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Antibiotic resistance (AR) presents a global health challenge, necessitating

an improved understanding of the ecology, evolution, and dissemination of

antibiotic resistance genes (ARGs). Several tools, databases, and algorithms

are now available to facilitate the identification of ARGs in metagenomic

sequencing data; however, direct annotation of short-read data provides

limited contextual information. Knowledge of whether an ARG is carried in

the chromosome or on a specific mobile genetic element (MGE) is critical

to understanding mobility, persistence, and potential for co-selection. Here

we developed ARGContextProfiler, a pipeline designed to extract and visualize

ARG genomic contexts. By leveraging the assembly graph for genomic

neighborhood extraction and validating contexts through read mapping,

ARGContextProfiler minimizes chimeric errors that are a common artifact of

assembly outputs. Testing on real, synthetic, and semi-synthetic data, including

long-read sequencing data from environmental samples, demonstrated that

ARGContextProfiler o�ers superior accuracy, precision, and sensitivity compared

to conventional assembly-based methods. ARGContextProfiler thus provides a

powerful tool for uncovering the genomic context of ARGs in metagenomic

sequencing data, which can be of value to both fundamental and applied

research aimed at understanding and stemming the spread of AR. The source

code of ARGContextProfiler is publicly available at GitHub.
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1 Introduction

Antibiotic resistance (AR) presents a significant global health threat, with an estimated

1.27 million associated deaths globally in 2019 (Naghavi et al., 2024). Horizontal gene

transfer (HGT) of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs)

is a fundamental ecological and evolutionary process contributing to the spread of AR

across different organisms and environments (Woodford et al., 2011). To develop effective

interventions in a “One Health" context, which considers the interconnectedness of

human, animal, and environmental health, it is crucial to characterize the evolution and

transmission of ARGs within and between associated microbial communities (Aslam et al.,

2021; Bustamante et al., 2025).
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FIGURE 1

Genomic contexts surrounding the OXA-10 ARG from a hospital

sewage sample (ERR1191818), illustrating multiple contexts with

MGEs (e.g., transposases) and co-occurring ARGs. The 1,000 bp

upstream and downstream regions were identified using

ARGContextProfiler, annotated with Prokka, and visualized with

Clinker (Seemann, 2014; Gilchrist and Chooi, 2021).

Methods for characterizing ARGs across One Health-

relevant ecosystems; particularly clinical, farm, and broader

environmental settings, are needed to identify patterns and trends

and inform policy and practice aimed at stemming the spread of

AR (Berendonk et al., 2015; Larsson and Flach, 2022). The genomic

elements with which ARGs are associated, such as chromosomes,

plasmids, or genomic islands, along with neighboring genes,

significantly influence their function, regulation, evolution, and the

likelihood of undergoing HGT (Aravind, 2000; De and Babu, 2010;

Juhas et al., 2009). Therefore, tools that support the systematic

exploration of the ARGs in diverse microbial ecosystems, including

human and animal microbiomes, agricultural soil, and wastewater,

are essential for understanding and mitigating the spread of AR.

Metagenomics provides a means of directly sequencing the

collective DNA from a microbial community, offering a more

comprehensive view and allowing simultaneous identification

and quantification of taxa, ARGs, and other functional genes

of interest in a given sample (Hugenholtz et al., 1998; Olsen

et al., 1986; Cross et al., 2019; Nogueira and Botelho, 2021). For

example, metagenomic analysis of sewage provides a means of

profiling ARGs carried across communities served by a particular

wastewater treatment plant and holds promise as a monitoring

tool that can reveal insightful trends to inform and assess policy

interventions aimed at stemming the spread of AR (Bengtsson-

Palme et al., 2023; Pruden et al., 2021; Hendriksen et al., 2019).

However, genomic context is typically lacking in metagenomic

analysis of ARGs. Genomic context refers to the neighboring

genetic material present alongside an ARG in a metagenomic

sample, which can include additional ARGs, regulatory sequences,

and factors influencing gene mobilization. Understanding these

genomic neighborhoods is crucial because they drive co-resistance

and cross-resistance patterns, ultimately shaping the mechanisms

of ARG selection, mobility, and persistence, insights that are vital

for designing effective intervention strategies at both local and

global scales (Munk et al., 2022) (Figure 1).

Short-read sequencing remains the dominant approach in

metagenomics due to its ability to achieve deep sequencing, along

with its cost-effectiveness and high throughput, constituting the

bulk of the data available today (Dubey et al., 2022). However,

due to the short length of these reads, direct identification of

specific ARGs genomic contextual information from these reads

is generally infeasible (Arredondo-Alonso et al., 2017; Maguire

et al., 2020). One approach to obtain contextual information is to

reconstruct the hundreds of millions of short reads into longer

stretches, called contigs (Ayling et al., 2020; Zhang et al., 2023).

However, assembly can be extremely computationally demanding

and confounded by various aspects of the data. For example, highly

similar ARG variant sequences that occur in multiple chromosomal

and MGE contexts introduce ambiguity that hinders the ability

to accurately reconstruct their surrounding sequences (Abramova

et al., 2024). Long-read sequencing technologies, like Oxford

Nanopore and PacBio single-molecule real-time sequencing, are

increasingly used for metagenomics and can provide more

comprehensive contextual profiling of the ARGs (Yorki et al.,

2023). However, these technologies have limitations, including

higher error rates, and, lower throughput, restricting their

widespread adoption in metagenomic studies.

Many tools have been developed to assemble short-read

sequencing data from metagenomic samples, most of which use

variants of de Bruijn graphs approach to handle large amounts

of data in an efficient way (Zhang et al., 2023). Subsequently,

the tools traverse these graphs and identify the most probable

path representing a contig. Converting a graph path into a contig

is not a trivial task. Because metagenomic data sets typically

contain an unknown number of species with unknown abundance

distributions, related species sequences can carry similar sets of

k-mers resulting in complex assembly graphs. This is further

complicated by conserved repetitive regions.

Assembling conserved regions that can occur in several

different genomic contexts typically results in highly complex

branched assembly graphs, which makes traversing the graphs

difficult. This is generally solved by splitting the graph into multiple

short contigs. For metagenomic analysis targeting ARGs, this

means that sometimes all contextual information regarding the

taxonomic origin or mobility of a gene will be lost (Bengtsson-

Palme et al., 2017). ARGs constitute a type of genomic feature that

is particularly likely to be fragmented in metagenomic assemblies,

as they are often present in multiple contexts, can be surrounded

by various forms of repeat regions, and can exist on plasmids with

varying copy numbers (Abramova et al., 2024).

To tackle these challenges, exploring the intermediate assembly

graph generated during metagenomic assembly could potentially

be a sensitive method for identifying and analyzing key ARGs

within microbial communities. This approach of examining the

assembly graph before its conversion into linear contigs has

shown promise in tasks such as resolving closely-related strains,

SNP calling, and rapid gene homology searches in complex

metagenomes (Quince et al., 2021; Alipanahi et al., 2020; Rowe

and Winn, 2018). For example, graph-based genomic context

analysis tools, likeMetaCherchant, often adopt a localized assembly

strategy (Olekhnovich et al., 2018). This involves identifying reads
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and k-mers linked to target genes, followed by constructing a local

de Bruijn graph to represent the gene’s vicinity. While effective

for highlighting the diversity of the query genes, these methods

may not fully capture the broader gene neighborhoods. Other

techniques construct the entire assembly graph first, then isolate

the query neighborhood, either manually through scaffolding or

by automated subgraph extraction methods, such as those used

in Spacegraphcats (Brown et al., 2020). However, these extracted

subgraphs often include numerous potential paths, lacking a

straightforward way to distinguish actual genomic neighborhoods

from false chimeric paths. This challenge is particularly notable

for mobile ARGs, which can exist in multiple genomic contexts

and are frequently linked to repetitive sequences that are hard

to assemble. Another approach, Sarand, addresses these issues by

utilizing homology searches to explore genomic neighborhoods,

combined with coverage-based thresholds to filter out chimeric

paths (Kafaie et al., 2023). However, this method has limitations,

such as its reliance on heuristic-based graph aligners that might

overlook valid genomic paths.

Here we introduce ARGContextProfiler as a means of

addressing the challenge of precisely extracting and quantifying

valid genomic contexts of ARGs from metagenomic data.

This pipeline is specifically engineered to derive genomic

contexts of ARGs from metagenomic assembly graphs, enabling

a comprehensive assessment of their potential association

with pathogens and mobility. ARGContextProfiler employs a

sequence homology-based method to pinpoint paths in the graph

corresponding to a query ARG, encompassing all possible local

upstream and downstream regions. It then implements a series of

filters corroborating read pair consistency and variations in read

coverage to eliminate chimeric neighborhoods. We rigorously

tested the pipeline’s efficacy in reconstructing ARG genomic

contexts against the traditional metagenomic assembly process.

Our validation involved running ARGContextProfiler on highly

complex synthetic metagenomic datasets (CAMI) where the

source genomes are known (Sczyrba et al., 2017). We also ran the

pipeline on a semi-synthetic dataset (an in-silico spiked human

fecal metagenomic sample) as well as on reads from wastewater

treatment plants (WWTP) and hospital sewage metagenomes, and

compared the genomic contexts captured from these samples to

those obtained using standard approaches.

2 Materials and methods

2.1 Pipeline overview

ARGContextProfiler processes paired-end short reads as input,

performs quality control of the reads, and uses metaSPAdes to

generate assembly graphs (Nurk et al., 2017) (Figure 2). The query

gene(s) are then mapped to the nodes of the assembly graphs and

grouped based on their mapped locations. Each individual instance

of the query gene is identified by traversing the graph and extracting

the path that represents the gene. For each gene instance, the

pipeline retrieves neighboring upstream and downstream regions

of the gene up to a user-defined length by searching the graph

using the gene path as a seed. Finally, the genomic contexts are

constructed and outputted, providing a comprehensive view of the

gene’s flanking regions.

2.2 Read preprocessing and graph
generation

The pipeline begins by trimming and performing quality

control on the raw short reads using fastp (Chen et al., 2018).

Following this, an assembly graph is generated using metaSPAdes

with default settings and an overlap length of 55 bp. The graph

is represented in .fastg format, which provides the sequences of

the nodes along with their corresponding overlaps, depicted as

edges connecting them. Unlike conventional graphs, the nodes

in an assembly graph represent unitigs or DNA segments, each

with 3’ and 5’ ends, giving them directional properties. The graph

essentially illustrates which ends of neighboring segments are

connected, meaning these segments share an overlapping sequence

at their prefixes and suffixes.

If query gene(s) are provided, they are mapped to the nodes

of the assembly graph using DIAMOND with highly sensitive

alignment settings (95% identity) (Buchfink et al., 2015). The

mapping is then filtered based on the following condition: if a node

has multiple different gene alignments within 100 bp of each other,

only the alignment with the lowest e-value is retained. This filtering

results in a set of nodes that are mapped to the query gene. If no

query gene is provided, the database of ARGs, deepARG-DB is used

to map all ARGs to the graph (Arango-Argoty et al., 2018).

2.3 Gene path annotation

ARGs in the sample are annotated as a sequence of nodes

representing a gene path in the assembly graph (Algorithm 1). The

process begins by evaluating the connected components (CC) of the

graph to ensure efficient traversal. A CC is defined as a subgraph

where any two nodes are connected by a path and no node is

connected to nodes outside the component. The coverage of a CC

for an ARG is calculated by summing the lengths of all regions

that align with the ARG across the entire CC. Only nodes of the

CCs that have coverages > 60% of the lengths of the ARGs will

be selected as “seed nodes” for gene path extraction. Thus, paths

that do not cover a significant portion of the ARGs will not be

traversed, ensuring the quality of the match, and at the same time,

significantly speeding up the computation by avoiding traversal of

paths that are unlikely to produce quality gene paths. Note that

the 60% coverage requirement is set as default and can be changed

depending on users’ specific research needs.

Next, for all the seed nodes selected, a recursive depth-first

search (DFS) is performed from each seed node to extract potential

gene paths from the graph. The traversal is controlled by the

following stopping conditions:

1. Sequence gap limit: As nodes are added to the path, if a node

does not have homology to the query gene, its entire length

is counted toward the cumulative gap. If the cumulative gap

of consecutive nodes without homology exceeds a predefined

threshold of MAX_SEQ_GAP, the traversal of that path is
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FIGURE 2

ARGContextProfiler workflow. The pipeline takes paired-end reads and query gene(s) as input. (1) Reads undergo quality control, and (2) an assembly

graph is generated. (3) Query genes are mapped onto the graph, and representative gene paths are identified and annotated. (4) Genomic contexts

surrounding each gene path are extracted, and (5) the contexts are filtered through read mapping.

terminated. For instance, in Figure 3, path 1→ 2→ 3 is not

included as a valid gene path because the gap between nodes

2 and 3 exceeds 1,000 bp. Additionally, for nodes that have

partial alignment with the query gene, their unaligned portions

(either suffix or prefix) also contribute to the cumulative gap.

For example, in the path 1 → 2 → 4 → 5 → 6,

the gaps are calculated as follows: the unaligned end of node

1, plus the unaligned beginning of node 2 before the aligned

region starts; the unaligned end of node 2 after the alignment

finishes, plus the entire sequence of node 4 and 5 (since they

have no homology with the query gene), plus the unaligned

beginning of node 6 before the alignment starts, etc. These

individual gaps are summed to determine the total gap size.

Since none of the individual gaps or their cumulative sum exceed

MAX_SEQ_GAP, it is considered a valid gene path representing

the ARG.

2. Non-homologous node limit: if more than 10 consecutive

nodes (i.e., MAX_GAP_NODE = 10) in the path do not map

to the reference gene, the traversal is halted to ensure the path

is not overly fragmented. This may also indicate that the end

of the gene has been reached within the sequence, making

further traversal unnecessary. This condition prevents excessive

branching and potential memory overload, leading to a more

efficient exploration of gene paths.

After extracting the gene paths, paths that are subsets of others

are removed. For each remaining gene path, the gene coverage is

calculated by summing the aligned regions from each node along

the path. This total alignment length represents the cumulative

coverage of the path. If the ratio of this coverage length to the total

length of the query gene does not reach a predefined threshold

of GENE_COV (default is 60%), the path is excluded, as it does

not represent a sufficiently significant portion of the gene. The

remaining gene paths are clustered using MMseqs2 (95% identity

and 95% query coverage) to eliminate redundancy and ensure

that the pipeline does not process the same gene multiple times

for the downstream contextual analysis (Steinegger and Söding,

2017).

2.4 Genomic contexts extraction

To extract the flanking regions, i.e., genomic contexts, of the

query gene in the assembly graph, a DFS is used to identify all

possible upstream and downstream paths for each representative

gene instance (Algorithm 2). These genomic contexts are explored

up to a user-defined threshold (CONTEXT_LEN) on both sides of

the gene path.

For a given gene path, such as x → y → z, the process

begins by exploring upstream paths from the start node x. Since the

assembly graph is directed, a path from a+ to b- (indicating the 3’

end of node a connected to the 3’ end of node b, in reverse) implies

a reciprocal path from b+ to a-. This directionality is leveraged to

extract upstream paths by traversing from the complement side of

node x, capturing all possible branches. The traversal is controlled

by two stopping conditions:

1. The path reaches the CONTEXT_LEN limit.

2. A dead end is reached with no further branching options.

Once all upstream paths are gathered, they are reversed to ensure

correct directionality, making the paths terminate at node x instead

of starting from x. Similarly, downstream paths are extracted by

exploring all possible branches from the end node z of the gene

path, also up to the CONTEXT_LEN limit. After obtaining both

upstream and downstream paths, they are merged with the core

ARG path (the gene path x → y → z) to create a complete

genomic context for each gene instance. As illustrated in Figure 3,

a total of six genomic contexts are recovered by considering all

possible combinations of branches from both ends of the query

ARG path.

Following this, the combined upstream, downstream, and ARG

paths are clustered based on sequence similarity (95% identity

and 95% coverage) to remove redundancy and retain only unique

genomic contexts. This clustering step ensures that repetitive

contexts are eliminated, streamlining the results.

Finally, the resulting genomic contexts are subjected to read

mapping-based filters to detect and remove chimeric paths,

erroneous combinations of upstream and downstream sequences,
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Input:

• G = (V ,E): directed assembly graph

• ARG: query gene sequence

• CC_COV : Connected component (CC)

coverage threshold (default 0.6)

• MAX_SEQ_GAP: maximum allowed

cumulative unmapped sequence length (default 1000)

• MAX_GAP_NODE: maximum consecutive

unmapped nodes (default 10)

• GENE_COV : minimum path coverage ratio

(default 0.6)

Output: Set of non-redundant, high-coverage representative

gene paths for the query ARG

1: 1. Find seed nodes via CC coverage

2: Compute connected components {Ci} of G

3: for all Ci do

4: covi ←
∑

v∈Ci

∣

∣aligned(v,ARG)
∣

∣

5: if covi ≥ CC_COV × |ARG| then

6: add all nodes of Ci to seeds

7: end if

8: end for

9: 2. DFS from each seed to extract candidate paths

10: paths ← ∅

11: function DFS(node u, path P, gap, nonHomCount)

12: if gap > MAX_SEQ_GAP or nonHomCount >

MAX_GAP_NODE then

13: return

14: end if

15: for all outgoing edge (u→ v) do

16: compute δ← unaligned length contributed by

v

17: newGap ← gap + δ

18: newNonHom ←
(

|aligned(v,ARG)| =

0
)

? nonHomCount + 1 : 0

19: DFS(v, P ∪ {v}, newGap, newNonHom)

20: end for

21: if P covers at least one aligned node of ARG

then

22: add P to paths

23: end if

24: end function

25: for all s ∈ seeds do

26: DFS(s, {s}, 0, 0)

27: end for

28: 3. Filter and cluster

29: remove any P ∈ paths that is a strict subset of

another path

30: for all P ∈ paths do

31: pcov←
∑

v∈P |aligned(v,ARG)| / |ARG|

32: if pcov < GENE_COV then remove P

33: end if

34: end for

35: cluster remaining paths at 95% identity & coverage

(MMseqs2)

36: ARG_paths ← representative cluster centroids

return ARG_paths

Algorithm 1. ExtractGenePaths

FIGURE 3

Starting from the alignments on graph nodes for a specific query

gene, the graph is explored to extract paths representing the gene.

Here, the path 1→ 2→ 3 has a gap of more than 1,000 bp of

unaligned sequence and is discarded. Only paths with no significant

gaps and that cover a substantial portion of the query gene are

retained. The neighboring flanking regions are then extracted

around the gene path, and chimeric paths are filtered out using read

mapping by assessing read coverage uniformity and read pair

consistency.

that do not originate from the actual genomes in the sample. This

filtering step ensures the quality of the extracted genomic contexts

surrounding the query gene in the sample.

2.5 Refinement through read mapping

To eliminate errors, such as inter- and intra-genome

misassemblies caused by repetitive genomic regions within the

same genome or conserved sequences shared among distinct

organisms, we applied a series of read mapping-based filters. These

misassemblies often result in erroneous contexts where fragments

from different locations are improperly connected, especially

in metagenomic samples where ARGs share homology across

multiple organisms. Most of these errors manifest as chimeric

paths, which are false combinations of upstream and downstream

sequences that do not represent a true organism or context.

To detect and remove false-positive chimeric andmisassembled

contexts, and ensure that the final set of reported genomic contexts

accurately reflect the true underlying sequences, we implemented

the following two sets of features based on read pair consistency
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Input:

• G = (V ,E): directed assembly graph

• ARG_paths: list of representative paths for the query

ARG

• CONTEXT_LEN: maximum flanking length

Output: Set of genomic contexts for the query ARG

1: contexts ← ∅

2: function DFS_Collect(u, path, L, CONTEXT_LEN)

3: if L ≥ CONTEXT_LEN or no outgoing neighbors

of u then

4: return {path}

5: end if

6: C← ∅

7: for all neighbor v of u do

8: if v /∈ path then

9: ℓ← length(v)

10: C ← C ∪ DFS_Collect(v, path‖v, L +

ℓ, CONTEXT_LEN)

11: end if

12: end for

13: return C

14: end function

15: for all genePath in ARG_paths do

16: let s be the first node of genePath, and e be

the last node

17: upSeeds ← neighbors
(

reverse(s)
)

18: dnSeeds ← neighbors(e)

19: upPaths ←
⋃

u∈upSeeds DFS_Collect(u,[u], length(u),

CONTEXT_LEN)

20: dnPaths ←
⋃

d∈dnSeeds DFS_Collect(d,[d], length(d),

CONTEXT_LEN)

21: upPaths ← {reverse(p) | p ∈ upPaths}

22: for all pu ∈ upPaths, pd ∈ dnPaths do

23: context← pu ‖genePath ‖pd

24: contexts ← contexts ∪ {context}

25: end for

26: end for

27: return contexts

Algorithm 2. ExtractGenomicContexts

and read coverage uniformity. For more details on the read-based

features, refer to Supplementary material 1.

2.5.1 Read pair consistency
For paired-end reads, the insert size (the distance between the

left and rightmate reads) is assumed to follow a normal distribution

N(µ, σ ) (Lai et al., 2022; Wu et al., 2018). The expected insert size

µ is calculated as the median of all insert sizes, and the standard

deviation (σ ) is estimated by the median absolute deviation. A

read is considered proper if its insert size falls within the range

[µ − 3σ ,µ + 3σ ] and its orientation is consistent with its mate.

Any read that does not meet these criteria is classified as discordant,

which includes three subtypes:

1. Mates mapped to different contexts.

2. Mates with incorrect insert sizes.

3. Mates with inconsistent orientations.

We also classify a read as clipped if it has at least 20 unaligned

bases at either end and as supplementary if parts of the read align

to different regions of contigs. For each context, the tool calculates

the proportion of six read features: proper reads, discordant reads

(three subtypes), clipped reads, and supplementary reads. These

feature values are analyzed for each context and those outlier

contexts having feature values that deviate significantly from the

norm are filtered out. Specifically, a context is removed if its mean

number of proper reads falls below µ − 3σ when compared to all

contexts associated with the gene. Similarly, contexts are removed

if any of the other five features exceed µ + 3σ compared to the

other contexts for the gene. This filtering ensures that only contexts

with consistent and well-supported read mapping characteristics

are retained.

2.5.2 Read coverage uniformity
The read coverage uniformity-based refinement process

involves calculating two key features, mean read coverage and

normalized coverage deviation, for each context using read

mapping data. First, the aligned reads are processed and the

coverage for each base across the length of each context is

computed. Next, using a sliding window approach, the average

coverage and the deviation in coverage (a measure of variation)

for each window of length 100 bp are calculated. These values

are averaged across the entire context, resulting in the mean

coverage and normalized deviation. Contexts with high read

coverage and low coverage deviation across the length are likely

to represent true genomic regions, while those with low coverage

or high deviation may indicate potential chimeric or misassembled

contexts. Contexts are filtered out based on their mean coverage

and normalized coverage deviation in relation to other contexts

found for the same gene. A context is removed if its mean read

coverage is below µ− 3σ , where µ represents the average coverage

of all contexts for the gene, and σ is the standard deviation of

coverage. This indicates that the context has significantly lower

coverage compared to others. Similarly, contexts are excluded if

their normalized coverage deviation exceedsµ+3σ , whereµ is the

mean deviation and σ is the standard deviation of deviation across

all contexts for the gene. This threshold ensures that only contexts

with consistent, reliable coverage are retained, filtering out those

with extreme outlier values.

2.6 Data collection and preprocessing

The pipeline was evaluated using four datasets:

1. For the fully synthetic metagenomic dataset, we selected

the CAMI_high dataset from the first CAMI challenge for

pipeline evaluation due to its high complexity. With 596

genomes and 478 circular elements, CAMI_high provides a

challenging test environment and increases the likelihood of

encountering multiple genomic contexts for a given ARG,
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FIGURE 4

Semi-synthetic dataset composed of a real metagenomic sample

spiked with reads generated from a set of plasmids carrying five

ARGs.

making it ideal for assessing the pipeline’s ability to handle

complex metagenomic scenarios.

2. We constructed a semi-synthetic dataset by randomly selecting

a metagenomic dataset and spiking it with simulated reads

from plasmids containing a known set of ARGs (Abramova

et al., 2024) (Figure 4). The metagenomic dataset, a human

stool sample, was downloaded from the Sequence Read Archive

(SRA) (SRR9654970) (Leinonen et al., 2010). To select plasmids

for spiking, we focused on clinically-relevant and commonly

observed ARGs from various classes, including sul2 (816 bp),

blaNDM-1 (813 bp), blaTEM (861 bp), aph(3”)-Ib_3 (804 bp),

and tet(A) (1,200 bp). Protein sequences corresponding to

these ARGs were obtained from the Comprehensive Antibiotic

Resistance Database (CARD) and used as queries in NCBI

BLAST searches to retrieve complete plasmid sequences (Alcock

et al., 2023). Only plasmids with <98% identity to the query

ARG and corresponding to full-length sequences were selected,

with five plasmids chosen for each ARG (Abramova et al.,

2024). Simulated reads were generated using insilicoseq with

the NovaSeq error model (Gourlé et al., 2019). Plasmid read

distributions were fine-tuned using an abundance file that

assigned higher coverage to smaller plasmids (Abramova et al.,

2024). Simulated read sets were generated at 10× coverage

levels, with 1× corresponding to the number of reads required to

cover the largest plasmid once. To ensure a clean test setup, reads

specific only to the human stool sample were first mapped to the

selected plasmids, and all matches were removed. The cleaned

dataset was then spiked with the simulated plasmid reads.

TABLE 1 Overview of assembly graph statistics for the four samples

generated by metaSPAdes.

Dataset Source Number
of nodes

Number
of edges

CAMI_high Synthetic

metagenome from a

high complexity

community with

correlated

log-normal

abundance

distributions (596

species and 478

circular elements)

(ERS2009087)

8,909,013 471,892

Semi-synthetic Human stool

sample

(SRR579292) spiked

with plasmids

carrying ARGs

588,356 117,142

Hospital sewage ERR1191818 1,699,140 379,796

WWTP A local WWTP

intake sample

(PRJNA1083020)

16,898,439 8,908,086

3. Two real-world metagenomic datasets were used for pipeline

evaluation. The first was collected from a local WWTP in

February 2021, which also has corresponding Nanopore long

reads available. Datasets are available from NCBI (https://

dataview.ncbi.nlm.nih.gov/object/PRJNA1083020?reviewer=

n59d7m1loo8437kefsh4qm4s7g&archive=biosample) under

the accession number PRJNA1083020 (Brown et al., 2024).

The second was publicly-available data from hospital sewage,

available from the NCBI Sequence Read Archive (SRA) under

accession ERR1191818.

Reads from all datasets were trimmed, quality-filtered, and

decontaminated using fastp and Trimmomatic (Chen et al., 2018;

Bolger et al., 2014). Paired-end reads were then used to construct

assembly graphs (.fastg) using metaSPAdes (Table 1). The assembly

graphs remained unmodified to preserve the neighborhood

structure and minimize information loss.

For context refinement, reads were mapped to the nodes of

the assembly graphs using BWA-MEM, and read mapping-based

features were calculated using Samtools (Li, 2013; Li et al., 2009).

For the semi-synthetic, CAMI_high, and WWTP datasets,

ground truth contexts were derived from the plasmids, source

genomes, and corresponding long reads, respectively, by taking

1,000 bp (CONTEXT_LEN) upstream and downstream of the

query gene. These contexts were compared with those derived

from ARGContextProfiler and metaSPAdes by alignment using

MMseqs2 with the following settings: −−search-type 3

−−min-seq-id 0.90 -c 0.90 −−cov-mode 2

−−max-seqs 1.

The default values for the parameters were as follows:

GENE_COV is set to 0.6, CONTEXT_LEN is set to 1,000 bp,

MAX_SEQ_GAP is set to 1,000 bp, and MAX_GAP_NODE is set

to 10. However, these parameters can be adjusted according to

user preference.
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TABLE 2 Number of ARGs recovered by alignment with the deepARG-DB

from source genomes, plasmids, or long reads in the CAMI_high,

semi-synthetic dataset, Hospital sewage, and WWTP sample, respectively;

from contigs generated by metaSPAdes and from contexts produced by

ARGContextProfiler.

Dataset Source MetaSPAdes ARGContextProfiler

CAMI_high 127 61 87

Semi-synthetic 5 5 5

Hospital

sewage

N/A 186 214

WWTP 29 110 166

2.7 Evaluation metrics

Four criteria were used to evaluate the pipeline:

1. Number of ARGs retrieved: This measures the number of

ARGs recovered by the pipeline when the exact query ARG is

not provided.

2. Gene coverage of extracted genes: Gene coverage is defined as

the ratio of the recovered length of a gene to its total length

in the deepARG-DB. A higher gene coverage indicates that a

greater portion of an ARG was successfully reconstructed from

fragmented reads.

3. Precision and recall: For the synthetic and semi-synthetic

datasets, where the ground truth is known, the contexts derived

using ARGContextProfiler were compared with the ground

truth. Precision and sensitivity were calculated to assess how

many of the reconstructed genomic contexts matched the source

genomes (precision) and how many contexts from the source

genomes were recovered by the pipeline (sensitivity).

4. Extracted context length: The lengths of the extracted contexts

were also evaluated in order to confirm that the pipeline

accurately captured more complete flanking regions. With

the context length parameter set to 1,000 bp, the expected

outcome is an ARG flanked by 1,000 bp upstream and 1,000

bp downstream, yielding a 1,000 bp - ARG - 1,000 bp

genomic context.

3 Results

3.1 ARG detection

We compared the number of ARGs recovered from contigs

generated by metaSPAdes and ARGContextProfiler. For the

simulated dataset CAMI_high, which has ground truth genomes

and plasmids available, we assessed the recovered ARGs against

the actual number found in the ground truth (Table 2). Notably,

nearly half of the ARGs were lost after the assembly process

using metaSPAdes while attempting to recover them from the

contigs. In contrast, ARGContextProfiler recovered 26 more

ARGs than metaSPAdes for this dataset by exploring the graph

more thoroughly.

In the semi-synthetic dataset, five ARGs were spiked in silico, all

of which were successfully recovered by both pipelines. Each ARG

was present in five different plasmids, resulting in high coverage,

which facilitated their detection.

For the hospital sewage sample, where the ground truth was

unknown, ARGContextProfiler recovered 214 ARGs compared to

186 recovered by metaSPAdes, highlighting its superior ability to

navigate this highly complex metagenomic sample.

Finally, for the WWTP sample, the ground truth was based

on long reads, which were generated from the same sample as

the short reads. However, only 29 ARGs were annotated from the

long reads, likely due to low coverage associated with nanopore

long-read technology (Hu et al., 2020). Both metaSPAdes and

ARGContextProfiler recovered manymore ARGs than those found

in the long reads. Notably, ARGContextProfiler outperformed

metaSPAdes by recovering a total of 56 additional ARGs and

captured 27 ARGs confirmed in the long reads compared to

metaSPAdes’ 24.

3.2 Comparison of recovered ARG and
genomic context lengths

We compared the lengths of recovered ARGs from assembled

contigs generated by metaSPAdes and ARGContextProfiler

(Figure 5a). The lengths of all recovered ARGs were normalized

against their corresponding lengths determined from deepARG-

DB. Across all four datasets, ARGContextProfiler consistently

recovered longer gene fragments compared to metaSPAdes,

indicating that ARGContextProfiler is more effective at retrieving

complete ARGs. Genes recovered from metaSPAdes contigs were

often fragmented, meaning that only partial gene sequences were

retrieved from the contigs.

Additionally, we evaluated the lengths of the extracted

genomic contexts in both upstream and downstream directions,

further demonstrating the effectiveness of ARGContextProfiler

(Figure 5b). In all datasets, ARGContextProfiler recovered longer

genomic contexts in both directions compared to the contexts from

metaSPAdes contigs.

3.3 Comparison of recovered contexts in
synthetic, semi-synthetic, and WWTP
datasets

Using the reference genomes and plasmids for the CAMI_high

dataset, the reference plasmids for the semi-synthetic dataset,

and the corresponding nanopore long reads for the WWTP

dataset as ground truth, we evaluated the performance of

ARGContextProfiler and compared it to metaSPAdes in extracting

1,000 bp upstream and downstream ARG neighborhoods. A

relative gene coverage threshold of 60% was applied for

both methods.

ARGContextProfiler consistently outperformed metaSPAdes

in terms of both sensitivity and precision in recovering

genomic contexts in the CAMI_high dataset (Figure 6A).

While the precision of ARGContextProfiler in identifying valid

genomic contexts was comparable to that of metaSPAdes,

ARGContextProfiler demonstrated significantly higher sensitivity.

On average, ARGContextProfiler achieved a precision of 94.35%,
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FIGURE 5

(a) Comparison of recovered gene lengths between metaSPAdes contigs and ARGContextProfiler (ARG-CP) across four datasets: CAMI_high,

semi-synthetic, hospital sewage, and WWTP. (b) Comparison of the distribution of lengths of extracted ARG contexts in both upstream and

downstream directions from metaSPAdes assembly contigs vs. contexts generated by ARGContextProfiler across the same datasets.

compared to metaSPAdes’ 89.23%. ARGContextProfiler’s average

sensitivity was 51.77%, nearly double that of metaSPAdes’

31.55%. Across nearly all ARGs, ARGContextProfiler

captured more valid genomic contexts than metaSPAdes

(Supplementary Figure 1) and minimized the prediction of

chimeric contexts (Supplementary Figure 2).

For the semi-synthetic dataset (Figure 6B), the ground truth

genomic contexts for the five ARGswere derived from the 25 source

plasmids used to spike the dataset. Both ARGContextProfiler

and metaSPAdes achieved perfect precision for all five ARGs,

indicating that neither pipeline predicted chimeric contexts.

Therefore, precision is not compared in the figure. However,

ARGContextProfiler outperformed metaSPAdes in sensitivity,

capturing more valid genomic contexts for 4 out of 5 ARGs. On

average, ARGContextProfiler achieved 81.25% sensitivity, whereas

metaSPAdes averaged 61.46%. As an illustrative case, the blaNDM

gene was found within three distinct genomic contexts across three

plasmids; ARGContextProfiler successfully reconstructed two of

these contexts (Figure 7).

For the WWTP sample, nanopore long reads were also used

to validate the recovered contexts. Due to the low-coverage

of nanopore long-read technology, many genomic contexts

found in both metaSPAdes contigs and ARGContextProfiler

predictions were not found in the long reads, making precision

difficult to assess. As a result, precision was excluded from the

analysis. Instead, we focused on sensitivity, evaluating how many

genomic contexts found in the long reads were also captured

by each pipeline. As shown in Figure 6C, ARGContextProfiler

demonstrated superior sensitivity for many ARGs (e.g., adeM, adeJ,

bacA, class_A, major facilitator superfamily transporter, mexT,

mphD, msrE, ompR, tetX), capturing nearly double the genomic

contexts compared to metaSPAdes. However, for two genes

(oxa-10 and tetW), the contigs generated through metaSPAdes

captured more genomic contexts (2 and 1, respectively) than

ARGContextProfiler. It appears that, due to high sequence

similarity (95% identity), ARGContextProfiler annotated oxa-10

as oxa-129.

4 Discussion

4.1 Demonstration and validation of
ARGContextProfiler

In this study, we demonstrated that an assembly-graph-based

approach to determining the context of ARGs, as implemented

by ARGContextProfiler, can greatly improve the quantity and

quality of information extracted from metagenomic data sets

than relying solely on contigs generated by assemblers. We

demonstrated the capabilities of ARGContextProfiler across a

variety of datasets, including fully synthetic, semi-synthetic, and

real-world metagenomic data derived from WWTP influent and

hospital sewage samples. ARGContextProfiler was validated by

comparing detected ARGs and their contexts against ground truths,

such as in silico spike-ins and long-read sequencing data. In all

cases, the assembly graph approach proved superior to metaSPAdes

in the detection of ARGs and also in the reconstruction of their

genomic contexts. The validity of these contexts was ensured

through the use of several read mapping-based features, including

read coverage statistics and read pair consistency, which aided in

filtering out chimeric or other erroneous genomic contexts.

ARGContextProfiler demonstrated remarkable advantages

in terms of the number and quality of contigs derived from

metagenomic data, relative to the widely-used assembler

metaSPAdes. MetaSPAdes was chosen as a key point of comparison

for this study because it is recognized for producing more complete

and less fragmented contigs compared to other tools such as

Megahit or IDBA-UD, which are known to be vulnerable to the

generation of fragmented and incomplete outputs (Abramova

et al., 2024; Nurk et al., 2017; Brown et al., 2021; Li et al., 2015; Peng

et al., 2012). It is important to mention that, although we validated

ARGContextProfiler in part by comparing it to metaSPAdes,

it can take assembly graphs as input generated by any other

assemblers. We also attempted to compare the analysis of these

four large metagenomic datasets using ARGContextProfiler vs.
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FIGURE 6

(A) Comparison of average precision and sensitivity between ARGContextProfiler (ARG-CP) and metaSPAdes contigs for the CAMI high complexity

dataset, averaged across all ARGs. (B) Sensitivity comparison for the five ARGs in the semi-synthetic dataset between ARGContextProfiler and

metaSPAdes. (C) Sensitivity comparison for all ARGs in the WWTP sample, based on alignment with the nanopore long reads from the same sample.

*MFST refers to the major facilitator superfamily transporter gene.

other alternatives, such as sarand and spacegraphcats (Kafaie et al.,

2023; Brown et al., 2020). However, even when 350 GB of RAM

was allocated, both of these tools consistently ran out of memory

(OOM). This highlights the substantial memory requirements of

currently available methods for large-scale metagenomic datasets,

which ARGContextProfiler helps to overcome.

4.2 Limitations and opportunities

There are some limitations to the graph-based assembly

approach employed by ARGContextProfiler that should be noted.

Firstly, while it recovered more ARGs than metaSPAdes, it is

important to note that, like any assembly method, it has a detection

limit. As a result, an unknown number of ARGs and their

associated genomic contexts may remain undetected in any given

metagenomic sample. This is largely due to inherent limitations in

the fragmented and incomplete nature of short-read sequencing

data, which inevitably introduces some degree of errors during

graph construction. When short reads are used to generate an

assembly graph, such limitations of the input data may be reflected

in the graph’s structure, leading to missing information. Despite

these limitations, the graph-based approach still provides a more

comprehensive view than directly relying on assembler-generated

contigs or short reads alone.

We also highlight that ARGContextProfiler is not limited to

the analysis of ARGs. It can be generalized to extract and analyze

the genomic context of any queried gene of interest from a

metagenomic sample, for example, biocide resistance genes, metal

resistance genes, and virulence factors. Users can replace ARG

databases with the genes of their interest and apply the pipeline

exactly like ARGs. Extending the pipeline to other genes makes

it a versatile tool for exploring the genomic neighborhoods of

various functionally significant genes. This ability to extract and

analyze genomic contexts from metagenomic data opens up new
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FIGURE 7

Genomic contexts of the blaNDM gene across three plasmids,

shown as color-coded arrows. The annotation was performed using

Prokka, and the figure was generated using Clinker.

possibilities for understanding gene function and interaction in

complex microbial communities, providing valuable insights for

applications beyond antimicrobial resistance.

Although our pipeline significantly improves the retrieval of

genomic contexts compared to annotations based on final contigs,

there remain several opportunities for further enhancement. One

potential way to improve sensitivity is to generate a custom

assembly graph using the de Bruijn graph constructor ABySS

without applying any filtering or bubble removal steps (Simpson

et al., 2009). This custom graph, rather than the default SPAdes

graph, can help preserve more information and capture more

complete genomic contexts (Azizpour et al., 2024). Another

option could involve pre-filtering or denoising the assembly graph,

although this approach comes with the risk of losing important

contextual information. Additionally, an overlap graph, which

offers a more precise method than the k-mer-based de Bruijn graph

used in most assemblers, could be employed to reduce ambiguity

and retain more information (Balvert et al., 2021). However,

constructing an overlap graph from complexmetagenomic samples

is computationally expensive and time-consuming (Li et al., 2012;

Rizzi et al., 2019). The use of long-read-based metagenomic graphs,

such as those generated from nanopore sequencing, offers another

promising avenue (Amarasinghe et al., 2020). These graphs are

likely to be more complete, with longer, less fragmented nodes,

which could improve both the sensitivity and precision of the

pipeline. Moreover, further refinement of genomic contexts can

include additional sequence-based filters, such as GC content,

protein structure-based features, or the number of open reading

frames in a context, all of which would help identify more confident

genomic contexts, while filtering out chimeric ones.

5 Conclusion

ARGContextProfiler was developed as an innovative graph-

based approach to profiling the context of ARGs in metagenomic

datasets. ARGContextProfiler proved to be a powerful and flexible

method for reconstructing genomic neighborhoods of ARG, as was

demonstrated over a range of synthetic, semi-synthetic, and real-

world datasets, with improved detection, accuracy, and precision

relative to metaSPAdes, one of the most widely implemented

assemblers currently employed for this purpose. While there

are still challenges to overcome, particularly in improving the

completeness and sensitivity of the predicted contexts, our results

demonstrate that graph-based analysis holds significant potential

for advancing the field of metagenomic analysis, particularly

when applied to evaluate the context of ARGs, such as their

proximity to MGEs. Future developments will focus on enhancing

the pipeline’s accuracy and sensitivity, and further investigating

the ecological and evolutionary dynamics of ARGs and their

genomic contexts, which can potentially uncover new strategies for

combating antibiotic resistance.
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