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The gut microbiome in lung 
cancer: from pathogenesis to 
precision therapy
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The gut microbiome has emerged as a key modulator of immune responses and 
treatment efficacy in oncology. Growing evidence links gut dysbiosis to resistance 
against immune checkpoint inhibitors (ICIs) in advanced cancers, prompting 
exploration of the gut-lung axis—a bidirectional network connecting intestinal 
microbiota with pulmonary health. Given lung cancer’s status as the leading cause 
of cancer mortality worldwide, understanding this axis holds significant therapeutic 
potential. This review synthesizes current knowledge on gut microbiota’s role in lung 
cancer development, diagnosis, and treatment. We highlight microbial signatures 
predictive of disease and therapy response, discuss microbiota-targeted interventions 
(e.g., probiotics, Fecal Microbiota Transplantation), and elucidate mechanistic 
insights into microbial-immune crosstalk. Finally, we outline future directions 
for leveraging the gut microbiome in personalized lung cancer management.
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1 Introduction

Lung cancer maintains its position as the leading cause of cancer-related mortality 
worldwide, accounting for approximately 2.2 million new cases and 1.8 million deaths annually 
(Sung et  al., 2021). Histologically, lung cancer is broadly classified into small cell lung 
carcinoma and non-small cell lung carcinoma (NSCLC), with the latter accounting for over 
85% of all cases (Sung et al., 2021). Globally, the most common histological subtypes of 
NSCLC are adenocarcinoma (40%) and squamous cell carcinoma (25%) (Su et al., 2025). 
Smoking is a well-established risk factor for lung cancer, while other risk factors include 
lifestyle and environmental exposures such as biomass fuel exposure, occupational hazards, 
and air pollution (Leiter et al., 2023). Additionally, genetic predisposition and gender are 
significant risk factors that cannot be overlooked (Jemal et al., 2018). Despite therapeutic 
advancements including radiotherapy, chemotherapy, immunotherapy, and surgical 
interventions, clinical outcomes remain suboptimal, with persistently low survival rates and 
substantial treatment-related toxicities underscoring the urgent need for innovative approaches 
(Lahiri et al., 2023). In this context, the conceptual framework of the “gut-lung axis” has gained 
considerable traction, proposing a sophisticated bidirectional communication network 
between intestinal microbiota and pulmonary physiology mediated through integrated 
immune, neural, and metabolic pathways. The gut microbiota exerts systemic 
immunomodulatory effects through microbial metabolite production and immune cell 
priming, while pulmonary inflammatory responses can reciprocally influence gut microbial 
ecology via circulating cytokines and neuroendocrine signals. This paradigm-shifting 
understanding of gut-lung crosstalk has catalyzed new research directions in lung cancer 
therapeutics, suggesting that targeted manipulation of gut microbial communities may offer 
a promising strategy to enhance treatment efficacy and reduce adverse effects.
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The gut microbiome has emerged as a pivotal regulator in tumor 
immunology, with mounting evidence establishing its critical role in 
modulating host immune responses to cancer therapy. Particularly 
compelling is the association between gut dysbiosis and primary 
resistance to immune checkpoint blockade (ICB) across multiple 
advanced malignancies (Simpson et al., 2023; Shi et al., 2023; Soularue 
et al., 2018). This relationship has been substantiated by extensive 
epidemiological investigations demonstrating that broad-spectrum 
antibiotic use, which disrupts gut microbial homeostasis, significantly 
impairs the clinical efficacy of anti-PD-1/PD-L1 antibodies in stage 
III/IV melanoma, as well as lung, renal, and bladder carcinomas 
(Salgia et al., 2020; Routy et al., 2023). Mechanistically, depletion of 
microbial diversity correlates with an immunologically “cold” tumor 
microenvironment characterized by insufficient cytotoxic T-cell 
infiltration. Emerging evidence suggests that strategic modulation of 
gut microbiota composition may potentiate antitumor immunity by 
enhancing T-cell activation and tumor cell phagocytosis, thereby 
opening novel therapeutic avenues for cancer management.

This review provides a comprehensive synthesis of contemporary 
research elucidating the multifaceted roles of gut microbiota in lung 
cancer pathogenesis, early detection, and therapeutic intervention. 
We  will critically examine: (1) mechanistic insights into gut 
microbiome-mediated modulation of pulmonary tumor immunity; 
(2) microbial signatures associated with disease progression and 
treatment response; (3) current and emerging microbiota-targeted 
therapeutic strategies; and (4) future directions for translating these 
findings into clinical practice. By integrating cutting-edge research 
from microbiology, immunology, and oncology, this work aims to 
advance our understanding of the gut-lung axis and its therapeutic 
potential in lung cancer management.

2 The gut-lung axis: microbial 
regulation of pulmonary immunity 
and disease pathogenesis

Accumulating evidence has established the gut microbiota as a 
critical modulator of pulmonary health through the gut-lung axis—a 
sophisticated bidirectional communication network mediated by 
microbial metabolites, immune regulation, and neuroendocrine 
signaling (Huh and Veiga-Fernandes, 2020; Budden et al., 2017). In 
physiological conditions, commensal gut microbes maintain 
pulmonary immune homeostasis through multiple mechanisms: (1) 
production of immunomodulatory metabolites [e.g., short-chain fatty 
acids (SCFAs)] that enter systemic circulation and regulate lung 
immunity; (2) priming of dendritic cells and T cell populations that 
subsequently migrate to pulmonary tissues; and (3) maintenance of 
mucosal barrier integrity through tight junction protein modulation 
(Chakradhar, 2017; Wypych et al., 2019; Jeyanathan et al., 2022; Lin 
et al., 2025).

Disruption of gut microbial homeostasis precipitates a cascade of 
pathological events that compromise pulmonary defenses. Clinical 
studies have identified distinct gut microbiota signatures associated 
with specific respiratory diseases. The study found that children at 
high risk of asthma already exhibit dysbiosis of gut fungi, bacteria, and 
archaea before the onset of the disease (Barcik et al., 2020). In progress 
of asthma development, early-life gut dysbiosis characterized by 
elevated Bacteroides spp. (particularly B. fragilis) and anaerobic 

species, coupled with reduced microbial α-diversity and depletion of 
immunoprotective taxa including Faecalibacterium prausnitzii (a 
major butyrate producer), Lachnospira spp. (SCFA-producing genera), 
Rothia mucilaginosa (nitrate reducer), and Veillonella parvula 
(immunomodulatory species), significantly increases asthma risk 
(Lee-Sarwar et al., 2022; Depner et al., 2020). In a murine asthma 
model, the gut microbiota metabolite p-cresol sulfate was found to 
selectively suppress chemokine CL20 production in pulmonary 
epithelial cells by decoupling EGFR and TLR4 signaling, thereby 
reducing dendritic cell activation and exerting a protective effect 
against airway inflammation (Wypych et al., 2021).

In COPD patients, pro-inflammatory factors from the lungs 
migrate to the gastrointestinal tract via systemic circulation, 
promoting immune cell infiltration, epithelial barrier disruption, 
oxidative stress, hypoxia, and alterations in gut microbiota and 
metabolites. These intestinal impairments inhibit nutrient absorption, 
reduce antioxidant capacity, and weaken protective responses against 
pathogens and other environmental stimuli, thereby exacerbating 
COPD (Wang et al., 2023). The COPD-associated gut microbiome 
demonstrates marked expansion of pro-inflammatory Muribaculaceae 
(mucin-degrading specialists), Desulfovibrionaceae (sulfate-reducing 
bacteria), and specific Lachnospiraceae strains, which correlate with 
enhanced systemic inflammation and disease severity (Budden 
et al., 2024).

There is bidirectional immune crosstalk between pulmonary 
Mycobacterium tuberculosis and the gut microbiota. For instance, 
intestinal Helicobacter spp. infection can influence pulmonary 
M. tuberculosis infection and disease progression, while M. tuberculosis 
infection in the lungs may also alter the gut microbiota (Naidoo et al., 
2019). Pulmonary Tuberculosis patients exhibit significant gut 
microbiota remodeling with a 45% increase in Actinobacteria 
(particularly Bifidobacterium spp.), 32% elevation in Proteobacteria 
(including pathogenic Enterobacteriaceae), and 28% reduction in 
Bacteroidetes—alterations associated with impaired IFN-γ production 
and compromised macrophage function (Luo et  al., 2017). 
Concurrently, it was found that metabolites produced by pulmonary 
anaerobic bacteria (e.g., SCFAs) may modulate pulmonary immune 
responses and promote tuberculosis progression. Additionally, the loss 
of T-cell antigen epitopes in gut commensal non-tuberculous 
mycobacteria was shown to increase the risk of patient relapse 
(Naidoo et  al., 2019). Beyond the aforementioned diseases, the 
relationship between lung cancer and gut microbiota has emerged as 
a research hotspot in recent years.

3 Alterations in gut microbiota 
composition and metabolic profile in 
lung cancer patients

Current research demonstrates that both intestinal and 
extraintestinal tumor development can induce significant pathological 
changes in the ileal mucosa, including mucosal atrophy and villous 
microvascular constriction mediated by sympathetic nervous system 
regulation of cholinergic signaling pathways. The onset of 
tumorigenesis triggers rapid secretion of REG3γ from ileal epithelial 
cells, causing transient increases in intestinal barrier permeability that 
ultimately result in substantial and long-lasting microbial imbalance, 
predominantly characterized by overgrowth of Gram-positive 
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Clostridium species (Yonekura et al., 2022). Investigations into gut 
microbial diversity in lung cancer patients have yielded somewhat 
variable findings, yet the majority of studies indicate that both 
Shannon and Chao diversity indices in these patients remain largely 
comparable to those observed in healthy controls, suggesting minimal 
differences in overall microbial richness and diversity between the two 
groups (Zheng et al., 2020; Lim et al., 2021; Zhao et al., 2021; Qian 
et al., 2022).

Notwithstanding the preserved overall microbial diversity, lung 
cancer patients exhibit profound alterations in specific microbial taxa 
across multiple taxonomic levels. Examination at the family taxonomic 
rank reveals marked increases in Ruminococcus, Enterobacteriaceae, 
and Lachnospiraceae within the fecal microbiota of lung cancer 
patients, contrasted by significant depletion of beneficial genera 
including Faecalibacterium spp., Streptococcus spp., Bifidobacterium 
spp., and Veillonella spp. (Zheng et al., 2020). These compositional 
changes extend to the genus level, where lung cancer patients 
demonstrate selective enrichment of unclassified genera within 
Enterobacteriaceae and Lachnospiraceae families as well as 
Ruminococcus spp. species, while experiencing notable decreases in 
the relative abundance of health-associated genera such as 
Faecalibacterium spp., Streptococcus spp., Bifidobacterium spp., and 
Veillonella spp. (Zheng et  al., 2020). Some studies comparing 
sequencing data from fecal samples of 41 lung cancer patients and 40 
healthy volunteers found that at the genus level, the abundances of 
Actinomyces spp., Veillonella spp., Megasphaera spp., Enterococcus spp., 
and Clostridium spp. were higher in lung cancer patients than in 
healthy volunteers (Zhao et  al., 2021). In NSCLC patients, fecal 
samples showed decreased abundances of Actinobacteria and 
Proteobacteria, while Firmicutes and Bacteroidetes were increased 
(Qian et  al., 2022). Additionally, NSCLC patients exhibited 
significantly higher abundances of Prevotella spp., Roseburia spp., and 
Gemmiger spp. (Qian et  al., 2022). In fecal samples from patients 
newly diagnosed with metastatic NSCLC and lacking driver gene 
mutations (e.g., epidermal growth factor receptor, anaplastic 
lymphoma kinase, receptor tyrosine kinase), the top 10 most abundant 
genera were Blautia spp., Streptococcus spp., Faecalibacterium spp., 
Collinsella spp., Bacteroides spp., Dorea spp., Eubacterium hallii spp., 
Romboutsia spp., Lactobacillus spp. and Subdoligranulum spp. (Li 
et al., 2024).

In parallel with these microbial disturbances, lung cancer patients 
display significant perturbations in their gut metabolic profiles. Under 
normal physiological conditions, dietary carbohydrates metabolized 
by gut microbiota lead to increased production of SCFAs, which play 
crucial roles in modulating pulmonary immune responses (Zheng 
et al., 2020). Of particular importance, Firmicutes and Actinobacteria 
phyla serve as major contributors to colonic SCFA generation, exerting 
regulatory effects on inflammatory processes and tumor development 
in both experimental models and human subjects. The characteristic 
reduction in Firmicutes/Bacteroidetes ratio observed in lung cancer 
patients likely contributes to diminished circulating SCFA levels, with 
consequent impacts on systemic immune function and inflammatory 
regulation (Zheng et al., 2020). The metabolic imbalance in these 
patients is further complicated by increased lactate accumulation 
coupled with SCFA depletion, creating an environment that favors 
Candida proliferation by providing lactate as an alternative energy 
source, thereby predisposing to fungal infections (Seelbinder et al., 
2023). Additionally, enhanced biosynthetic capacity for 

lipopolysaccharides within the gut microbial community has been 
mechanistically linked to the development of cancer-associated 
cachexia in lung cancer patients (Ni et al., 2021). The gut microbiome 
in NSCLC patients was found to be  involved in sporulation and 
thiamine metabolism (Qian et al., 2022).

4 Therapeutic potential of gut 
microbiota in lung cancer 
management

4.1 Microbial biomarkers for early lung 
cancer detection

A pivotal case–control study investigating gut microbiome 
signatures for early lung cancer detection analyzed the fecal microbiota 
of 42 treatment-naïve early-stage lung cancer patients compared with 
65 healthy controls. The research revealed distinct microbial 
alterations in cancer patients, characterized by significant enrichment 
of Bacteroidetes and Proteobacteria phyla alongside marked depletion 
of Firmicutes and Actinobacteria species. Through sophisticated 
bioinformatics analysis, the study identified a panel of 13 high-
specificity microbial biomarkers that demonstrated remarkable 
diagnostic potential. To translate these findings into clinical practice, 
the researchers developed a novel Patient Discrimination Index (PDI) 
algorithm, which achieved outstanding diagnostic performance with 
an area under the curve (AUC) of 92.4% in the discovery cohort and 
maintained robust predictive accuracy (AUC = 67.7%) in the 
independent validation cohort (Zheng et  al., 2020). This 
groundbreaking work establishes the foundation for non-invasive, 
microbiome-based early detection strategies in lung cancer.

4.2 Predicting immunotherapy response 
through gut microbiota profiling

Accumulating clinical evidence underscores the critical role of gut 
microbiota composition in determining immunotherapy outcomes for 
lung cancer patients. Comprehensive analyses demonstrate that 
baseline gut microbiome characteristics strongly correlate with initial 
response to immune checkpoint inhibitors (ICIs) during the critical 
first 6 months of treatment (Gopalakrishnan et al., 2018). A study 
involving 74 patients with advanced EGFR-mutated NSCLC found 
that antibiotic use attenuated the efficacy of immunotherapy in these 
patients, whereas probiotic administration showed no significant 
impact on treatment outcomes. Furthermore, two dynamic patterns 
of gut microbiota during immunotherapy were identified: U-shaped 
and inverted U-shaped trajectories. In the U-shaped pattern, the 
relative abundance of gut microbiota decreased from baseline to 
treatment response, followed by an increase from response to disease 
progression. Conversely, the inverted U-shaped pattern exhibited an 
initial increase in relative abundance from baseline to treatment 
response, subsequently declining from response to progression. 
Significant correlations were observed between gut microbiota/
metabolites and immunotherapy response (Luo et  al., 2024). Key 
findings include the striking association between Akkermansia 
muciniphila colonization and superior clinical responses, likely 
mediated through IL-12-dependent enhancement of anti-tumor 
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immunity (Kaiser, 2017). Furthermore, patients harboring diverse gut 
microbial communities and enriched populations of Faecalibacterium 
spp. and Clostridiales consistently demonstrate improved outcomes 
with PD-1 inhibitor therapy (Kaiser, 2017). A study analyzing lung 
cancer patients treated with ICIs revealed distinct baseline gut 
microbial compositions in advanced patients who derived long-term 
clinical benefits from ICIs, compared to those with acquired resistance 
or severe immune-related adverse events (irAEs). Metabolomic 
profiling demonstrated significantly higher levels of acetate and 
butyrate in the benefit group versus the resistance group. Patients with 
elevated acetate, propionate, and butyrate exhibited significantly 
prolonged progression-free survival (Liu et al., 2024).

A landmark metagenomic study of 245 NSCLC patients employed 
advanced network analysis to identify two clinically relevant species 
interaction groups (SIGs): SIG1 (37 species) associated with poor ICI 
response and SIG2 (45 species) predictive of favorable outcomes. By 
integrating the SIG1/SIG2 ratio with Akkermansia muciniphila 
abundance, the researchers developed a sophisticated topological 
scoring system (TOPOSCORE) that accurately predicts individual 
patient responses to immunotherapy (Derosa et  al., 2024). These 
findings provide a robust framework for personalized treatment 
selection based on microbial profiling. A multi-omics analysis of fecal 
microbiota and metabolites was conducted in 303 cancer patients 
receiving anti-PD-1/PD-L1 immunotherapy, integrated with data 
from four public metagenomic datasets (568 patients). The study 
identified five gut microbial enterotypes closely associated with 
treatment response. Each enterotype demonstrated distinct bacterial 
compositions and unique metabolic profiles. These enterotypes and 
their associated metabolites may serve as predictive biomarkers for 
immunotherapy response (Zhu et al., 2025).

4.3 Microbiome-mediated modulation of 
drug efficacy

The gut microbiome exerts profound influence on anti-tumor 
drug responses through multifaceted immunomodulatory 
mechanisms. Beneficial commensals including Lachnospiraceae, 
Ruminococcaceae, Faecalibacterium spp., Akkermansia spp., and 
Bifidobacterium spp. species enhance treatment efficacy through 
several synergistic pathways: production of immunostimulatory 
metabolites (SCFAs, L-arginine, inosine, tryptophan); expression of 
molecular patterns that activate dendritic cells; and induction of 
TH1-polarized immune responses via IL-12 and type I  interferon 
signaling (Liu et al., 2024). Several studies have demonstrated that 
probiotic use is associated with improved overall survival and 
progression-free survival in NSCLC patients (Zhang and Xu, 2023). 
Antibiotic use may negatively impact prognosis and treatment efficacy 
in lung cancer patients by altering gut microbiota composition and 
reducing beneficial bacteria. Multiple retrospective studies have 
shown that antibiotic exposure correlates with reduced 
immunotherapy efficacy and poorer prognosis (Zhang et al., 2021). 
Research indicates that gut microbiota diversity is closely linked to 
NSCLC patient outcomes, with higher diversity associated with better 
prognosis. Specific bacterial species, such as Akkermansia muciniphila 
and Ruminococcaceae, have been associated with favorable outcomes 
in NSCLC patients (Del Giudice et al., 2024). Clinical observations 
reveal that antibiotic administration prior to ICI therapy dramatically 

reduces median overall survival from 15.3 to 8.3 months (Routy et al., 
2018), while specific microbial taxa demonstrate remarkable 
therapeutic associations. Bifidobacterium species potentiate PD-1 
blockade efficacy by activating antigen-presenting cells (Sivan et al., 
2015), and butyrate-producing microbes (Faecalibacterium spp., 
Roseburia spp., Anaerobutyricum spp.) significantly improve outcomes 
through acetyl-CoA-mediated metabolic programming (Liu et al., 
2024). These findings are further supported by compelling preclinical 
evidence showing that fecal microbiota transplantation (FMT) from 
responding patients can transfer therapeutic responsiveness to germ-
free mice (Routy et al., 2018).

4.4 Microbiota-targeted therapeutic 
interventions

Innovative microbiome-modulating strategies are emerging as 
promising adjuncts to conventional lung cancer therapies. Current 
approaches for gut microbiome modulation primarily include 
interventions such as probiotics, prebiotics, FMT, and lifestyle 
modifications. In recent years, clinical trials have evaluated the efficacy 
of these microbiome-targeted interventions, particularly in 
combination with ICIs, providing both biological rationale and 
clinical feasibility for gut microbiome modulation as a strategy to 
enhance cancer treatment response (Elkrief et al., 2025). Emerging 
evidence suggests that specific probiotic supplementation may serve 
as an “adjuvant” for immunotherapy. For instance, probiotic 
formulations containing Bifidobacterium and Clostridium butyricum 
have demonstrated the ability to enhance ICI efficacy across multiple 
studies, improving treatment response rates by 10–15%. These 
probiotics exert their beneficial effects through multiple mechanisms, 
including immune balance regulation, intestinal barrier enhancement, 
and production of beneficial metabolites (Jin et al., 2025). Clinical data 
demonstrate that probiotic supplementation with Clostridium 
butyricum MIYAIRI 588 significantly extends both progression-free 
and overall survival in advanced NSCLC patients receiving 
immunotherapy (Tomita et al., 2020). Preclinical models reveal that 
probiotic co-administration enhances gefitinib’s anti-tumor activity 
while antibiotic use abrogates its therapeutic effects (Jiang et al., 2024). 
Cutting-edge research on postbiotic formulations (e.g., MS-20) 
demonstrates synergistic effects with PD-1 blockade, significantly 
enhancing CD8 + T cell infiltration and tumor control (Lee 
et al., 2024).

FMT refers to the process of transplanting functional gut 
microbiota from healthy donors into recipients’ intestines. The donor 
microbiota is processed into suspensions or capsules using an 
intelligent intestinal processing system, with the goal of reconstructing 
a functionally normal gut microbiome in patients. This restoration 
enhances both intestinal and systemic immunity, thereby treating 
intestinal and extraintestinal diseases (Allegretti et al., 2019). FMT 
from immunotherapy responders to non-responders has shown 
remarkable capacity to restore treatment sensitivity in both clinical 
observations and experimental models (Gharaibeh and Jobin, 2019; 
Zitvogel et al., 2016; Drew, 2024).

Research has demonstrated that dietary interventions can reshape 
gut microbiota composition, thereby influencing immunotherapy 
efficacy. A plant-based diet promotes the growth of beneficial bacterial 
communities and enhances microbial diversity: whole grains and 
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legumes provide prebiotics that stimulate the proliferation of beneficial 
bacteria such as Bifidobacterium; polyphenols in fresh fruits and 
vegetables exhibit anti-inflammatory and immunomodulatory effects; 
and fermented foods serve as excellent natural sources of probiotics. 
In contrast, animal-based diets (e.g., meat, eggs, and dairy products) 
may reduce beneficial microbiota and negatively impact the 
effectiveness of ICIs. Western diets high in fat and sugar may foster 
microbiota profiles unfavorable for immunotherapy and should 
be  consumed in moderation (Jin et  al., 2025; Yannakoulia and 
Scarmeas, 2024; Allen, 2025; Abdeen et al., 2025). A study by MD 
Anderson Cancer Center revealed that increased dietary fiber intake 
improves response to immunotherapy, with the high-fiber diet group 
achieving an objective response rate (ORR) of 77%, compared to just 
29% in the control group (Spencer et  al., 2021). These advances 
underscore the transformative potential of microbiota-targeted 
approaches in precision oncology.

5 Mechanistic insights into gut 
microbiota-mediated regulation of 
lung cancer pathogenesis and 
therapeutic response

The intricate mechanisms through which gut microbiota influence 
lung cancer pathogenesis and treatment outcomes encompass a 
multifaceted network of immunological, metabolic, and microbial 
interactions. Emerging evidence highlights three primary mechanistic 
pathways: (1) systemic immune modulation through microbial 
antigen recognition and cytokine signaling, (2) bacterial metabolite-
mediated regulation of host metabolism and epigenetic modifications, 
and (3) microbiome-dependent modulation of inflammatory cascades 
that shape the tumor microenvironment (Zhu et al., 2023; Fluckiger 
et  al., 2020; Fidelle et  al., 2023). These interconnected pathways 
collectively impact lung cancer initiation, progression, therapeutic 
response, and long-term prognosis. Research conducted on Lewis 
lung carcinoma mouse models revealed that compared to the 
cisplatin-only treatment group, mice receiving combined antibiotics 
(vancomycin, ampicillin, neomycin) to disrupt gut homeostasis 
exhibited larger tumors and shorter survival periods. Conversely, the 
probiotic (Lactobacillus spp.)-supplemented group showed smaller 
tumors and prolonged survival. Mechanistic investigations further 
demonstrated that antibiotic treatment upregulated vascular 
endothelial growth factor A (VEGFA) expression while 
downregulating BAX and CDKN1B expression, consequently 
attenuating cisplatin’s antitumor efficacy (Zhu et  al., 2023; Qiu 
et al., 2020).

Notable mechanistic findings include the identification of 
Enterococcus spp. phage TMP sequences in fecal samples as 
predictive biomarkers for favorable immunotherapy outcomes, likely 
through molecular mimicry between TMP epitopes and the tumor-
associated antigen GPD1-L that enhances anti-tumor immune 
recognition (Fluckiger et  al., 2020; Li et  al., 2024). Another 
significant discovery involves Enterocloster species-mediated 
regulation of gut-tumor immune cell trafficking, where microbial 
modulation of bile acid metabolism leads to downregulation of 
mucosal addressin cell adhesion molecule-1 (MAdCAM-1) 
expression in the ileum. This reduction in MAdCAM-1 decreases 
gut retention of immunosuppressive α4β7 + CD4 + regulatory T 

cells (Treg17), promoting their migration to tumor sites and 
consequently influencing PD-1 immunotherapy efficacy (Fidelle 
et  al., 2023). The segmented filamentous bacteria in the gut 
microbiota can induce the differentiation of Th17 cells, which play a 
critical role in intestinal immune defense against extracellular 
pathogens. Conversely, Clostridium spp. promote the differentiation 
of intestinal Treg cells, essential for maintaining immune tolerance 
and preventing autoimmune responses (Yang et al., 2025). Through 
their antigens and metabolites, gut microbes interact with immune 
cells such as dendritic cells, macrophages, and T cells in the intestine, 
thereby enhancing the generation and function of regulatory T cells 
(Treg). Treg cells maintain immune tolerance by secreting anti-
inflammatory cytokines that suppress inflammatory responses, 
thereby preventing attacks on self-tissues and harmless substances 
(Zhou et al., 2025).

Certain beneficial gut microbiota exhibit protective effects against 
the initiation and progression of lung cancer. Particularly intriguing 
is the multifaceted role of Akkermansia muciniphila in lung cancer 
biology. Beyond its well-documented gut microbiota-modulating 
effects, Akkermansia muciniphila demonstrates the remarkable ability 
to translocate systemically and colonize lung tumor tissues, where it 
restructures the intratumoral microbial ecosystem. More importantly, 
Akkermansia muciniphila exerts profound metabolic reprogramming 
effects within the tumor microenvironment through modulation of 
key metabolic enzymes and metabolites. By selectively inhibiting 
glucose, glutamine, purine, and pyrimidine metabolic pathways in 
malignant cells, Akkermansia muciniphila creates a metabolically 
unfavorable niche that suppresses tumor growth while potentially 
enhancing treatment sensitivity. The positive correlation between 
intestinal Akkermansia muciniphila and intratumoral microbes 
suggests potential translocation of gut bacteria to tumor tissues, 
thereby influencing the tumor microenvironment. Studies reveal that 
intestinal Akkermansia muciniphila is associated with an enriched 
consortium of commensal bacteria, including Eubacterium hallii and 
Bifidobacterium adolescentis (Zhu et  al., 2023; Zhu et  al., 2024). 
Notably, murine model experiments demonstrate that viable 
Akkermansia muciniphila significantly suppresses tumor growth in 
Lewis lung carcinoma models. Mechanistically, Akkermansia 
muciniphila restores exhausted CD8+T cells to cytotoxic subsets, 
potently activating CD8+T cells and synergistically enhancing the 
efficacy of anti-PD-1 therapy (Derosa et al., 2022). These findings 
collectively underscore the sophisticated and multi-layered 
mechanisms through which gut microbiota influence lung cancer 
biology, offering novel targets for therapeutic intervention and 
biomarkers for treatment response prediction.

6 Discussion

The gut microbiome is increasingly recognized as a key modulator 
of lung cancer progression and treatment response through the 
gut-lung axis (Stevens et  al., 2025). Research has revealed that 
alterations in gut microbiota can serve as predictive biomarkers for 
early-stage lung cancer development and simultaneously modulate the 
efficacy of immunotherapy (Zheng et al., 2020; Gopalakrishnan et al., 
2018). Current studies have demonstrated that targeted modulation 
of gut microbiota can significantly influence therapeutic outcomes in 
lung cancer patients (Elkrief et al., 2025).
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Emerging research continues to unravel the complex mechanisms 
by which gut microbes influence tumor immunity and drug efficacy 
(Zhu et  al., 2023; Fluckiger et  al., 2020; Fidelle et  al., 2023). The 
primary mechanism involves gut microbiota metabolites influencing 
lung cancer treatment efficacy. Compared to healthy individuals, lung 
cancer patients exhibit significant alterations in cellular metabolic 
pathways, suggesting gut microbiota’s potential in modulating 
metabolism to suppress tumor growth. Specifically, lung cancer 
patients show enhanced metabolic activity in: antigen processing, 
steroid biosynthesis, ubiquitin-mediated protein degradation, 
transcription factor-related protein activity, bile acid secretion, and 
mitochondrial fatty acid elongation. Conversely, reduced activity is 
observed in: bacterial motility proteins, chemotaxis behaviors, 
flavonoid/flavonol biosynthesis, apoptosis regulation, and G protein-
coupled receptor signaling pathways (Qian et al., 2022; Liu et al., 2024; 
Zhu et al., 2023; Yang et al., 2023).

Additionally, gut microbes and their metabolites regulate host 
immunity by modulating immune cell migration, activation and 
function. Studies reveal that gut microbiota and their products locally 
influence intestinal immunity, causing dysregulation of immune cells 
and factors, which subsequently affects pulmonary immunity via 
lymphatic and circulatory systems. Toll-like receptors (TLRs) 
interacting directly with gut lumen are present not only in intestinal 
epithelial cells but also in lamina propria immune cells. Microbial 
products entering the mucosa are phagocytosed and transported by 
antigen-presenting cells to mesenteric lymph nodes, activating T/B 
cells. These activated cells then migrate back to lungs via lymphatic/
hematogenous circulation, either directly targeting cells or further 
stimulating other immune components (Jin et al., 2025; Yang et al., 
2025; Fofanova et al., 2024; Edwards and Brockmann, 2025).

The gut microbiota has garnered significant attention as a 
potential adjuvant target for lung cancer therapy. Modulating gut 
microbial communities to regulate host immune responses and 
enhance chemotherapy or immunotherapy efficacy has emerged 
as a novel strategy in precision oncology. Multiple studies 
demonstrate a strong correlation between gut microbiome 
composition and the effectiveness of ICIs (Liu et al., 2024; Lin 
et al., 2025; Lee et al., 2022). For instance, gut microbiota enriched 
with Akkermansia muciniphila and Bifidobacterium longum 
promotes CD8+T cell infiltration into the tumor 
microenvironment, thereby potentiating the anti-tumor effects of 
PD-1/PD-L1 inhibitors (Zhu et al., 2024; Yan et al., 2023; Nan 
et  al., 2025). Furthermore, microbial metabolites like SCFAs 
indirectly influence lung cancer progression by regulating Tregs 
and dendritic cell functions (Ma et  al., 2024; Li et  al., 2025). 
Preclinical studies support gut microbiome interventions  - 
including probiotics, prebiotics, or FMT - to improve therapeutic 
outcomes (Nobels et al., 2025). Mouse models show oral probiotics 
(e.g., Lactobacillus spp.) can mitigate chemotherapy-induced 
intestinal mucosal damage while enhancing anti-tumor immunity 
(Sun et  al., 2025). FMT trials have also demonstrated that 
transferring gut microbiota from ICI responders to 
non-responders can partially restore treatment sensitivity 
(Gharaibeh and Jobin, 2019; Zitvogel et al., 2016; Drew, 2024). 
However, clinical translation faces challenges including 
interindividual variability in microbiome responses, long-term 
safety concerns, and lack of standardized protocols. Future 

research should integrate multi-omics approaches (e.g., 
metagenomics, metabolomics) to identify key microbial species 
and mechanisms, alongside randomized controlled trials to 
validate clinical benefits of these interventions.

Key future directions include developing microbiome-based 
diagnostic tools and targeted modulation strategies to enhance 
treatment outcomes. Precision approaches like next-generation 
probiotics and optimized FMT show particular promise for improving 
immunotherapy responses. However, challenges remain in 
standardizing methodologies and establishing causal relationships 
through rigorous clinical studies. As this field advances, integrating 
microbiome profiling with other omics data will enable more 
personalized treatment strategies. The coming years will likely see 
these scientific insights translated into clinical applications, potentially 
transforming lung cancer management through microbiome-
informed approaches.
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