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Exposure to indoor microbes, particularly potential pathogens, poses significant 
health risks to occupants. While the indoor microbiome has been extensively 
studied in various settings, its spatial distribution in university dormitories within 
hot and humid climates remains poorly understood. In this study, 56 samples 
were collected from four functional areas (air conditioning, sink, toilet, and floor) 
in student dormitories in Shenzhen, China. 16S rRNA gene sequencing revealed 
that the indoor microbial communities were predominantly composed of human-
associated genera such as Kocuria, Corynebacterium, and Staphylococcus, with 
marked compositional differences among functional zones. FAPROTAX predictions 
further identified 74 potential human pathogens, mainly linked in literature to the 
risks of nosocomial infections and pneumonia. Notably, a significant portion of 
these pathogens belongs to the genus Acinetobacter, with elevated concentrations 
found in air conditioning systems, suggesting their potential as reservoirs of 
clinically relevant microbes. Environmental variations across room functional 
areas significantly influenced the composition profile of the microbiome, while 
the impact of occupant characteristics appeared negligible. Key environmental 
factors, particularly temperature, played a major role in shaping both microbial 
and pathogen dynamics. Floor surfaces were identified as key microbial hotspots, 
exhibiting complex microbial networks that interacted strongly with communities 
from other functional areas. This underscores the floor’s vital role in maintaining 
connectivity within the indoor environment. The assembly processes of indoor 
microbial and predicted pathogen communities were both dominated by stochastic 
processes, with the former primarily governed by dispersal limitations and the 
latter by ecological drift. Overall, this study provides critical insights into the spatial 
distribution, environmental drivers, and assembly mechanisms of microbial and 
pathogen communities in university dormitories, contributing to future assessments 
of indoor microbial exposure and hygiene management.
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1 Introduction

Modern human lifestyles tether us to indoor environments for 
more than 90% of our daily routines (Klepeis et al., 2001), significantly 
magnifying the profound impact of indoor microbial exposure on 
individual health and well-being (Sun et al., 2022a). This trend has 
spurred extensive research into the characterization of indoor 
microbial compositions, succession and ecology to better understand 
the microbial interactions between humans and their built 
environment (Adams et al., 2015; Klassert et al., 2021). In the last 
decades, while significant attention has been devoted to indoor 
microbiota in diverse settings including public transportation (Leung 
et al., 2014; Grydaki et al., 2021), hospitals (Oberauner et al., 2013), 
and classrooms (Sun et  al., 2022b), a notable gap remains in our 
perception of on-campus dormitories. Unlike conventional living 
spaces, most dormitories in China are compact apartments 
characterized by high occupancy and limited space. These 
environments, which bring together young individuals for extended 
periods, are likely to significantly influence students’ health (Fu 
et al., 2021).

Microbial genome sequencing has revealed that indoor 
environments harbor a myriad of microorganisms, including diverse 
human-associated taxa such as Propionibacterium, Corynebacterium, 
and Staphylococcus, primarily originating from outdoor air and 
household occupants (Leung et  al., 2014; Wilkins et  al., 2016; 
Richardson Richardson Miles et al., 2019; Young et al., 2023). Building 
factors—such as design, ventilation, and indoor decoration—are crucial 
determinants that contribute to shaping indoor microbial communities 
(Sharpe et al., 2020; Amin et al., 2023; Zhang et al., 2023; Hoisington 
et al., 2023), whereas environmental parameters, including temperature, 
humidity and PM2.5 further influence microbial concentrations (Ye 
et al., 2021a, 2021b). Of particular interest, factors including building 
age and vacuum dust weight have been shown to impact microbial 
composition in dormitories (Fu et al., 2020). Given this, functional 
areas within the same room were postulated to be exposed to drastically 
different microbial communities due to variations in functional areas 
and building elements. However, this hypothesis was supported by 
comparatively few studies (Dunn et al., 2013; Zhou et al., 2023), leaving 
gaps in our understanding of the comprehensive distribution of indoor 
microorganisms across different locations.

Although predominantly present indoor microorganisms are not 
associated with immediate health concerns, certain groups may 
be linked to infection risks (Leung et al., 2019). Early microbiome-
health studies have widely reported the association between indoor 
microbiome exposure and the prevalence of immune diseases such as 
asthma, rhinitis and eczema (Kim et al., 2018; Fu et al., 2023). For 
instance, taxa from distinct phylogenetic classes and derived habitats, 
identified through 16S rRNA amplicon sequencing, exhibit varying 
impacts on asthma symptoms among residents in on-campus 
dormitories (Fu et al., 2021). The indoor environment may further 
amplify the disease risks posed by pathogens (Li et al., 2021). Millions 
of microorganisms, fragments and microbial metabolites present in 
indoor air can facilitate disease transmission when inhaled into the 
human respiratory tract, potentially inducing allergic and 
inflammatory reactions (Qian et al., 2012; Chen Y. et al., 2024). More 
alarmingly, all reported outbreaks of SARS-CoV-2 involving three or 
more individuals occurred indoors, further underscoring the critical 
link between indoor environments and disease transmission (Allen 

and Marr, 2020; Mutsch et al., 2022). Therefore, in-depth research into 
potentially pathogenic microorganisms with unexplored functions 
and impacts in enclosed environments is imperative for enhancing 
indoor environmental quality and public health.

Despite the growing interest in dormitory microbiomes, the impact 
of microenvironmental variations across different functional areas 
within the room on microbial community structures and the prevalence 
of potentially pathogenic microorganisms remains inadequately 
characterized. In this study, we explored the microbial diversity and 
potential pathogens within 18 university dormitories in Shenzhen, 
Guangdong Province, China. Microbial samples were collected from 
four distinct functional areas, including the air conditioning (AC), the 
sink (SN), the toilet (WC), and the floor surface (WL). Utilizing 16S 
rRNA high-throughput sequencing, we  delved into the intricate 
community patterns, assemblages, and networks of the indoor bacterial 
communities at each site. Specifically, we aimed to: (1) elucidate the 
taxonomic diversity of indoor microbiota across various dormitory 
functional areas by revealing the roles of environmental factors and 
assembly processes in shaping these communities, including potential 
pathogens; (2) identify general and location-specific relationships 
between dormitory functional areas and their associated microbiota to 
explain the connectivity among them; (3) evaluate the presence, 
biogeography, and transmission processes of potential pathogen 
communities within dormitories, while cautiously considering their 
health relevance in light of the limitations of 16S rRNA sequencing. Our 
findings will provide a theoretical foundation for enhancing the comfort 
of on-campus dormitories and promoting occupant safety and health.

2 Materials and methods

2.1 Study design and sample collection

A total of 18 student dormitories in Guangdong, China, were 
chosen as sampling locations. Sampling was conducted at four distinct 
functional areas within each room: the air conditioning (AC), the sink 
(SN), the toilet (WC), and the floor (WL) (Figure 1A). These site types 
were selected based on their representation of typical functional areas 
within dormitories and their distinct environmental characteristics 
(e.g., humidity, temperature, airflow, and frequency of human 
contact), which are expected to influence microbial biomass and 
community structure (Supplementary Tables 1, 2). Sterile sampling 
swabs and Beckman Coulter sampling tubes were used to collect dust 
microbial samples. All samples were immediately placed in sterile bags 
and stored at −20°C in a freezer until further analysis, ensuring the 
preservation of sample integrity.

In addition to microbial sampling, environmental parameters 
including temperature (Temp), relative humidity (RH), air velocity (Va), 
floor level (Height), and balcony orientation (Orientation) were 
measured in situ for each room using a TESTO 480 Indoor Comfort 
Meter and a JT-IAQ Indoor Thermal Environment and Air Quality Tester.

2.2 DNA extraction, sequencing and 
bioinformatic analysis

DNA samples were extracted using the Fast DNA Spin Kit for Soil 
(MP Biomedicals, United  States) following the authoritative 
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instructions. The purity and concentration of the DNA were measured 
using a NanoDrop One spectrophotometer (Thermo Fisher Scientific, 
MA, United States) and DNA quality was assessed through 1% agarose 
gel electrophoresis. The V3-V4 hypervariable region of the 16S rRNA 
gene was amplified with the primer set 338F/806R (338F: 
5′-ACTCCTACGGGAGGCAGCA-3′; 806R: 5′-GGACTACHVGGG 
TATCTAAT-3′) (Caporaso et al., 2011; Dai et al., 2022). Libraries were 
prepared using the NEBNext® Ultra™ II DNA Library Prep Kit for 
Illumina® (New England Biolabs, MA, United States) according to the 
manufacturer’s instructions. Due to failures in meeting the standards 
for library construction and the absence of toilet facilities in some 
dormitories, a total of 56 samples (16 AC samples, 17 SN samples, 5 
WC samples, and 18 WL samples) were ultimately sequenced on the 
Illumina Nova6000 platform, yielding 250 bp paired-end reads at 
Guangdong Magigene Biotechnology Co., Ltd. (Guangzhou, China).

Raw 16S rRNA reads of each sample were quality-filtered, 
trimmed, and screened using fastp (version 0.14.1)1 and cutadapt.2 
After quality control, high-quality sequences were processed into 
amplicon sequence variants (ASVs) using the Deblur plugin in the 
QIIME2 platform, with taxonomic classification performed with the 
Silva database (v. 138) (Quast et al., 2012). To ensure comparability 
among samples and mitigate biases arising from discrepancies in 
sequencing depth, sequences were standardized to an even depth 
based on the sample with the lowest number of reads (21,710 
sequences per sample). Rarefaction curves confirmed that this 
threshold retained sufficient diversity for reliable downstream analysis 
(Supplementary Figure S1). Functional Annotation of Prokaryotic 
Taxa (FAPROTAX), based on taxonomic affiliation and curated 
literature, was utilized to annotate the potential pathogenicity of 

1 https://github.com/OpenGene/fastp

2 https://github.com/marcelm/cutadapt/

microbial taxa (Louca et  al., 2016; Labouyrie et  al., 2023). ASVs 
assigned to at least one potentially pathogenic group were extracted 
to construct a community comprising potential pathogenic bacteria.

2.3 Statistical analysis

The vegan package in R (version 4.4.0) was utilized to calculate 
ASV richness and the Shannon index for the measured microbial 
communities (Oksanen et al., 2022). Statistical differences in ASV 
richness across various indoor functional areas were analyzed using 
the non-parametric Kruskal–Wallis test and Dunn’s post hoc test using 
the R package dunn.test. Principal Coordinate Analysis (PCoA) based 
on Bray-Curtis distance was conducted to assess the β-diversity of 
bacterial communities among samples. Analysis of similarity 
(ANOSIM) was applied to test the significance of the community 
differences across various functional areas at a significance level of 
p < 0.05. Furthermore, β-diversity was partitioned into turnover and 
nestedness components using the R package adespatial according to 
the method proposed by Baselga (Baselga, 2010). Linear Discriminant 
Analysis (LDA) coupled with effect size analysis (LEfSe) was 
performed to identify statistically different biomarkers across 
dormitory functional areas using the R package microeco. To address 
group size imbalance, a subsampling procedure was conducted by 
randomly downsampling the larger SN group to match the sample size 
of the WC group. Taxa with LDA scores greater than 4 were visualized 
using bar plots.

Canonical Correspondence Analysis (CCA) was carried out using 
the vegan package to reveal the effects of environmental parameters 
on microbial and potentially pathogenic communities. Mantel test was 
conducted to detect the correlation between the environmental 
variables and microbial communities using the linkET R package. The 
contributions of five ecological processes (homogeneous selection, 
heterogeneous selection, homogeneous diffusion, diffusion limitation, 

FIGURE 1

Dormitory sampling points and microbial composition. (A) Four functional areas within the dormitory: air conditioning (AC), sink (SN), toilet (WC), and 
floor surface (WL). (B) Genus-level bacterial composition across the different functional areas within the dormitory. (C) Genus-level composition of 
potential pathogens in various dormitory locations.
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non-dominated process) to the community structure was explored 
using the iCAMP package (Stegen et al., 2013; Zhou and Ning, 2017; 
Wang et al., 2020).

Co-occurrence networks of microbial and potentially pathogenic 
bacteria were constructed from ASVs present in at least 20% of 
samples based on robust correlations with Spearman’s correlation 
coefficients > 0.6 and false discovery rate-corrected p < 0.01(Guo 
et al., 2022; Yang et al., 2022), using the WGCNA package. The Hmisc 
and igraph packages in R were then utilized to compute the node and 
edge files of the network graph, which were subsequently visualized 
using the interactive platform Gephi (v. 0.10.1).3 The contributions of 
different sampling functional areas to the community composition of 
the floor were predicted with fast expectation–maximization for 
microbial source tracking (FEAST) (Shenhav et al., 2019).

3 Results

3.1 Taxonomic diversity of the dormitory 
bacterial and pathogenic communities

A total of 8,243 Amplicon Sequence Variants (ASVs) were 
recovered across 56 samples. The dataset encompassed bacteria from 
28 phyla, 76 classes, 202 orders, 380 families and 1,052 genera, 
covering a broad taxonomic range and a substantial portion of 
uncultivated microorganisms. At the phylum level, the dormitory 
dataset was dominated by Actinobacteriota (38.79%), followed by 
Proteobacteria (32.41%) and Firmicutes (7.39%) 
(Supplementary Figure S2A). Actinobacteriota was also predominant 
in AC (58.16%) and WL (43.94%), while the abundant phyla at SN 
differed dramatically, with the top three phyla being Proteobacteria 
(50.42%), Actinobacteriota (22.35%), and Patescibacteria (9.20%) 
(Supplementary Figures S2C, S3). At the genus level, Pseudonocardia 
was the common dominant genera widely distributed across all four 
sampling functional areas. Kocuria (15.76%) and Corynebacterium 
(10.56%) featured prominently in WL, while Deinococcus (12.61%) 
dominated in WC and Brachybacterium (8.69%) dominated in AC 
(Figure 1B). These results underscored the substantial differences of 
community composition across functional areas within the dormitory.

To further assess the health risks within the living spaces, the 
presence of potential human pathogenic bacteria was also investigated 
using FAPROTAX. A total of 372 ASVs were predicted as potential 
bacterial pathogens, accounting for 4.5% of all ASV numbers and 
5.24% of total abundance. Among these, 74 ASVs were identified to 
be associated with humans, spanning 6 potential disease groups. The 
most prevalent group was human nosocomial pathogens (HumPN), 
with a relative abundance (RA) of 6.39%, followed by human 
pneumonia pathogens (HumPP) at 5.12%. Other identified categories 
included human septicemia pathogens (HumPS, RA = 1.87%), human 
diarrhea pathogens (HumPD, RA = 0.01%), human gastroenteritis 
pathogens (HumPG, RA = 0.01%), and human meningitis pathogens 
(HumPM, RA = 0.01%) (Supplementary Table  3). HumPN and 
HumPP exhibited significant variations across functional areas. 
Specifically, HumPN was notably enriched in WL compared to WC 

3 http://gephi.github.io/

(Emmeans test, p < 0.001), while HumPP showed a higher abundance 
in WC compared to AC and SN (p < 0.05; Supplementary Figure S4).

The potential human-associated pathogen community was 
assigned to 5 phyla, with the dominant phyla being Proteobacteria 
(85.25%) and Actinobacteria (14.58%) (Supplementary Figure S2B). 
Pathogen phyla distribution showed that Proteobacteria comprised 
the majority of sequences in samples from AC (95.73%), SN (88.86%), 
and WC (97.98%), whereas some variation was observed in WL, 
where Actinobacteriota demonstrated a notable presence (41.46%) 
(Supplementary Figures S2D, S5). Taxonomic annotation results 
further revealed significant changes in genus-level relative abundances 
across functional areas (Supplementary Table 4), with Acinetobacter, 
Corynebacterium and Oligella being the dominant genera in AC, WL, 
and WC, respectively (Figure 1C).

Taxonomically distinct microbial communities exhibited varying 
contributions to different classes of potential human pathogens 
(Figure  2; Supplementary Figure S6). At the phylum level, 
Proteobacteria exhibited markedly high abundance across multiple 
human-associated pathogenic functions, particularly HumPN and 
HumPS. In addition to Proteobacteria, HumPN also received notable 
contributions from Actinobacteria and Bacteroidota 
(Supplementary Figure S6). At the genus level, HumPP was broadly 
distributed, with Acinetobacter, a member of Proteobacteria, showing 
the highest abundance. Notably, Acinetobacter was also the dominant 
contributor to HumPN and HumPS, highlighting its key role as a 
potential pathogen in indoor environments. Other genera, including 
Erysipelatoclostridium, Haemophilus and Campylobacter, were 
primarily associated with HumPD, HumPM, and HumPG, 
respectively (Figure  2). Together, these findings reveal distinct 
taxonomic contributions to the pathogenic potential of 
indoor microbiomes.

3.2 Microbial distribution and diversity 
across dormitory functional areas

Microbial communities, together with human pathogens, exhibited 
distinct patterns of α-diversity across the four dormitory functional 
areas. WL showed the highest ASV richness for both microbial and 
potential pathogenic bacteria, significantly exceeding the other three 
functional areas (p < 0.01; Supplementary Figure S7A). The Shannon 
index further confirmed a more diverse and evenly distributed 
microbiome in WL, with significant differences observed compared to 
AC (p < 0.01; Supplementary Figure S7B). To further compare bacterial 
community structures across functional areas, Principal Coordinates 
Analysis (PCoA) was conducted using a Bray-Curtis distance matrix 
(Figure  3A). The first two PCoA axes explained 43% of bacterial 
community variation, exhibiting a moderate yet significant 
dissimilarity across functional areas, which was supported by ANOSIM 
(Supplementary Figure S8A, R = 0.56, p = 0.001). Minor differences in 
microbial community composition were observed between WC and 
AC, whereas samples from WL and SN were well separated. To 
compare, the β-diversity across different dormitory rooms failed to 
present clear clustering (Supplementary Figure S9), indicating that the 
different functional areas of dormitory were more appropriate for 
understanding microbial distribution patterns. Similarly, significant 
separation was observed in the pathogenic communities across 
functional areas (Supplementary Figure S8B, ANOSIM R = 0.36, 
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p = 0.001), with samples from WL and SN exhibited greater dispersion, 
indicating a higher degree of community heterogeneity (Figure 3D).

Analysis of shared and unique ASVs revealed that only 7.73% were 
shared among all four functional areas, suggesting these ASVs exhibited 
stronger environmental adaptability, allowing them to survive and 
thrive across diverse dormitory environments (Figure 3B). The number 
of ASVs specific to WL (n = 2088) was 2 to 4 times higher than those 
at other functional areas, consistent with the highest microbial richness 

observed in WL. The Venn diagram further described the coexistence 
pattern of human-associated pathogens within the room, with WL 
containing the highest number of unique ASVs (n = 12; Figure 3E).

As clustering by sampling functional areas was evident in the 
β-diversity analysis, we further applied the linear discriminant analysis 
effect size (LEfSe) tool to identify site-specific biomarkers, with LDA 
scores of 4 or more presented. To mitigate the potential impact of 
unbalanced group sizes, we conducted a random subsampling analysis 

FIGURE 2

Relationships between human pathogen groups and bacterial genera. Circle size represents abundance, and different colors indicate distinct human-
associated pathogenic functional groups. Abundance values were transformed using the ln(x + 1) function. (AniP, animal parafunctional areas or 
symbionts; HumPA, human pathogens all; HumPN, human pathogens nosocomial; IntCelP, intracellular parafunctional areas; HumPP, human 
pathogens pneumonia; PlaP, plant pathogens; HumPS, human pathogens septicemia; InvP, invertebrate parafunctional areas; HumPD, human 
pathogens diarrhea; HumPG, human pathogens gastroenteritis; HumPM, human pathogens meningitis).
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by downsampling the SN group to match the smaller WC group 
(Supplementary Figure S10). The specialized bacterial community at the 
four sampling functional areas diverged markedly, with greater numbers 
of species enriched at significant level in SN and WL. In SN, 
Proteobacteria was significantly enriched across multiple taxonomic 
levels, while WL showcased a prevalence of Firmicutes and WC was 
mainly characterized by Deinococcota from phylum to species levels 
(Figure 3C; Supplementary Figure S10A). In contrast to these cases 
where a single phylum dominated one site throughout the taxonomic 
hierarchy, Actinobacteriota at different taxonomic levels exhibited 
notable biomarker significance in functional areas. For instance, families 
Corynebacteriaceae and Micrococcaceae were dramatically enriched in 
WL group, while Intrasporangiaceae showed significant enrichment in 
SN group. For potential pathogenic taxa, no biomarkers in the AC 
group had LDA scores above 4, thus no significant pathogens were 
plotted for this group (Figure 3F). The significant presence of multiple 
Proteobacteria families, such as Comamonadaceae in SN and 
Alcaligenaceae in WC, indicated a specific environmental adaptation of 
different potentially pathogenic Proteobacteria within the dormitory 
(Supplementary Figure S10B).

3.3 Environmental drivers of bacterial 
community in the dormitory

We next conducted β-partitioning analysis to decompose the 
overall β-diversity into turnover and nestedness components. 
According to the partitioning results, the variation in β-diversity 
among assemblages of the indoor microbial and potentially 

pathogenic community was mainly explained by the species turnover 
process (microorganisms: βsim = 90.6%; pathogenic bacteria: 
βsim = 85.6%) (Figures  4A,D). The high proportions of species 
turnover component across all dormitory functional areas further 
indicated that such processes dominantly structured both the 
microbial and the pathogenic taxa (Supplementary Figures S11, S12). 
Notably, the relative contribution of the nestedness component was 
slightly higher in AC and SN, but neither exceeded 20% 
(Figures 4B,E), suggesting that nestedness process remains a minor 
contributor to β-diversity overall.

The influences of environmental factors on the β-diversity of 
microbial and pathogenic communities were explored by performing 
CCA ordination (Figures  4C,F). The first two ordination axes 
explained a substantial portion of the taxonomic variation within the 
microbial and pathogenic communities across the 56 samples, 
accounting for 47.4% of the variation in microbial communities and 
66.6% in pathogenic communities. Temperature (Temp, R2 = 0.82, 
p < 0.01), relative humidity (RH, R2 = 0.58, p < 0.01) and orientation 
(R2 = 0.36, p < 0.01) were significantly related to shifts in the overall 
bacterial community. In contrast, the potential pathogen community 
only exhibited a significant correlation with temperature (R2 = 0.94, 
p < 0.01) but showed no correlation with height, RH, air velocity (Va), 
or orientation (p > 0.05).

The CCA analysis of bacterial taxa at different sampling 
functional areas also revealed site-specific environmental responses. 
Temperature was found to be correlated with microbial community 
composition at most functional areas (AC, SN, and WL). Humidity 
was another significant factor for microbial communities in SN and 
WL. Additionally, the microbial community in AC responded to Va; 

FIGURE 3

Diversity patterns and species composition of the overall bacterial community and potential pathogens in different functional areas of the dormitory. 
(A) PCoA analysis of bacterial communities across different functional areas; (B) Venn diagram showing shared species; (C) LEfSe analysis of bacterial 
communities; (D) PCoA analysis of potential pathogen communities across different functional areas; (E) Venn diagram showing shared species of 
potential pathogens; (F) LEfSe analysis of potential pathogen communities.
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in SN, to orientation; and in WL, to height (Supplementary Figure S13). 
No significant correlations were found for the microbial community 
in WC with any environmental factor. Similarly, for pathogen 
communities at functional areas, the CCA results also indicated a 
significant association between temperature and the pathogenic 
communities in AC, SN, and WL. SN samples were additionally 
related to levels of sunlight exposure (orientation) and height 
(Supplementary Figure S14). Among the correlated environmental 
variables, room temperature exhibited the strongest correlation with 
the potential pathogen community in dormitory rooms, which was 
further confirmed by correlation analysis using Mantel tests 
(Supplementary Figures S15, S16).

3.4 Co-occurrence patterns and their 
topological features in the dormitory

Co-occurrence networks were constructed to identify potential 
microbial interactions within and between different dormitory 
functional areas. Networks for all samples were established based on 
Spearman correlation with a threshold of |r| > 0.6 and p-value < 0.01 
(Hartman et al., 2018; Figure 5; Supplementary Figure S17). A series 
of key topological features were calculated, including network 
density, network diameter, average path length and degree 
(Supplementary Table 5). The entire microbial network consisted of 
1,670 nodes linked by 15,808 edges, with all connections being 
positively correlated (Supplementary Figure S17A), indicating 

extensive cooperative interactions among microbial taxa. The 
network, comprising 93 modules, was highly modular with the top 
five modules accounting for 83.3% of all nodes. Among these major 
modules, 82.4% of the nodes belonged to the phyla Proteobacteria, 
Actinobacteriota, Firmicutes, Bacteroidota, and Deinococcota. 
Actinobacteriota showed the highest presence in all but Module II, 
whereas other phyla like Patescibacteria and Deinococcota varied in 
abundance between modules (Supplementary Table 6). Similarly, the 
pathogen-specific co-occurrence network exhibited a robust 
interconnected structure, with all connections displaying positive 
correlations (Supplementary Figure S17B). This network, with fewer 
nodes, exhibited high modularity (0.444) and a long average path 
length (APL) of 12, indicating that the indoor pathogen network 
comprised bacteria with significant functional or ecological niche 
differences and relatively weak interactions among members. 
Notably, Proteobacteria remained a major phylum within the top five 
modules, reflecting its significant role in shaping pathogen 
community composition (Supplementary Table 7).

Co-occurrence networks for different pairs of functional areas 
(AC-SN, AC-WC, AC-WL, WC-SN, WL-SN, and WC-WL) were also 
constructed to explore potential relationships between dormitory 
functional areas. Across all pairwise co-occurrence networks 
(Figure 5), nodes were largely associated with five main phyla, namely 
Proteobacteria, Actinobacteriota, Deinococcota, Firmicutes and 
Bacteroidota, though the proportions of these phyla varied markedly 
across different pairwise functional areas. By investigating the 
topological features within each network, we  observed that 

FIGURE 4

Beta diversity partitioning and correlation analysis of dormitory microorganisms and potential pathogens with environmental factors. (A) Ternary plot 
showing beta diversity partitioning for the overall bacterial community; (B) Proportions of different dissimilarity components in the beta diversity of the 
overall bacterial community; (C) CCA analysis of environmental factors affecting bacterial communities; (D) Ternary plot showing beta diversity 
partitioning for potential pathogen communities; (E) Proportions of different dissimilarity components in the beta diversity of potential pathogen 
communities; (F) CCA analysis of environmental factors affecting potential pathogen communities.
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WL-involved networks (SN-WL, AC-WL, and WC-WL) exhibited 
higher node and edge counts compared to WL-excluded networks. 
Furthermore, the WL-SN and AC-WL networks displayed the two 
highest Average Degree values (39.606 and 32.965, respectively) and 
the two lowest Average Path Lengths (3.354 and 3.585, respectively). 
These metrics indicated a more compact and tightly linked 
relationship among microbial communities composed of floor 
microbes compared to other non-WL networks. Overall, the 
WL-involved networks facilitated a more integrated and dense 
microbial community, demonstrating that floor-associated microbes 
possess greater connectivity and cohesion than those found in other 
dormitory functional areas.

Source contribution analysis (SCR) was further applied to reveal 
the connectivity among microbial taxa at functional areas (AC, WC, 
and SN) and those present on the floor (WL) 
(Supplementary Figure S18). For bacterial communities, WL was 
mainly influenced by WC and AC, which accounted for 26.83 and 
23.59% of the variation, respectively, whereas SN had a smaller 
influence with only 5.6%. For pathogens, the influence of all functional 
areas on WL-associated taxa decreased significantly, with AC 
dropping to 6.37%, SN to 4.32%, and WC to 4.70%.

3.5 Assembly process of bacterial 
community in the dormitory

To further elucidate the mechanisms driving the microbial 
community assembly, iCAMP, an approach that includes null models 
as its methodology to distinguish between different community 
assembly processes, was employed. Stochastic processes significantly 

influenced the assembly of bacterial community in the dormitory 
(86.28%), with dispersal limitation being the dominant process 
(58.05%) (Figure  6A). Deterministic processes also mattered in 
shaping the microbial communities (13.72%), where homogeneous 
selection played a pivotal role (12.64%). Although the relative 
influence of assembly processes varied spatially within the dormitory, 
stochastic processes consistently contributed a significant portion of 
the community assembly. Specifically, AC, SN, and WC were 
primarily influenced by dispersal limitation (contributed 58.75, 50.55 
and 59.00%, respectively), whereas diversification drift was more 
pronounced in the WL samples (51.43%). The same stochastic-
process-dominating pattern was observed in the bacterial pathogens 
(91.72%) (Figure 6B), with drift being the predominant stochastic 
process explaining the pathogen community variation (72.16%). 
Pathogens in WC group exhibited the least influence from 
deterministic processes, whereas AC samples were more obviously 
affected, particularly by homogeneous selection. However, in none of 
the four indoor functional areas did the contribution of deterministic 
processes exceed 15%. These results reflected that indoor 
microorganisms and pathogens are more often subjected to stochastic 
processes, mainly controlled by dispersal limitations and 
ecological drift.

4 Discussion

The crowded and enclosed nature of on-campus dormitories, 
serving as the primary place for students’ daily activities, has fostered 
the accumulation and spread of microorganisms and pathogens 
within this distinct indoor ecosystem, which potentially influence 

FIGURE 5

Co-occurrence network analysis of bacterial communities between different dormitory functional areas. Nodes represent individual ASVs, with node 
size positively correlated with node degree, and colors indicating different modules. Edges represent significant Spearman correlations with ρ > 0.6 and 
p < 0.01. Red lines indicate positive correlations, and green lines indicate negative correlations. (A) AC-WL, (B) WL-SN, (C) WC-WL, (D) AC-SN, (E) AC-
WL, (F) WC-SN.
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human health. Accordingly, our study not only explored the spatial 
patterns of indoor microbial communities but also characterized the 
distributions and diversity of potential pathogenic communities to 
enhance our understanding of public health risks.

Studies from university dormitories have revealed that indoor 
environments often harbor unique and diverse microbiomes (Wu 
et  al., 2021). In this study, the highest relative abundances 
corresponded mainly to the phyla Actinobacteriota and Proteobacteria 
as well as a subset of bacterial genera such as Pseudonocardia and 
Kocuria, which aligns well with previously reported indoor microbial 
compositions (Ye et al., 2021a; Ruiz-Gil et al., 2020; Madsen et al., 
2023; Chudzik et al., 2024). Occupants, by releasing human-associated 
microorganisms and transporting microbes from outdoor air, serve as 
a vital source of the indoor microbiome. Therefore, it is not surprising 
that genera commonly found on human skin and in the respiratory 
tract, namely, Staphylococcus and Corynebacterium, were prominently 
observed in our study (Kolikonda et al., 2017; Fu et al., 2020). Given 
the typically dense and enclosed nature of university dormitories, an 
accumulation of diverse human-related microorganisms is likely to 
occur if not periodically diluted over time (Pausan, 2022). This 
signifies the necessity of ensuring proper ventilation to facilitate the 
influx of fresh outdoor air.

Beta-diversity analysis detected little difference in compositions 
among different dormitory rooms (Supplementary Figure S9), 
suggesting that the impact of occupant characteristics and activities 
on microbial communities might be  negligible compared to the 
distinct microenvironmental factors present in different functional 
areas (Figure 3A). Prior studies have demonstrated that occupant 
properties and behaviors may significantly shape microbiomes of 
indoor environments (Cao et al., 2021; Amin et al., 2023; Toyoda et al., 
2023). The discrepancy might stem from the relatively fixed activity 

range, small age gap and uniform living habits among dormitory 
members, resulting in minimal individual characteristic differences 
between dormitories compared to other indoor environments with 
different functions, such as educational facilities and home bedrooms. 
In contrast, the unique microenvironmental characteristics of 
functional areas within the dormitory fostered notable variations in 
microbial community composition and function, warranting the 
investigation of bacterial community heterogeneity across 
functional areas.

The microbial diversity patterns varied greatly among the four 
sampling functional areas, with the abundant microbial phyla on the 
floor showing good congruence with that of the entire dormitory. The 
floor environment was demonstrated to act as the repository of indoor 
microorganisms (Gupta et al., 2019), where the highest alpha diversity 
was detected (Supplementary Figure S7). The Venn diagram and Lefse 
analysis further exhibited that there were relatively more unique 
species and significantly enriched indicator species in the WL group 
(Figure 3). The high microbial diversity and high proportion of unique 
species detected on the floor implies that the floor environment may 
heavily harbor various ubiquitous and endemic bacterial taxa. The 
potentially pivotal role of floor microbes in indoor microbial 
communities was further confirmed by network analyses (Figure 5). 
The WL-involved pairwise co-occurrence networks exhibited higher 
node and edge counts, along with greater average degree values and 
shorter average path lengths. These findings collectively suggest that 
the floor environments harbor highly complex and interconnected 
microbial communities, demonstrating the central role of floor 
microbial taxa and their transmission relationships with microbes in 
other functional areas. This was further supported by the results of 
source contribution analysis, which calculated the influence and 
migration of microbial communities from functional areas in 

FIGURE 6

The relative contribution of different processes to the assembly of (A) the overall bacterial taxa and (B) potential pathogen communities.
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dormitory rooms to floor microbial taxa. The analysis indicates that 
the toilet and air conditioning are non-negligible interconnection of 
floor microbial community in dormitory rooms 
(Supplementary Figure S18).

The species turnover component explained over 90% of bacterial 
community dissimilarity (Figures  4A,B), consistent with its 
dominance across diverse ecosystems (Beca et al., 2017; Soininen 
et al., 2018). This indicates strong compositional complementarity 
among dormitory functional areas, reflecting distinct microbial 
assemblages (Arce-Peña et  al., 2022). Stochastic processes 
predominantly governed community assembly (Figure 6), in line 
with previous research (Bahram et al., 2016; Chen et al., 2019; Zhou 
et al., 2020), suggesting limited deterministic influence at fine spatial 
scales (Roguet et al., 2015; Thompson et al., 2017). Notably, even 
though deterministic processes contributed less overall (~13%), their 
ecological relevance should not be underestimated. In particular, 
homogeneous selection in AC samples suggests that specific 
environmental conditions, such as stable temperature or airflow 
patterns in air-conditioned areas, may reflect consistent 
environmental filtering, potentially enriching specific taxa. Among 
environmental variables, room temperature emerged as the major 
contributor to indoor microbial composition (Figure  4C; 
Supplementary Figure S13), possibly explained by its role in 
modulating physical, chemical and biological processes in ecosystems 
(Ficklin et al., 2023).

Shifts in bacterial communities can alter ecosystem functions. 
Therefore, risk assessments of microbial communities, especially 
those involving pathogenic microbes, are particularly important 
due to their threats to public health. In this study, a total of 74 
potential human-associated bacterial pathogens were detected, 
accounting for 0.9% of total ASVs. Among these, the HumPN 
(human-associated potential nosocomial pathogens) group 
emerged as the most prevalent type, followed by HumPP (human-
associated potential pneumonia pathogens). These results indicate 
the presence of genera that have been linked to clinical infections; 
however, caution is warranted in interpreting health risks solely 
based on genus-level taxonomy or FAPROTAX predictions, as 
virulence can vary greatly among strains within the same genus. 
Notably, several genera, including Acinetobacter, Corynebacterium, 
Prevotella, and Moraxella, ranked among the top  10 most 
abundant in the inferred pathogenic community. Among these, 
Acinetobacter was the most prevalent genus in the pathogenic 
community and is frequently encountered in hospital indoor air, 
where it is associated with various nosocomial infections (Wu 
et al., 2022; Chawla et al., 2023). In our study, Acinetobacter was 
particularly recovered in air conditioning systems, which play a 
crucial role in indoor air circulation, suggesting that these units 
may act as reservoirs or vectors for clinically relevant bacteria.

While functional validation of pathogenicity requires targeted 
molecular assays, such as qPCR or shotgun metagenomics for 
virulence gene detection, the observed patterns highlight the need to 
integrate air conditioning disinfection into public health protocols. 
The diversity, assemblages, and interactions of these putative 
pathogenic genera closely mirrored those of the broader microbial 
community. However, canonical correlation analysis and Mantel tests 
revealed that room temperature exerted a stronger influence on the 
pathogen-associated community structure across different functional 
areas within the indoor environment (Figure  4F; 

Supplementary Figures S14, S16). This further supports the role of 
temperature in pathogen survival and proliferation in both natural 
and built environments (Wu et  al., 2019; Hernández-Cabanyero 
et al., 2020; Gottel et al., 2024; Chen D. V. et al., 2024). Given the 
sensitivity of pathogens to temperature changes, indoor climate 
control, particularly temperature regulation and AC system 
maintenance, should be  considered an essential component of 
strategies to manage microbial exposure and promote indoor 
environmental health (Song et  al., 2022; Carrazana et  al., 2023; 
Raymenants et al., 2023).

This study provides valuable insights into how functional areas 
impact indoor microbiomes in hot and humid climates. However, 
several limitations should be considered to enhance the robustness 
of the findings. First, the relatively small sample size (n = 56) and 
the snapshot design of this study limited the statistical power and 
generalizability of our findings, particularly regarding the dynamic 
nature of microbial communities. Given that room temperature 
emerged as a key environmental determinant influencing microbial 
distribution, seasonal variations are likely to play a significant role 
in shaping microbial and pathogen dynamics (Bowd et al., 2022; 
Solanki et  al., 2024). Therefore, future studies incorporating 
seasonal and long-term variations with larger sample sizes is 
necessary to provide a more comprehensive view of microbial 
evolution and reveal potential cyclical patterns in pathogen 
prevalence. Second, sample sizes were notably uneven across 
different functional areas, especially for the toilet (WC) group, 
which contained only five samples. This imbalance, driven by 
sequencing failures and the absence of toilet facilities in some 
dormitories, may have compromised the statistical robustness of 
group comparisons and introduced potential biases in analyses such 
as ANOVA and LEfSe. To mitigate this issue, we  employed 
non-parametric methods, which are more resilient to unequal 
group sizes and distributional assumptions. Third, the exclusive 
reliance on FAPROTAX predictions for pathogen identification 
introduces some uncertainty in the results. A more integrated 
approach combining both culture-dependent techniques and 
advanced bioinformatic tools will be  essential for a fuller 
understanding of pathogenic communities.

5 Conclusion

This study provides a comprehensive analysis of the 
distribution, environmental drivers, and assembly mechanisms of 
microbial and pathogenic communities across distinct functional 
areas within university dormitories. The results indicate that 
dormitory microbiomes are predominantly composed of human-
associated taxa, such as Staphylococcus, Kocuria, and 
Corynebacterium, with significant compositional differences 
across various functional areas. Notably, the prevalence of 
Acinetobacter, a highly pathogenic genus linked to multiple 
human infections, raises important public health concerns. 
Network analysis reveals robust interactions between floor 
microbial communities and those from other functional areas, 
underscoring the central role of floor surfaces in fostering 
connectivity throughout the indoor environment. These findings 
underscore the critical need for improved ventilation and 
sanitation practices in university dormitories, with broader 
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implications for public health risk assessment and indoor 
microbial exposure management.
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