021). Research license was
sought from the National Commission for Science, Technology,
and Innovation (License No.: NACOSTI/P/22/16171).

TABLE 1 Genomic characterization of clinical and environmental isolates
from the 2022 to 2023 cholera outbreak in Kenya.

Attribute Clinical Isolates Environmental
isolates

Species Vibrio cholerae Vibrio cholerae

Serogroup/biotype O1, El Tor, Non
O1-non-O139

Non O1-non-O139

ST or clone ST69 ST 596, ST1272, ST1443,
novel STs

Genomic wave
7th pandemic gene
(VC2346)

Wave III
Present

Not detected
Not detected

Pathogenicity islands VSP-1, VSP-2, VPI-1,
VPI-2

VPI-2, VSP-2

3 Results

3.1 Genomic characterization and
virulence profiles of clinical and
environmental Vibrio cholerae isolates

Out of the 137 sequenced isolates, 105 genomes were included
in the final genomic analysis comprising 95 genomes from clinical
samples and 10 from environmental samples. The remaining
genomes were excluded due to less than 50% coverage when
mapped to the N16961 reference strain, thus failing quality control
checks. The assembled genomes of Kenyan isolates included in
the final analysis are available publicly at the NCBI GenBank
(BioProject number: PRJNA1235657), with accession numbers and
metadata of each sample provided in Supplementary Tables 3, 4 for
clinical and environmental isolates respectively.

Ninety-eight percent (n = 93) of the sequenced strains from the
2016 (n = 1) and 2022 (n = 92) clinical isolates were characterized
as serogroup 01, containing both ompW and rfbv-O1 genes. The
remaining two isolates were identified as non O1/non-O139. All
clinical isolates belonged to the third wave and carried the genetic
marker for 7th pandemic V. cholerae strains (VC2346 gene). These
isolates were of Ogawa serotype and carried ctxB7 genotype of
the ctxB gene. Additionally, V. cholerae O1 isolates contained
the rstR and tcpA genes found in El Tor biotype. Multi-locus
Sequence Typing revealed that all the clinical strains belonged to
sequence type 69 (ST69). There was a similar trend in occurrence
of virulence-associated genes and pathogenicity islands across all
clinical strains except one isolate that lacked the ctxB gene. This
included the key virulence genes such as ctxA, ctxB, zot, ace, hlyA,
mshA, als, makA, rtxA, ompU, and toxR. The chxA and stn genes
were absent in all strains. Additionally, Vibrio pathogenicity islands
VPI-1, VPI-2, VSP-1, and VSP-2 were detected in all clinical strains
as shown in Table 1 and Supplementary Table 3.

All the 10 environmental isolates neither harbored rfbv-01 nor
wbfZ-0139 genes hence were classified as non-O1 and non-O139
V. cholerae (NOVC). Genomes of some of the isolates had virulence
factors such as Vibrio pathogenicity islands VPI-2 (n = 1) and VSP-
2 (n = 1). Additionally, toxR, als, and hlyA genes were found in
all environmental isolates. The rtxA gene was found in 90% of
these isolates. In silico MLST revealed that three strains belonged to
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TABLE 2 Phenotypic antibiotic resistance profile of clinical and environmental isolates.

Antibiotic Clinical isolates Environmental isolates

Susceptible
n (%)

Intermediate
n (%)

Resistant
n (%)

Susceptible
n (%)

Intermediate
n (%)

Resistant
n (%)

Ampicillin 0 (0) 0 (0) 70 (100) 6 (35.3) 1 (5.9) 10 (58.9)

Ceftazidime 0 (0) 1 (1.4) 69 (98.6) 15 (88.2) 0 (0) 2 (11.8)

Cefotaxime 0 (0) 0 (0) 70 (100) 14 (82.4) 1 (5.9) 2 (11.8)

Amoxicillin clavulanate 36 (51.4) 32 (45.7) 2 (2.9) 13 (76.5) 3 (17.6) 1 (5.9)

Ciprofloxacin 0 (0) 67 (95.7) 3 (4.3) 3 (17.6) 11 (64.7) 3 (17.6)

Azithromycin 0 (0) 0 (0) 70 (100) 17 (100) 0 (0) 0 (0)

Trimethoprim
sulfamethoxazole

0 (0) 0 (0) 70 (100) 8 (47.1) 2 (11.8) 7 (41.2)

Chloramphenicol 70 (100) 0 (0) 0 (0) 16 (94.1) 1 (5.9) 0 (0)

Ceftriaxone 0 (0) 0 (0) 70 (100) 14 (82.4) 2 (11.8) 1 (5.9)

Cefpodoxime 0 (0) 0 (0) 70 (100) 13 (76.4) 0 (0) 4 (23.5)

Nalidixic acid 0 (0) 0 (0) 70 (100) 8 (47.1) 1 (5.9) 8 (47.1)

Gentamicin 70 (100) 0 (0) 0 (0) 17 (100) 0 (0) 0 (0)

Kanamycin 60 (85.7) 10 (14.3) 0 (0) 15 (88.2) 2 (11.8) 0 (0)

Tetracycline 69 (98.6) 1 (1.4) 0 (0) 16 (94.1) 0 (0) 1 (5.9)

sequence types 596, 1272, and 1443 with majority (70%) belonging
to Novel STs. Both clinical and environmental strains harbored
toxR, als, hlyA, and rtxA genes. This is shown in Table 1 and
Supplementary Tables 3, 4.

3.2 Phenotypic antibiotic resistance
profiles in clinical and environmental
Vibrio cholerae isolates

Both clinical and environmental isolates phenotypically
expressed antibiotic resistance. The seventy randomly selected
clinical isolates had an identical multidrug resistance profile,
showing 100% resistance to ampicillin, cefotaxime, ceftriaxone,
cefpodoxime, trimethoprim sulfamethoxazole, nalidixic acid, and
azithromycin. Susceptibility to gentamicin and chloramphenicol
was observed in all clinical strains. The clinical isolates were
highly susceptible to tetracycline (99%) while 96% of the isolates
exhibited intermediate susceptibility to ciprofloxacin (Table 2).
All environmental isolates were susceptible to azithromycin and
gentamicin. Phenotypic resistance to ampicillin, trimethoprim
sulfamethoxazole, and nalidixic acid was observed in 59%, 41%,
and 47% of the environmental isolates respectively as shown in
Table 2.

3.3 Antimicrobial resistance genes and
mobile genetic elements in clinical
isolates

The dfrA1 gene, conferring resistance to trimethoprim, was
detected in all clinical isolates, consistent with their phenotypic
resistance to this antibiotic. Furthermore, the sulfonamide

resistance gene sul1 was identified in 98% of the isolates. Majority
(98%) of the isolates harbored the plasmid-borne extended-
spectrum beta-lactamase blaPER-7 gene responsible for third
generation cephalosporin resistance. This gene was lacking in the
2016 isolate. Even though all isolates carried the chloramphenicol
acetyltransferase gene (catB9), responsible for phenicol resistance,
phenotypic resistance to chloramphenicol was not observed. Class 1
integrons, identified by the presence of the intI gene, were detected
in 99% isolates. The 2016 isolate lacked intI gene. However,
the SXT integron-related resistance determinants dfrA18 and the
fluoroquinolone resistance gene qnrVC1 were absent in all samples.
Similarly, the SXT-like ICE-borne chloramphenicol resistance
gene floR and tetracycline resistance genes were not detected,
corresponding to the observed 100% and 98% susceptibility of the
clinical isolates to chloramphenicol and tetracycline, respectively
(Figure 2 and Supplementary Table 3). Ninety-four (99%) isolates
carried the plasmid pVC211, which is associated with high-level
resistance to azithromycin, corresponding to the 100% resistance to
this antibiotic. The 2016 isolate lacked pVC211. Mutations in gyrA
and parC gene were found in all clinical isolates. Additionally, an
IncA/C2 plasmid known to carry multiple antimicrobial resistance
genes was found in all clinical isolates as shown in Supplementary
Table 3.

3.4 Genotypic antibiotic resistance,
phage resistance, and mobile genetic
elements in environmental isolates

Environmental isolates showed varied resistance profiles.
The SXT-like ICE-borne chloramphenicol (CHL) resistance gene
floR was detected in 20% of the strains. Two isolates carried
the sulfonamide resistance gene sul2 conferring resistance to
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FIGURE 2

Heat map showing antibiotic resistance genes in clinical and environmental isolates from the 2022 to 2023 cholera outbreak in Kenya. One clinical
isolate was collected in 2016. Gene presence is denoted by color blue while red denotes gene absence. The color coded key on the right shows the
source of isolates, sequence type, and serogroup.

sulfamethoxazole. The fluoroquinolone resistance gene qnrVC4
was present in 40% of the isolates. Notably, all isolates lacked catB9
gene, a determinant of phenicol resistance. Three isolates carried
blaCARB−9 gene, encoding a beta-lactamase enzyme and conferring
beta-lactam resistance (Figure 2 and Supplementary Table 4). None
of the environmental strains contained the phage susceptibility
regions associated with PICI-like elements (PLE1 and PLE2).

3.5 Genetic diversity of environmental
and clinical Vibrio cholerae isolates

Phylogenetic analysis of isolates collected during the 2022–
2023 cholera outbreak revealed that all the 10 environmental
isolates were highly divergent, clustering outside the 7th pandemic
El Tor lineage. The difference between these isolates and the
reference genome N16961 was between 55,000 and 119,000 SNPs.
Multi-locus sequence typing (Jolley et al., 2012) demonstrated
significant diversity among the environmental strains with 7
out the 10 isolates classified as novel sequence types that were
phylogenetically distinct from previously known types. The other
three environmental strains belonged to sequence types (STs)
1272, 1443, and 596 as shown in Figure 3C. This highlights
the extensive genetic diversity of V. cholerae in environmental
reservoirs. Phylogenetic analysis of the 95 V. cholerae genomes
from clinical isolates revealed a high degree of clonality, with fewer
than five SNPs differentiating majority of the isolates. However,
the 2016 isolate was an exception showing 15 SNP differences.
MLST following the methodology described by Jolley et al. (2012)
further confirmed the limited genetic diversity, as all the strains
were classified under the same rMLST type, ST69 (Figure 3B). It is
important to note that all the clinical V. cholerae O1 isolates did
not cluster with the 10 environmental isolates (Figure 3A). This
further confirms that the clinical strains primarily belonged to the
monophyletic 7th pandemic lineage while environmental isolates
represent genetically distinct populations.

Given the high burden of cholera in Haiti and Kenya’s bordering
countries, Uganda and Tanzania, further analysis was done to place
the 2022–2023 Kenyan isolates within the broader phylogenetic
framework of East African and North American 7PET lineages.

Comparison of clinical genomes from the 2022 to 2023 Kenyan
cholera outbreak revealed clonal relatedness to V. cholerae O1
El Tor isolates from these regions. The maximum likelihood
phylogeny showed that the predominant 2022–2023 outbreak-
associated 7PET isolates from Kenya formed a single distinct
cluster in the phylogeny and belonged to lineage T13 (Figure 4).
The historical 7PET isolates from Kenya clustered with sequences
from Tanzania and Uganda. Haiti strains were observed to cluster
distinctly with clinical and environmental isolates appearing in the
same clusters (Figure 4).

To investigate the potential origin of the 2022–2023 cholera
outbreak in Kenya, we conducted a time-scaled phylogenetic
analysis incorporating previously published Kenyan genomes
alongside clinical genomes from the 2022 to 2023 outbreak
(Figure 5). Our analysis revealed that the 2022–2023 isolates
showed the highest genetic similarity (15 SNPs, lineage T13)
to Kenyan isolates from 2016, suggesting a close evolutionary
relationship. We further placed the 2022–2023 clinical isolates
within a broader phylogeny including genomes from East Africa
and North America, which confirmed a similar pattern of genetic
relatedness (Figure 6).

4 Discussion

Cholera still remains a significant threat to public health
since 1971 when the first case was reported in Kenya. Numerous
outbreaks have been reported up to the year 2023 highlighting
cholera endemic nature in our setting (Tauxe et al., 1995; Shapiro
et al., 1999; Mugoya et al., 2008; Scrascia et al., 2009; Shikanga
et al., 2009; Mutonga et al., 2013; Kigen et al., 2020). In our
study, clinical V. cholerae isolates were primarily identified as
serogroup O1 El tor variants and carried the key virulence factors
responsible for pathogenicity, including the ctxB7 genotype of
the ctxB gene, as well as the rstR and tcpA genes. Earlier studies
reported ctxB3 toxin allele in all El tor strains in Kenya (Kiiru
et al., 2013). In contrast, none of the environmental isolates
tested were positive for these genes. This observation agrees with
previous studies, which reported the absence of ctx and tcpA
genes in NOVC strains, while all O1 and O139 strains consistently
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FIGURE 3

Genetic relatedness of clinical and environmental V. cholerae isolates from 2022 to 2023 outbreak in Kenya. One clinical isolate from 2016 was
included. (A) Maximum likelihood phylogenetic tree showing the genetic relatedness of clinical and environmental isolates collected in the
2022–2023 cholera outbreak in Kenya with one clinical isolate from 2016 outbreak included. (B) Maximum likelihood phylogenetic tree illustrating
the genetic relatedness of clinical isolates collected in the 2016 (n = 1) and 2022–2023 cholera outbreaks in Kenya. (C) Maximum likelihood
phylogenetic tree illustrating the genetic relatedness of environmental isolates collected during the 2022–2023 cholera outbreak in Kenya. The
circles at the tip of the phylogeny represent the sample source. Color strips at the tips of each tree represent the sequence type (ST), year of
isolation, serogroup, lineage, and country of origin. NA on the lineage for panels (A–C) refers to isolates with no transmission lineage assigned. The
phylogeny was constructed based on the reference genome strain of V. cholerae N16961 and rooted based on the pre-seventh pandemic strain
M66 used as an outgroup.

harbored these genes (Faruque et al., 1998; Sharma et al., 1998).

However, environmental isolates in our study contained other

virulence-associated factors such as VPI-2, VSP-2, and genes

including rtxA, als, and hlyA, which have been implicated in

diarrheal diseases (Octavia et al., 2013). Among these, the rtxA

gene is known to encode a product with cytotoxic activity toward
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FIGURE 4

Maximum likelihood phylogenetic tree illustrating the genetic relatedness of clinical and environmental V. cholerae isolates collected during the
2022–2023 cholera outbreak in Kenya and previously published genomes from Kenya, Uganda, Tanzania, and Haiti. The pink, green, and blue circles
at the tip of the phylogeny represent the sample type. The phylogeny is annotated by color strips at the tips of each tree representing the sequence
type (ST), serogroup (SG), year of isolation, lineage, and country of isolation. The phylogeny was constructed based on the reference genome strain
of V. cholerae N16961 and rooted based on the pre-seventh pandemic strain M66 used as an outgroup.

mammalian cells, a key factor driving the virulence of CTX-
negative, NOVC strains (Lin et al., 1999). Several studies conducted
in tropical regions and globally have linked sporadic cases of

gastroenteritis to NOVC strains (Sharma et al., 1998; Schwartz et al.,
2019; Siriphap et al., 2017). These findings suggest that although
environmental isolates lack the virulence cholera toxin genes,
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FIGURE 5

(A) Maximum likelihood phylogenetic tree illustrating the genetic diversity of the 2022 Kenyan clinical V. cholerae isolates and previously published
genomes from Kenya. The pink and blue circles at the tip of the phylogeny represent the isolates with historical isolates up to 2015 denoted by blue
while 2016 and 2022 isolates are denoted by pink. The horizontal axis indicates the year of isolation. (B) Root to tip distances against collection time
(years) on vertical and horizontal axes respectively. We observed a strong correlation (correlation coefficient = 0.92, R2 = 0.84).

they possess alternative virulence genes that may spread among
cholera strains via horizontal gene transfer or MGEs and result
in gastrointestinal disease. This highlights the need for continued
surveillance and characterization of V. cholerae circulating in our
environment.

In our study, a uniform resistance pattern was observed in all
clinical isolates highlighting 100% resistance to multiple antibiotics,
including ampicillin, cefotaxime, ceftriaxone, cefpodoxime,
trimethoprim-sulfamethoxazole, nalidixic acid, and azithromycin.
This resistance pattern contrasts with earlier findings from Kenya
which documented lower resistance rates to nalidixic acid (64.5%)
and ampicillin (3.6%) (Shah et al., 2023) and high susceptibility
to ceftriaxone (99%) (Awuor et al., 2020). Additionally, a study
by Haque et al. (2023) reported V. cholerae isolates with lower
resistance to ceftazidime (27.5%) and cefotaxime (29.4%), findings
consistent with reports from other countries (Sahilah et al., 2014;
Letchumanan et al., 2015). The mutations observed in gyrA
and parC in clinical isolates indicate quinolone resistance, an
important evolutionary trait for sub lineages in the 7th cholera
pandemic (Opintan et al., 2021; Weill et al., 2017). Majority of
the clinical isolates in our study harbored the plasmid-borne
extended-spectrum beta-lactamase blaPER-7 gene responsible for
third generation cephalosporin resistance. This correlated with
observed 100% phenotypic resistance to cefotaxime, ceftriaxone,
and cefpodoxime. A study done in Yemen reported similar
findings with blaPER-7 gene isolated from multidrug-resistant
V. cholerae strains (Lassalle et al., 2023). Clinical strains were
all susceptible to chloramphenicol despite presence of catB9
gene possibly due to low gene expression. Similar findings have
been reported in a number of studies (Siriphap et al., 2017;

Sun et al., 2023) indicating that phenotypic expression is not
necessarily related to the presence of the encoding gene. The
identification of class 1 integrons in clinical isolates from our
study emphasizes their critical role in the acquisition and spread
of resistance genes. Notably, these integrons were absent in
the sequenced 2016 isolate and in earlier Kenyan studies (Shah
et al., 2023) suggesting recent horizontal gene transfer events.
The IncA/C2 plasmid found in all clinical isolates in our study
is important in horizontal transfer of multiple antimicrobial
resistance genes. A previous study in Haiti reported that this
plasmid encodes a unique set of resistance determinants and a
second copy of the resistance genes hence conferring resistance
to multiple antibiotics (Folster et al., 2014). The high number of
reported MDR V. cholerae clinical isolates in our study could be
attributed to this.

These observations suggest an escalating antibiotic resistance
scenario over time. Despite this alarming resistance trend, all
clinical strains in our study remained susceptible to gentamicin
and chloramphenicol while 99% of the isolates were susceptible
to tetracyclines. Tetracyclines (doxycycline) have historically been
the drug of choice during cholera outbreaks (Poulin-Laprade et al.,
2015). It is critical to monitor usage of these antibiotics to reduce
the risk of developing resistance as there are fewer therapeutic
options now available.

Environmental isolates showed a more varied resistance
profile, with 100% susceptibility to gentamicin and azithromycin.
Interestingly, three environmental NOVC isolates carried
blaCARB−9 gene conferring beta-lactam resistance. This gene
possibly acquired through MGEs has been widely reported in
bacteria (De, 2021) with recent studies in Austria and Argentina
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FIGURE 6

(A) Maximum likelihood phylogenetic tree illustrating the genetic diversity of the 2022 Kenyan clinical V. cholerae isolates and previously published
genomes from Kenya, Uganda, Tanzania, and Haiti. The pink, brown, black, and blue circles at the tip of the phylogeny represent the country of
isolation while the horizontal axis indicates the year of isolation. (B) Root to tip distances against collection time (years) on vertical and horizontal
axes respectively. We observed a strong correlation (correlation coefficient = 0.9, R2 = 0.81).

reporting blaCARB−9 in environmental NOVC strains (Petroni
et al., 2004; Lepuschitz et al., 2019). Environmental isolates also
carried unique resistance determinants, including the SXT-like
ICE-borne floR and qnrVC4 genes, which confer resistance to
chloramphenicol and fluoroquinolones, respectively. Furthermore,
the lack of phage susceptibility regions associated with PICI-like
elements in environmental strains impacts their persistence in the
environment. Previously, bacteriophages infective to V. cholerae
have been isolated from environmental waters (Maina et al., 2014).
There is need to monitor both clinical and environmental strains
in order to track the spread of MDR determinants and understand
the role of environmental V. cholerae in driving emergence of new
MDR strains.

The AMR genes circulating in environmental isolates were
different from those found in clinical isolates. For instance, the floR
and blaCARB−9 genes were detected in environmental isolates but
absent in all clinical samples, whereas the catB9 gene was present
in all clinical isolates but absent in environmental isolates. This
indicates that the AMR gene profiles in clinical isolates may be
evolving differently from those in environmental populations due
to a difference in selective pressure.

While majority of clinical isolates clustered together and
showed a high degree of genetic relatedness, environmental NOVC
isolates were highly divergent with isolates belonging to novel
and distinct STs, including ST1272, ST1443, and ST596. This
high level of diversity is consistent with previous studies that
identified mutation and genetic recombination as key factors

driving variation among V. cholerae isolates (Octavia et al., 2013;
Salim et al., 2005; Feng et al., 2008). Although these environmental
isolates clustered outside the 7th pandemic El Tor lineage, they
have the potential to cause mild diarrhea and contribute to spread
of AMR determinants hence the need for ongoing surveillance
to understand the role of environmental isolates in evolution of
clinical V. cholerae strains.

Comparison of clinical genomes from the 2022 to 2023
Kenyan cholera outbreak with previously published genomes from
Kenya, Uganda, Tanzania, and Haiti revealed clonal relatedness
to V. cholerae O1 El Tor isolates from these regions. This agrees
with previous studies (Kiiru et al., 2013; Morita et al., 2020)
which showed that V. cholerae O1 El Tor isolates in Kenya
and countries in Southeast Asia are clonally related to strains
from other regions globally. Similarly, Stine and Morris (2013)
reported that isolates from the sixth and seventh pandemics share
a single ancestral origin. The historical 7PET isolates from Kenya
clustered with sequences from Tanzania and Uganda suggesting
cross border spread of cholera. This was in agreement with an
earlier study that reported cross border cholera outbreaks as one
of the major contributors to the high cholera burden in Sub
Saharan Africa (Bwire et al., 2016). Although there is no direct
evidence of recent transmission events between Haiti and Kenya,
the shared ancestral lineage of isolates from the sixth and seventh
pandemics highlights the potential for global dissemination of
epidemic V. cholerae strains through international travel and trade.
The cholera epidemic that affected Haiti from October 2010 to
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February 2019 has been attributed to the introduction of V. cholerae
by United Nations peacekeepers originating from South Asia
(Piarroux et al., 2011). This shows the role of human movement
in the transcontinental spread of cholera further highlighting
the importance of regional and global surveillance in effectively
monitoring and controlling the spread of cholera. Clinical and
environmental isolates from Haiti appeared in the same clusters
suggesting environmental persistence and possible spill over to
human populations.

The 2022–2023 cholera outbreak isolates showed the highest
genetic similarity (15 SNPs) to Kenyan isolates from 2016,
suggesting a close evolutionary relationship. These results indicate
that the 2022–2023 outbreak did not arise from a new introduction
but instead resulted from re-emergence of previously circulating
strains in Kenya that had persisted since 2016. Sporadic cholera
outbreaks were reported in Kenya each year from 2016 to 2022.

While we examined clinical genomes from the 2022 to 2023
cholera outbreak alongside genomes from previous outbreaks in
Kenya, Uganda, Tanzania, and Haiti, including more countries
would have provided a better global perspective on cholera
transmission patterns. However, the selected regions offer
important insights into V. cholerae genomics within regional and
global contexts. Future genomic surveillance studies incorporating
more countries will further enhance our understanding of the
spread and genetic diversity of V. cholerae globally.

5 Conclusion

In conclusion, our study shows that the 2022–2023 Kenyan
cholera outbreak has been attributed to 7PET O1 ogawa
V. cholerae strains carrying IncA/C2 plasmids and multidrug
resistant genes and likely resulted from re-emergence of previously
circulating strains rather than a new introduction. Kenyan
clinical isolates remain susceptible to tetracycline, gentamicin,
and chloramphenicol. Although environmental contamination as
a source of human infection cannot be clearly elucidated in our
study, it is important to note that environmental isolates possess
virulent and AMR genes that may spread to clinical and other
environmental strains via horizontal gene transfer or MGEs. This
highlights the need for continued surveillance in order to track
V. cholerae evolution, understand transmission pattern, and limit
the development and spread of antimicrobial resistance.
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