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Background: The quail farming industry constitutes an important component 
of China’s agricultural sector. However, it is frequently threatened by various 
bacterial and mycoplasmal infections, particularly respiratory diseases 
caused by Pasteurella multocida, Avibacterium paragallinarum, Mycoplasma 
gallisepticum, and Mycoplasma synoviae. These pathogens commonly result in 
co-infections or secondary infections, and their clinical presentations are often 
indistinguishable due to the similarity of symptoms.

Methods: Four sets of primers and probes were designed based on the 
GenBank-registered gene sequences: the kmt1 gene of P. multocida, the 
recN gene of A. paragallinarum, the mgc2 gene of M. gallisepticum, and the 
vlhA gene of M. synoviae. Reaction conditions were optimized accordingly. A 
recombinant plasmid standard was constructed for the generation of standard 
curves. The sensitivity, specificity, reproducibility, and accuracy of the assay 
were systematically evaluated.

Results: The constructed standard curves demonstrated strong linearity 
(R2 = 1.000, 0.998, 1.000, and 1.000), with high amplification efficiencies 
(107.09, 91.23, 112.10, and 125.51%, respectively). The detection limit for each 
recombinant plasmid standard was as low as 10 copies. No cross-reactivity was 
observed with non-target pathogens, including avian pox virus, Escherichia coli, 
Salmonella spp., Newcastle disease virus, infectious bronchitis virus, infectious 
laryngotracheitis virus, and Staphylococcus aureus. The assay exhibited 
excellent reproducibility, with inter- and intra-assay coefficient of variation (CV) 
values ranging from 0.11 to 1.41%. Among 126 clinical samples, P. multocida 
was detected in 6 samples, A. paragallinarum in 3, M. gallisepticum in 6, and M. 
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synoviae in 4. These results were consistent with those obtained using previously 
established methods.

Discussion: A highly sensitive, specific, rapid, and efficient quadruplex 
fluorescence quantitative PCR assay was successfully developed for the 
simultaneous detection and identification of Pasteurella multocida, Avibacterium 
paragallinarum, Mycoplasma gallisepticum, and Mycoplasma synoviae.
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Mycoplasma synoviae, quadruplex fluorescent

1 Introduction

The poultry industry is a vital component of China’s agricultural 
economy, with quail farming occupying a significant position both 
nationally and globally. According to industry statistics from 2025, the 
population of egg-laying quail in China is estimated at approximately 
500 million, with an annual production exceeding 1.5 million tons of 
quail eggs, accounting for over 60% of global output (Gui et al., 2024). 
Major quail farming regions are concentrated in provinces such as 
Henan, Shandong, Anhui, Jiangsu, and Hebei, where large-scale 
production clusters have been established (Gui et al., 2024; Wang 
et al., 2012; Rigobelo et al., 2013). However, the frequent occurrence 
of bacterial and mycoplasmal infections poses a serious threat to the 
sustainable development of the quail industry in China. Respiratory 
diseases alone account for a mortality rate ranging from 10 to 40% in 
affected flocks (Rigobelo et  al., 2013). Due to the common 
co-occurrence of bacterial and mycoplasmal pathogens, accurate 
diagnosis and effective control remain challenging. The primary 
etiological agents associated with quail respiratory diseases include 
Pasteurella multocida (P. multocida, Pm), Avibacterium paragallinarum 
(A. paragallinarum, Apg), Mycoplasma gallisepticum (M. gallisepticum, 
MG), and Mycoplasma synoviae (M. synoviae, MS), all of which are 
also recognized as major pathogens in chickens, ducks, and other 
poultry species (Balouria et al., 2019; Williams et al., 2000; Fair et al., 
1999; He et al., 2024).

P. multocida is a gram-negative, non-spore-forming, non-motile 
short rod bacterium capable of growth under both aerobic and 
facultatively anaerobic conditions (Allen et al., 2024). It is a primary 
pathogen responsible for acute respiratory infections in poultry, 
exhibiting particularly high pathogenicity in chickens, ducks, and 
quail (Allen et al., 2024; Poussard et al., 2025; Bathobakae et al., 2025). 
Based on capsular antigen composition, P. multocida is classified into 
several serotypes (A, B, D, E, F), with serotypes A and F most 
commonly associated with fowl cholera (Poussard et  al., 2025; 
Bathobakae et al., 2025). In quail, infection typically manifests as acute 
respiratory disease characterized by high fever, nasal discharge, 
drooling, and tachypnea, which may rapidly progress to septic shock 
and death in severe cases.

A. paragallinarum, a gram-negative bacterium belonging to the 
genus Avibacterium, grows under both aerobic and anaerobic 
conditions and requires V factor (NAD) supplementation for in vitro 
culture (Boguslavsky et  al., 2000). This pathogen is transmitted 
primarily via direct contact or aerosol routes and causes respiratory 
symptoms in poultry, including coughing, nasal discharge, 
conjunctivitis, and reduced egg production. In some instances, 
affected birds may exhibit depression and anorexia (Huo et al., 2023).

M. gallisepticum, known as a major chicken pathogen, is a gram-
negative bacterium with stringent growth requirements (Mugunthan 
et al., 2023). It has a broad host range encompassing mammals, reptiles, 
and birds, and is transmitted through both vertical and horizontal 
routes (Zhang et al., 2025). In quail, infection commonly presents with 
nasal discharge, coughing, air sac thickening, and purulent exudates.

M. synoviae, also referred to as synovial fluid mycoplasma, is 
another significant pathogen causing respiratory disease in poultry 
(Feberwee et  al., 2022). Transmission occurs both vertically and 
horizontally, with horizontal spread via airborne particles, direct 
contact, and contamination of feed or water sources (Feberwee et al., 
2022). Infected quail exhibit wheezing, nasal discharge, depression, 
swelling of the footpads, and enlargement of the hock and toe joints. 
Additionally, M. synoviae infection can negatively impact egg 
production, egg quality, hatchability, and feed conversion efficiency 
(Feberwee et al., 2022).

Co-infection with P. multocida, A. paragallinarum, 
M. gallisepticum, and M. synoviae is common in poultry, and diagnosis 
based solely on clinical symptoms is challenging (Wu et al., 2024; 
Chaidez-Ibarra et al., 2022; Wu et al., 2025). Conventional laboratory 
diagnostic methods, such as bacterial isolation and animal inoculation 
tests, are complex, time-consuming, costly, and exhibit relatively low 
sensitivity, limiting their utility for rapid clinical diagnosis. 
Consequently, there is an urgent need for rapid and accurate 
diagnostic methods capable of detecting mixed infections of multiple 
pathogens (Abate and Fentie, 2023; Yadav et al., 2022). Fluorescence 
quantitative PCR (qPCR) technology, characterized by high sensitivity, 
specificity, and throughput, has become a valuable tool for pathogen 
detection (Wang et al., 2024). However, existing assays for these four 
pathogens are generally designed for single or dual pathogen 
detection, lacking multiplex methods capable of simultaneous 
identification, which reduces detection efficiency and increases costs.

In this study, we developed a high-throughput, highly sensitive, 
specific, and accurate quadruplex qPCR assay for the simultaneous 
detection of P. multocida, A. paragallinarum, M. gallisepticum, and 
M. synoviae. This method provides a robust technological platform for 
veterinary clinical diagnosis, poultry health management, and the 
sustainable development of the poultry industry.

2 Materials and methods

2.1 Nucleic acids and clinical samples

Nucleic acids from avian pox virus, Escherichia coli, Salmonella 
spp., Newcastle disease virus, infectious bronchitis virus, infectious 
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laryngotracheitis virus, Staphylococcus aureus, Pasteurella 
multocida, Avibacterium paragallinarum, Mycoplasma 
gallisepticum, and Mycoplasma synoviae were stored in our 
laboratory. Between July 2024 and March 2025, a total of 126 
clinical samples—including nasal swabs, cloacal swabs, feces, and 
tissue samples (heart, lungs, and trachea)—were collected from 
quail farms located in Beijing and Jiangxi provinces. Samples were 
obtained from both clinically healthy quails and individuals 
exhibiting symptoms such as fever, dyspnea, and depression. 
Importantly, no additional harm or invasive procedures were 
performed on the animals as part of this study. Given the nature of 
the research, the Institutional Review Board of the Harbin 
Veterinary Research Institute determined that ethical approval was 
not required.

2.2 Reagents and instruments

The 2 × Taq Probe qPCR-Multiplex kit (Cat. No. B630005-0005) 
was purchased from Sangon Biotech (Shanghai) Co., Ltd. Plasmid 
mini prep kits (Cat. No. M1261-00) were obtained from Omega 
Bio-tek. The bacterial genomic DNA extraction kit (Cat. No. 
ATC-DNA) and viral RNA/DNA extraction kit (Cat. No. ATC-D/
RNA) were purchased from Jinrui Hongjie (Xiamen) Biotechnology 
Co., Ltd.

2.3 Processing of clinical samples and 
nucleic acid extraction

Tissues including the heart, lungs, and trachea were collected and 
placed into sterile centrifuge tubes containing an appropriate volume 
of phosphate-buffered saline (PBS). The tissues were homogenized 
using an automated tissue grinder, followed by three freeze–thaw 
cycles. Cloacal and nasal swabs, as well as environmental samples, 
were thoroughly mixed and subjected to three freeze–thaw cycles. 
Fecal samples were suspended in sterile centrifuge tubes containing 
1 mL of PBS and vigorously shaken for 1 min. Genomic DNA and 
RNA were extracted from all samples following the protocols provided 
by the manufacturers of the respective commercial kits.

2.4 Primer and probe design

Based on the GenBank reference sequences of the P. multocida 
kmt1 gene (AF067175), A. paragallinarum recN gene (DQ899748.1), 
M. gallisepticum mgc2 gene (NC_018406.1), and M. synoviae vlhA 
gene (CP011096.1), four pairs of specific primers and probes were 
designed (Table  1). All primers and probes were synthesized by 
Harbin Qingke Biotechnology Co., Ltd.

2.5 Preparation of the quadruplex 
recombinant plasmid standard

The target gene fragments from the four pathogens were 
synthesized by Harbin Qingke Biotechnology Co., Ltd. and 
sequentially cloned into the pMD-18 T vector to construct a 
quadruplex recombinant plasmid. Following PCR amplification and 
sequencing, the recombinant plasmid was confirmed to be accurate 
and was designated as pMD-kmt1-recN-mgc2-vlhA. The plasmid 
standard was then prepared in large quantities, and its concentration 
was measured using a UV spectrophotometer. The quadruplex 
recombinant plasmid standard was stored at −20°C until further use. 
The plasmid copy number was calculated using the following formula: 
Plasmid copy number (copies/μL) = (6.02 × 1023) × [Plasmid 
concentration (ng/μL) × 109] / (DNA length × 660) (Wang et al., 2024).

2.6 Optimization of reaction conditions

The quadruplex recombinant plasmid standard pMD-kmt1-recN-
mgc2-vlhA was used as the template to optimize the reaction 
conditions. A matrix experiment was conducted employing four 
specific primer and probe sets. The total reaction volume was 20 μL, 
and annealing temperatures of 59°C, 60°C, 61°C, and 62°C were 
tested. The working concentration of all primers and probes was 
initially set at 10 μM. The volumes of primers and probes for Pm-F, 
Pm-R, Pm-P, HPG-F, HPG-R, HPG-P, MG-F, MG-R, MG-P, MS-F, 
MS-R, and MS-P were systematically varied between 0.1 μL and 
0.5 μL to identify the optimal concentrations for the quadruplex 
fluorescence quantitative PCR assay.

TABLE 1 Primer and probe information for the four pathogens.

Pathogens Gene Sequence of primer and probe (5′-3′) Production

P. multocida kmt1 F: TGACAGCTTTGTGATCTGGATTG

R: GTCACTCTACTGGCGCGTTAAA

Probe: FAM-TTTGCCACGCGAATT-MGB

66 bp

A. paragallinarum recN F: TCACAAACCTTTCGCAATCG

R: TGGATTGTGCGGTAGAGCAA

Probe: NED-TTAAATACCCTCAGTGAAAAC-MGB

85 bp

M. gallisepticum mgc2 F: TACGAACATTCACCCACACTTGT

R: CCAGCACCTGCACCCACTA

Probe: VIC-ATGAAGGTGAAACTAATTC-MGB

110 bp

M. synoviae vlhA F: AACAGATGGTGCTTTACCAAACC

R: AACAGATGGTGCTTTACCAAACC

Probe: Cy5-AACCAAAGCTAGAGATAAA-MGB

92 bp
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2.7 Construction of standard curve and 
sensitivity validation

The quadruplex recombinant plasmid standard was serially 
diluted 10-fold from 1 × 109 copies/μL to 1 × 100 copies/μL and used 
as the template. Amplification was performed under the optimized 
reaction conditions, and a standard curve was generated to evaluate 
the sensitivity of the assay.

2.8 Specificity test

Nucleic acids from avian pox virus, Escherichia coli, Salmonella 
spp., Newcastle disease virus, avian infectious bronchitis virus, 
infectious laryngotracheitis virus, Staphylococcus aureus, P. multocida, 
A. paragallinarum, M. gallisepticum, and M. synoviae were used as 
templates. The quadruplex recombinant plasmid standard pMD-kmt1-
recN-mgc2-vlhA served as the positive control, while ultrapure water 
was used as the negative control. The optimized quadruplex 
fluorescence quantitative PCR assay was applied to evaluate the 
specificity of the method.

2.9 Reproducibility test

The quadruplex recombinant plasmid standard was serially 
diluted 10-fold, and three concentrations (1 × 107, 1 × 105, and 1 × 103 
copies/μL) were selected for amplification using the optimized 
quadruplex fluorescence quantitative PCR assay. Inter- and intra-assay 
reproducibility were assessed to determine the consistency and 
reliability of the method.

2.10 Clinical samples detection

The quadruplex fluorescence quantitative PCR assay developed in 
this study, together with a previously established fluorescence 
quantitative PCR method for detecting the four pathogens, was 
applied to test 126 clinical samples from quail. The concordance 
between the two methods was analyzed to evaluate the practical 
applicability of the developed assay.

3 Results

3.1 Optimal reaction conditions for the 
quadruplex fluorescence quantitative PCR 
assay

After optimization of annealing temperature, primer and probe 
concentrations, and cycle number, the optimal reaction conditions 
for the quadruplex fluorescence quantitative PCR assay were 
established as follows: the total reaction volume was 20 μL, 
containing 10.0 μL of 2 × Taq Probe qPCR-Multiplex. The final 
concentrations of primers and probes for P. multocida, 
A. paragallinarum, M. gallisepticum, and M. synoviae were 0.05 μM 
and 0.05 μM, 0.125 μM and 0.05 μM, 0.075 μM and 0.10 μM, and 
0.125 μM and 0.075 μM, respectively. A plasmid template 

concentration of 1 × 107 copies/μL was used, and ddH₂O was 
added to complete the volume. Regarding the cycle number, 
amplification beyond 40 cycles resulted in high background 
fluorescence, whereas fewer than 40 cycles led to insufficient 
amplification. The thermal cycling protocol was as follows: initial 
denaturation at 95°C for 3 min, followed by 40 cycles of 
denaturation at 95°C for 10 s and annealing/extension at 60.0°C 
for 30 s, with fluorescence data collected during the 
extension phase.

3.2 Standard curve construction and 
sensitivity evaluation

The quadruplex recombinant plasmid standard was serially 
diluted 10-fold from 1 × 109 to 1 × 100 copies/μL and used as the 
template for amplification following the optimized quadruplex 
fluorescence quantitative PCR protocol. A standard curve was 
constructed over the concentration range of 1 × 109 to 1 × 103 copies/
μL, as shown in Figure 1. The correlation coefficients (R2) for all four 
pathogens exceeded 0.990, indicating a strong linear relationship 
between template concentration and Ct values.

The limit of detection for the optimized assay, determined using 
plasmid standards at different dilutions, was 10 copies (Figure 2), 
demonstrating high sensitivity. Positive controls for P. multocida, 
A. paragallinarum, M. gallisepticum, and M. synoviae (detected via 
FAM, NED, VIC, and Cy5 channels, respectively) exhibited typical 
sigmoid amplification curves. Negative controls (FAM, NED, VIC, 
and Cy5) showed no amplification, with Ct values ≥40 or 
undetermined. The assay was considered valid when these criteria 
were met. Samples with Ct values <36 and typical amplification curves 
were classified as positive. Samples with Ct values between 36 and <40 
were considered suspicious and were retested in duplicate. Samples 
with Ct values ≥40 or undetermined and no typical amplification 
curve were classified as negative.

3.3 Specificity results

The optimized quadruplex fluorescence quantitative PCR assay 
was used to test nucleic acids from Fowlpox virus, Escherichia coli, 
Salmonella spp., Newcastle disease virus, Infectious bronchitis virus, 
Infectious laryngotracheitis virus, Staphylococcus aureus, P. multocida, 
A. paragallinarum, M. gallisepticum, and M. synoviae. The results 
showed that amplification curves were produced exclusively for the 
target pathogens, with no cross-reactivity observed among non-target 
organisms. These findings demonstrate that the established assay 
possesses high specificity (Figure 3).

3.4 Repeatability results

The optimized quadruplex fluorescence quantitative PCR assay 
was evaluated for intra- and inter-assay repeatability using plasmid 
standard samples at final concentrations of 1 × 107, 1 × 105, and 1 × 103 
copies/μL. The coefficient of variation (CV) of Ct values across these 
concentrations ranged from 0.11 to 1.41% (Table 2), demonstrating 
excellent repeatability and consistency of the assay.
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FIGURE 1

Standard curves of the quadruplex fluorescence quantitative PCR method X-axis: Plasmid copy number; Y-axis: Ct value. (A) The linear equation for Pm 
standard curve: Y = −3.163lg(X) + 41.654, R2 = 1, EFF% = 107.088. (B) The linear equation for Apg standard curve: Y = −3.552lg(X) + 41.145, R2 = 0.998, 
EFF% = 91.226. (C) The linear equation for MG standard curve: Y = −3.062lg(X) + 39.131, R2 = 1, EFF% = 112.095. (D) The linear equation for MS standard 
curve: Y = −2.832lg(X) + 39.501, R2 = 1, EFF% = 125.512.

FIGURE 2

Sensitivity validation of the quadruplex fluorescence quantitative PCR Method X-axis: Ct value; Y-axis: Fluorescence signal intensity. (A) Pm; (B) Apg; 
(C) MG; (D) MS; Lanes 0–9 represent quadruplex plasmid concentrations ranging from 109 copies/μL to 100 copy/μL.
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3.5 Clinical sample detection results

The newly established quadruplex fluorescence quantitative PCR 
assay, alongside previously reported PCR methods for P. multocida, 
A. paragallinarum, M. gallisepticum, and M. synoviae, was applied to 
test 126 clinical samples from quail. The detection rates were 4.8% for 
P. multocida, 2.4% for A. paragallinarum, 4.8% for M. gallisepticum, 
and 4.0% for M. synoviae, with detailed co-infection patterns 
illustrated in Figure 4. Furthermore, the results obtained with the 
quadruplex assay were 100% concordant with those from the 
established methods, confirming the high accuracy and reliability of 
the developed assay.

4 Discussion

Quail is an economically important poultry species in China, 
playing a vital role in the agricultural industry (He et al., 2023). 
Its eggs and meat are highly valued for their nutritional benefits 
and health-promoting properties (Mo et  al., 2013). However, 
respiratory diseases caused by P. multocida, A. paragallinarum, 
M. gallisepticum, and M. synoviae severely threaten quail health 
and productivity, leading to significant economic losses. These 
pathogens induce a range of respiratory conditions, chronic 
airsacculitis, and occasionally mortality. Moreover, co-infections 
and secondary infections with these agents exacerbate disease 
severity and complicate clinical management (Zhang et al., 2015). 
Due to the overlap in clinical symptoms caused by these 
pathogens, accurate and rapid diagnosis remains challenging, 
impeding effective prevention and control. Hence, there is an 
urgent need for a sensitive, specific, and high-throughput 
diagnostic tool capable of timely and simultaneous detection of 
these pathogens.

In this study, we addressed this need by targeting conserved and 
specific gene sequences of the four pathogens. Multiple primer and 
probe sets were designed and rigorously screened to develop a 
quadruplex fluorescence quantitative PCR assay for simultaneous 
detection. The selection of target genes was fundamental to the assay’s 
performance, influencing sensitivity, specificity, and overall accuracy. 
For P. multocida, commonly used targets include 16S rRNA, kmt1, 
capsular genes, and virulence factors (Davies, 2004; Sun et al., 2021; 
Wang et  al., 2023). Given the diversity of P. multocida serotypes 
infecting poultry, especially types A, D, and F, genes with broad 
serotype coverage were prioritized (Allen et al., 2005). Although the 
16S rRNA gene is frequently used, primers targeting this region 
showed cross-reactivity in preliminary tests (data not shown). The 
kmt1 gene, known for its specificity and stability, has been widely used 
in PCR, LAMP, and RPA assays, and was selected as the optimal target 
(Poussard et al., 2025; Alemu et al., 2023; Hao et al., 2023).

A. paragallinarum consists of serotypes A, B, and C, each with 
potentially distinct genetic markers (Tan et al., 2021). Previous studies 
identified hagA, lysS, and recN as candidate targets (Gallardo et al., 
2020; Krylova et  al., 2023; Wen et  al., 2016). The recN gene, a 
conserved housekeeping gene across all serotypes, was chosen to 
ensure comprehensive detection (Wen et  al., 2016). Importantly, 
despite homologous sequences in related bacteria, sequence 
divergence in recN ensures assay specificity.

For M. gallisepticum, the genome encodes over 700 proteins, 
including virulence factors such as adhesion and membrane proteins 
(Mugunthan et al., 2023). Among adhesion genes, mgc2, GapA, and 
PvpA have been utilized diagnostically (Boguslavsky et al., 2000; Bao 
et al., 2015; Ruger et al., 2022; Lysnyansky et al., 2005). The mgc2 gene 
was selected due to its established reliability in molecular detection.

Mycoplasma synoviae carries over 650 protein-coding genes, with 
common diagnostic targets including vlhA, NOX, and Eno (Si et al., 
2023). The vlhA gene stands out for its specificity and prevalence in 

FIGURE 3

Specificity validation of the quadruple fluorescence quantitative PCR method.
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phylogenetic analyses, and has gained prominence in recent diagnostic 
developments (Slavec et al., 2011). Accordingly, vlhA was selected. The 
quadruplex qPCR assay demonstrated a detection limit of 10 copies 
per reaction for recombinant plasmid standards from all four 
pathogens. This sensitivity compares favorably with or surpasses 
previously reported qPCR assays, which have detection limits ranging 
from 14 to 7,000 copies depending on the pathogen and method (Sun 
et al., 2021; Krylova et al., 2023; Grodio et al., 2008; Huang et al., 2015).

Key performance metrics—sensitivity, specificity, repeatability, 
and accuracy—were systematically evaluated. Optimization expanded 

pathogen detection capacity without compromising sensitivity. 
Specificity testing against nucleic acids from other common quail 
pathogens confirmed no cross-reactivity, underscoring high assay 
specificity. Repeatability assessments showed coefficients of variation 
below 2% for intra- and inter-assay measurements, confirming 
robustness. Clinical validation using 126 quail samples yielded 
detection rates consistent with previous reports and demonstrated 
100% concordance with established assays. Notably, the assay reliably 
identified co-infections, which is critical for comprehensive clinical 
diagnosis and management.

TABLE 2 Intra- and inter-batch validation results of the quadruplex fluorescence quantitative PCR method.

Standard plasmid Concentration of 
template (copies/μL)

Intra-coefficient of variation Inter-coefficient of variation

X ± SD CV (%) X ± SD CV (%)

pMD-kmt1 107 19.523 ± 0.021 0.11 19.482 ± 0.014 0.07

105 25.869 ± 0.061 0.24 25.771 ± 0.102 0.40

103 32.115 ± 0.130 0.40 32.185 ± 0.098 0.30

pMD-recN 107 16.081 ± 0.112 0.70 16.341 ± 0.085 0.52

105 23.285 ± 0.108 0.46 23.181 ± 0.327 1.41

103 30.459 ± 0.221 0.73 30.201 ± 0.109 0.36

pMD-mgc2 107 17.667 ± 0.167 0.94 17.543 ± 0.087 0.50

105 23.411 ± 0.128 0.55 23.341 ± 0.091 0.39

103 29.485 ± 0.152 0.52 29.846 ± 0.163 0.55

pMD-vlhA 107 19.567 ± 0.066 0.34 19.317 ± 0.083 0.43

105 25.221 ± 0.144 0.57 25.614 ± 0.197 0.77

103 31.105 ± 0.105 0.34 31.251 ± 0.127 0.41

FIGURE 4

Single and mixed infection status of positive samples.
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Nevertheless, limitations exist. Epidemiological data on these 
respiratory pathogens in quail remain scarce, both domestically and 
globally. The relatively small clinical sample size in this study may 
limit the generalizability of prevalence estimates. Future work 
should involve larger, geographically diverse sample collections to 
better characterize pathogen distribution and to validate the assay’s 
utility across different clinical settings. Such efforts will facilitate 
enhanced surveillance, early diagnosis, and effective control 
measures to mitigate the impact of respiratory diseases in the 
quail industry.

5 Conclusion

This study successfully identified and selected conserved, 
pathogen-specific gene sequences of P. multocida, A. paragallinarum, 
M. gallisepticum, and M. synoviae. Based on these targets, specific 
primers and probes were designed, followed by comprehensive 
optimization of reaction conditions and system parameters. The result 
is a sensitive, specific, and accurate quadruplex fluorescence 
quantitative PCR assay capable of simultaneously detecting all four 
pathogens. This method exhibits excellent sensitivity, specificity, 
repeatability, and stability, providing a powerful tool for the early 
diagnosis and prevention of respiratory diseases in quail. Furthermore, 
by generating valuable epidemiological data, this detection platform 
will support precise disease monitoring and contribute to the 
sustainable development and effective management of the quail 
farming industry.
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