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Gastric cancer (GC) remains a significant global health burden, driven by a complex 
interplay of genetic, environmental, and microbial factors. Emerging evidence 
highlights the critical role of gut microbiota in gastric carcinogenesis, as microbial 
dysbiosis disrupts gastrointestinal homeostasis, fuels chronic inflammation, and 
promotes immunomodulation and metabolic reprogramming. Helicobacter pylori, a 
key microbial player, initiates tumorigenic pathways through reactive oxygen species 
production and the manipulation of dietary and microbial metabolites, leading 
to epigenetic and genetic alterations. Targeting gut microbiota has emerged as a 
promising therapeutic strategy, with interventions such as probiotics, prebiotics, 
dietary modifications, antibiotics, and fecal microbiota transplantation (FMT) 
showing potential in restoring microbial balance and attenuating tumor progression. 
Furthermore, advances in microbiota research have identified microbial biomarkers 
as valuable tools for early diagnosis, prognosis, and personalized treatment of 
GC. This review evaluates therapeutic strategies for microbiota modulation, 
assesses its diagnostic and prognostic potential, and highlights current gaps in 
the field. It also advocates for the integration of microbiota-targeted therapies 
into clinical practice, emphasizing their transformative potential in the prevention 
and management of GC. By addressing these aspects, this review aims to provide 
a comprehensive understanding of the role of gut microbiota in GC and to guide 
future research and clinical applications.
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1 Introduction

Gastric cancer (GC) remains a significant public health challenge, ranking as the third 
most common cancer and the fifth leading cause of cancer-related deaths. Annually, over a 
million new cases are diagnosed, with more than 700,000 deaths, predominantly in regions 
such as East Asia, Eastern Europe, and parts of South America (Yang et al., 2020). Despite 
advancements in diagnostics and treatments, the prognosis for advanced GC remains poor, 
with a 5-year survival rate of 30%, largely due to late-stage detection and treatment resistance 
(Sexton et al., 2020). This highlights the urgent need for innovative strategies in prevention, 
early diagnosis, and effective management of GC.

The human gut microbiota, composed of trillions of microorganisms, plays a pivotal role 
in maintaining digestive health and overall well-being. Beyond its functions in nutrient 
digestion, immune regulation, and gut barrier integrity (Takiishi et al., 2017), the imbalance 
of the gut microbiota, known as dysbiosis, has been increasingly implicated in the development 
and progression of GC (La Rosa et al., 2020). Helicobacter pylori (H. pylori), classified as a 
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Group 1 carcinogen by the International Agency for Research on 
Cancer, is a primary driver of GC through mechanism such as chronic 
inflammation, genomic instability, and DNA methylation (Yang et al., 
2021). Other gut bacteria, such as Fusobacterium nucleatum and pks+ 
Escherichia coli, along with their byproducts like nitrosamines and 
reactive oxygen species (ROS), further contribute to a tumor-
promoting microenvironment (Liu et al., 2021; Zhang W. et al., 2023; 
Udayasuryan et  al., 2024). The gut microbiota also influences the 
tumor microenvironment (TME) by modulating immune responses 
and metabolic pathways, while dysbiosis can impair the efficacy of 
treatments such as chemotherapy and immune checkpoint inhibitors 
(Miller and Carson, 2020; Luu et al., 2023).

Emerging research underscores the potential of gut microbiota as 
a biomarker for early GC detection and risk stratification. 
Non-invasive methods, including stool and saliva microbiota analysis, 
have identified specific microbial signatures associated with GC 
progression, such as elevated Akkermansia muciniphila and reduced 
diversity of beneficial bacteria (Ghaffari et  al., 2023). Therapeutic 
strategies targeting the gut microbiome, such as probiotics, prebiotics, 
and fecal microbiota transplantation (FMT), have shown promise in 
restoring microbial balance, reducing inflammation, and inhibiting 
tumor growth (Keikha and Karbalaei, 2021; Zhao and Jiang, 2021). 
However, challenges remain, including the variability of individual 
microbiota compositions influenced by genetics, diet, and 
environment, as well as ethical and safety concerns related to 
treatments like FMT. Addressing these issues requires interdisciplinary 
collaboration to translate findings into effective clinical applications. 
This review explores the complex relationship between gut microbiota 
and GC, highlighting its role in carcinogenesis, therapeutic potential, 
and diagnostic utility, with the aim of informing future strategies for 
GC prevention and treatment.

2 The gut microbiota in health and 
disease

The gut microbiota is a dynamic and diverse community of 
trillions of microorganisms, including bacteria, archaea, viruses, 
fungi, and other microbes, residing in the human digestive tract 
(Wang et  al., 2022). This complex ecosystem is present in all 
individuals, regardless of health status, though its role in disease states 
has been the focus of extensive research due to its profound impact on 
health and pathology. In a healthy state, microbiota plays a critical role 
in regulating immune responses, metabolism, and protective 
functions, making it essential for maintaining overall health. 
Firmicutes and Bacteroidetes are the two dominant phyla, constituting 
over 90% of the microbiota, while other significant groups, such as 
Actinobacteria, Proteobacteria, and Verrucomicrobia, contribute to 
host physiology and maintain microbial balance (Mestre et al., 2018).

One of the primary functions of gut microbiota is nutrient 
breakdown. These microorganisms produce enzymes that digest 
complex carbohydrates, which are otherwise indigestible in the upper 
gastrointestinal tract. Dietary fibers are fermented into short-chain 
fatty acids (SCFAs), which serve as an energy source for gut epithelial 
cells, regulate lipid and glucose metabolism, and exhibit anti-
inflammatory properties (Gill et  al., 2018; Mann et  al., 2024). 
Additionally, gut microbes synthesize essential vitamins, including 
vitamin K and B vitamins (B6, B12, and folate), which are crucial for 

DNA synthesis and cellular metabolism (Uebanso et al., 2020; Pham 
et al., 2021; Yang et al., 2024).

The gut microbiome also plays a pivotal role in immune 
regulation. Within the gut-associated lymphoid tissue (GALT), 
microbial antigens interact with innate immune cells, such as dendritic 
cells and macrophages, triggering the development of regulatory T 
cells (Tregs) and the production of secretory immunoglobulin A (IgA) 
(Pearson et  al., 2012; Dadarwal et  al., 2017; Bemark et  al., 2024). 
Furthermore, gut bacteria contribute to the integrity of the intestinal 
barrier by enhancing the production of tight junction proteins, which 
form a barrier between epithelial cells, preventing the translocation of 
harmful bacteria and toxins (Ma et al., 2022; Neurath et al., 2025). 
While the balance of gut bacteria is crucial for health, it can 
be disrupted by external factors, leading to dysbiosis. This imbalance 
has significant implications, particularly for gastric health, as explored 
in the following section.

3 Dysbiosis and its impact on gastric 
health

Dysbiosis refers to the disruption of the gut microbial balance, 
leading to adverse health effects. Dysbiosis is a critical factor in gastric 
health, contributing to chronic inflammation, immune dysfunction, 
and carcinogenesis. Understanding its mechanisms and developing 
strategies to restore microbial balance could significantly improve the 
prevention and treatment of GC. Dysbiosis can result from various 
factors, including diet, antibiotic use, infections, chronic stress, and 
environmental pollutants (Feng et  al., 2020; Alvarez et  al., 2021; 
Mostafavi Abdolmaleky and Zhou, 2024). A Western-style diet, high 
in fat and sugar but low in fiber, is particularly detrimental. It reduces 
microbial diversity, promotes the growth of harmful bacteria, and 
decreases the production of beneficial metabolites such as SCFAs 
(Malesza et al., 2021).

Chronic atrophic gastritis, a complex syndrome commonly 
characterized by progressive gastric mucosal atrophy and gland 
depletion, is a well-studied consequence of dysbiosis and is an 
important risk factor for GC (Sgambato et al., 2017; Lahner et al., 
2020; Conti et al., 2021). Notably, although H. pylori is the major 
driver of gastric inflammation and GC development, other 
microorganisms such as Fusobacterium nucleatum and Escherichia coli 
also play important roles in the formation of inflammatory 
microenvironment and carcinogenesis through complex interactions 
that promote the transformation of gastric mucosa from chronic 
inflammation to malignant (Mima et al., 2017). The production of 
ROS and other harmful metabolites by these bacteria directly damages 
gastric DNA, leading to mutations (Shields et al., 2021). Additionally, 
an overabundance of Proteobacteria increases lipopolysaccharides 
(LPS) production, exacerbating inflammation and impairing immune 
defenses (Larsen, 2017).

Dysbiosis also contributes to peptic ulcers by reducing the 
production of butyrate, a key SCFA that maintains the mucus layer 
protecting gastric epithelial cells (Li et al., 2024). Beyond local gastric 
effects, dysbiosis alters bile acid metabolism, generating secondary bile 
acids that further exacerbate gastrointestinal inflammation and 
carcinogenesis (Jia et al., 2018). Dysbiosis also contributes to immune 
dysfunction by impairing CD8 + T cell activity and fostering an 
immunosuppressive TME (Casalegno Garduno and Dabritz, 2021). 
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This is particularly evident in advanced GC cases, where dysbiosis-
associated immune alterations typically manifest as elevated levels of 
immunosuppressive cell populations, including Tregs and myeloid-
derived suppressor cells (MDSCs), consequently dampening anti-
tumor immune responses (Fan et al., 2020) (Figure 1; Table 1).

4 Mechanisms linking gut microbiota 
to gastric cancer

4.1 Chronic inflammation and immune 
modulation

Chronic inflammation, a hallmark of GC, is significantly 
influenced by microbial interactions. Virulence proteins such as CagA 
and VacA from H. pylori generate ROS, tumor necrosis factor-alpha 
(TNF-α), and interleukin-1 beta (IL-1β). These factors collectively 
induce genomic instability, activate immune cells, and damage 
epithelial cells, fostering a tumor-promoting environment (Han et al., 
2022). However, H. pylori is not the sole contributor to GC-related 
inflammation. Studies reveal that Fusobacterium nucleatum activates 
pathways like NF-κB and STAT3, thereby exacerbating inflammatory 
responses (Chen et al., 2022). Notably, Fusobacterium nucleatum not 
only drives the recruitment and differentiation of tumor-associated 
neutrophils (TANs) into pro-tumoral subtypes but also facilitates 
immune evasion while paradoxically enhancing the efficacy of anti-
programmed death-ligand 1 (PD-L1) antibody therapy (Zhang and 
Pan, 2020). Furthermore, Fusobacterium nucleatum-derived 
extracellular vesicles exacerbate chemoresistance by enhancing 

oxaliplatin resistance and promoting malignant phenotypes in GC 
cells (Wei et  al., 2022). Similarly, Escherichia coli maintains 
inflammation and promotes epithelial transformation through 
chronic colonization. It also induces DNA damage and amplifies 
inflammation cascades, fostering tumorigenesis via genotoxins such 
as colibactin (Ding et al., 2010; Bossuet-Greif et al., 2018).

Microbial metabolites play a pivotal role in modulating the 
TEM. SCFAs like butyrate exhibit dual effects depending on the 
microbial context. Under certain conditions, butyrate reduces 
autophagic inhibition and cytotoxicity in tumor-associated 
macrophages (TAMs) by suppressing immunosuppressive molecules 
such as PD-L1 and IL-10 (Dong et  al., 2022). This suppression 
stimulates cytotoxic T cells, enhancing anti-tumor immune 
responses. Conversely, metabolites like LPS and ROS activate 
MDSCs, which suppress anti-tumor immunity and promote an 
immunosuppressive environment.

The interplay between H. pylori, other pathogenic microbes, and 
immune cell activation underscores the role of chronic inflammation 
in GC development. Targeting this inflammation through anti-
inflammatory probiotics or inhibitors of microbial virulence factors 
could mitigate cancer-promoting inflammation.

4.2 Metabolic reprogramming

The gut microbiota significantly influences metabolic 
reprogramming, a critical feature of tumor progression in 
GC. Microbial metabolic activity shapes the TME by altering energy 
sources and producing metabolites that drive tumor growth and 

FIGURE 1

The gut microbiota in health and disease. Created in Biorender.com.
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immune evasion. Gut microbes manipulate glucose metabolism, a 
process central to the Warburg effect observed in many cancers, 
including GC (Nakagawa et al., 2020). In dysbiosis, tumor cells shift 
toward aerobic glycolysis, characterized by increased glucose uptake 
and lactate production. This metabolic shift drives rapid tumor 
growth and creates an acidic microenvironment that inhibits 
immune cell activity and facilitates tumor invasion. Microbial 
metabolites like lactate and succinate contribute to this metabolic 
reprogramming. Dysbiosis similarly disrupts lipid metabolism, with 
secondary bile acids from microbial metabolism promoting lipid 
accumulation in the TME (Sipe et al., 2020). These lipids serve as 
energy sources for tumor cells and support survival and metastatic 
pathways. Furthermore, dysbiotic microbial communities impair 
fatty acid oxidation, disrupting lipid homeostasis and promoting 
tumorigenesis (Le Noci et al., 2021). For example, arginine depletion, 
a critical substrate for T cell activation, suppresses immune 
surveillance and enables tumor cells to evade immune detection 
(Szefel et al., 2019).

The dynamic interplay between host and microbial metabolic 
pathways highlights the potential for targeting metabolic 
reprogramming in GC. Therapeutic strategies aimed at restoring 
microbial balance or interfering with tumor-promoting 
metabolites could curb metabolic adaptations that support 
tumor progression.

4.3 Epigenetic and genetic modifications

Emerging research highlights a bidirectional crosstalk between 
the host and gut microbiota, mediated by the epigenome-microbiome 
axis, where host epigenotypes dynamically influence gut microbiota 
composition through transcriptional regulation without altering the 
genetic code, while microbial metabolites reciprocally drive host 
epigenetic reprogramming, contributing to gastric carcinogenesis 

(Pepke et al., 2024a,b). Dysbiotic microbiota induce genotoxic damage 
through multiple pathways. For instance, pks + Escherichia coli 
synthesizes colibactin, which generates DNA interstrand cross-links 
and double-strand breaks, activating the ATM/ATR-CHK2 DNA 
damage response and promoting mutations in TP53 and KRAS 
(Rahman et  al., 2022; Wong and Yu, 2025). Similarly, H. pylori 
generate ROS, causing 8-oxogyanine lesions that drive G to T 
transversions in CDKN2A/p16 and CDH1 (Hahm et al., 2022; Wu 
et  al., 2023). Additionally, Fusobacterium nucleatum exacerbates 
genomic instability by downregulating mismatch repair proteins 
MSH2 and MLH1 via ROS, leading to microsatellite instability (Wei 
et al., 2022; Udayasuryan et al., 2024).

Epigenetic remodeling plays an equally critical role in gastric 
carcinogenesis, with epigenetic alterations and changes in gene 
expression serving as key mechanisms (Yang et  al., 2023). The 
H. pylori virulence factor CagA hijacks SHP-2 to activate DNMT1 
and DNMT3B, inducing hypermethylation of CpG islands in 
CDKN2A/p16, RPRM, RUNX3, and LOX promoters, thereby 
establishing a CpG Island Methylator Phenotype (CIMP) in 30–40% 
of gastric tumors (Kontizas et al., 2020; Bhattacharjee et al., 2024). 
CagA also recruits p300 to increase H3K27 acetylation at oncogenes 
such as c-MYC and c-JUN, while VacA promotes repressive 
H3K9me3 via SUV39H1, silencing tumor suppressors FOXP3 and 
DUSP5 (Patel et al., 2017). Microbial metabolites exhibit context-
dependent effects on the epigenome-microbiome axis: butyrate 
inhibits histone deacetylases (HDACs I/IIa) to upregulate 
CDKN1A/p21 and BAX (Cheng et  al., 2019; Yao et  al., 2024), 
hydrogen sulfide inhibits HDACs and DNMTs while activating 
NF-κB through p65 persulfidation (Jones and Neish, 2017), and 
secondary bile acids (deoxycholate) activate FXR to suppress 
sFRP1, promoting β-catenin nuclear translocation (Demirkiran 
et al., 2024). SCFAs, including butyrate, acetate, and propionate 
derived from microbial polysaccharide fermentation, serve as 
central regulators of the epigenome-microbiome axis. They inhibit 

TABLE 1 The gut microbiota in health and disease.

Aim of study Main findings Conclusions References

 • To explore the composition and 

function of gut microbiota in a 

healthy individual

 • Firmicutes and Bacteroidetes dominate, with 

Actinobacteria, Proteobacteria, and Verrucomicrobia 

contributing to metabolism and immune modulation

 • Balanced microbiota is essential for 

digestion, immune system regulation, 

and metabolic homeostasis

Gill et al. (2018)

 • To understand microbial 

contributions to vitamin synthesis and 

nutrient absorption

 • Gut microbiota produces vitamin K, B6, B12, 

and folate

 • Supports nutrient absorption and enhances digestive 

efficiency

 • Deficiencies in microbiota diversity 

can lead to vitamin deficiencies and 

metabolic disorders

Uebanso et al. (2020)

 • To assess the impact of dysbiosis on 

gastric health

 • Dysbiosis leads to chronic inflammation

 • Increased oxidative stress

 • Epithelial barrier disruption, promoting 

carcinogenesis

 • Gut microbiota imbalances are 

strongly linked to GC development 

and other metabolic diseases

Alvarez et al. (2021)

 • To evaluate the role of gut microbiota 

in immune system function

 • Gut microbiota interacts with GALT

 • Regulates immune responses through microbial 

metabolites like SCFAs

 • Microbiota plays a critical role in 

immune homeostasis, and its 

imbalance can contribute to 

inflammatory diseases

Cebra et al. (1998)

 • To investigate the role of gut 

microbiota in metabolic regulation

 • Gut bacteria influence glucose metabolism, lipid 

breakdown, and amino acid processing

 • SCFAs (butyrate, acetate, propionate) impact energy 

balance and inflammation

 • Metabolic dysregulation due to gut 

microbiota imbalance can contribute 

to obesity and metabolic disorders

Choi et al. (2021)
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HDACs to prevent chromatin condensation, enhance DNA 
demethylation by activating ten-eleven translocation enzymes 
(Zhang X. et  al., 2023; Mann et  al., 2024), modulate histone 
decrotonylation and acylation, and provide acetyl groups for 
histone acetyltransferases (Xie et al., 2024).

Non-coding RNA networks further integrate microbial signals 
into host gene regulation. H. pylori upregulates miR-21 to target PTEN 
and PDCD4 (Behrouzi et al., 2020), while Fusobacterium nucleatum 
induces miR-155 via LPS/TLR4 signaling to suppress SOCS1 and 
promote immune evasion (Chen et al., 2022; Arre et al., 2024). Recent 
studies reveal that Fusobacterium nucleatum-derived extracellular 
vesicles deliver miR-1246 to target DAB2, disrupting the Hippo 
pathway (Wang P. et al., 2024). H. pylori also upregulates lncRNA H19, 
which sequesters let-7 to derepress HMGA2 and drive epithelial-
mesenchymal transition (EMT) (Liu et al., 2024).

Therapeutically, targeting this host-microbiota crosstalk shows 
significant promise. HDAC inhibitors (e.g., vorinostat) and DNMT 
inhibitors (e.g., azacytidine) reverse microbiota-driven epigenetic 
alterations and changes in gene expression, while phase I trials are 
evaluating anti-miR-21 oligonucleotides (Zhang et  al., 2024). 
Additionally, CRISPR-engineered probiotics are being developed to 
restore protective butyrate production (Bianchetti et al., 2023). This 
mechanistic understanding of the epigenome-microbiome axis opens 
new avenues for preventing or reversing carcinogenic processes 
through precision targeting of microbial-epigenetic regulators 
(Figure 2; Table 2).

5 Therapeutic modulations of gut 
microbiota in gastric cancer

5.1 Probiotics and prebiotics

GC is one of the most significant malignancies of the digestive 
system. The regulation of gut microbiota through probiotics and 
prebiotics represents a fundamental therapeutic strategy in GC 
management. The mechanism underlying their use in GC treatment 
include restoring microbial balance and exerting anti-inflammatory 
effects. Specific strains of Lactobacillus and Bifidobacterium exhibit 
probiotic properties that suppress H. pylori-induced gastric 
inflammation by enhancing mucosal immunity and reducing 
oxidative stress (Nabavi-Rad et al., 2022). These strains promote the 
production of anti-inflammatory cytokines, such as IL-10 and TGF-β, 
while inhibiting pro-inflammatory cytokines, including TNF-α. 
Additionally, probiotics strengthen the gastric mucosal barrier by 
increasing mucin secretion and preserving epithelial integrity, thereby 
preventing microbial translocation and systemic inflammation (He 
et al., 2023).

Prebiotics, including inulin, fructooligosaccharides (FOS), and 
galactooligosaccharides (GOS), serve as substrates for beneficial gut 
bacteria, stimulating the production of SCFAs, including butyrate, 
acetate, and propionate. For example, butyrate acts as a HDAC 
inhibitor, enhancing anti-inflammatory and anti-carcinogenic gene 
expression in gastric tissues (Salek Farrokhi et al., 2020). Moreover, 

FIGURE 2

Mechanisms linking gut microbiome and gastric cancer. Created in Biorender.com.
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human trials have revealed that dietary interventions with 
prebiotics also improve the effectiveness of conventional therapies, 
including chemotherapy and immunotherapy, through modulation 
of the gut microbiota composition and improving treatment 
outcomes (Yao et al., 2025).

5.2 Antibiotics and Helicobacter pylori 
eradication

Antibiotics play a crucial role in treating GC associated with 
H. pylori (Piscione et al., 2021). In high-risk individuals, early 
eradication of H. pylori has been shown to significantly reduce 
the likelihood of developing GC. However, the use of antibiotics 
is not without risks. Extensive patient exposure and inappropriate 
use by uninformed individuals have led to overuse and misuse, 
resulting in antibiotic resistance, which poses a significant 
challenge to the effectiveness of H. pylori eradication therapies. 
Additionally, broad-spectrum antibiotics can disrupt the gut 
microbiota, leading to dysbiosis, reduced microbial diversity, and 
impaired immune responses (Fishbein et al., 2023). To address 
these limitations, adjunctive probiotic supplementation and the 
development of novel anti-microbial agents are being explored to 
enhance the efficacy and safety of antibiotic therapy in 
GC management.

5.3 Dietary interventions

Given the potential role of dysbiosis in GC development, 
understanding how to promote a healthy gut environment is essential, 
particularly in the context of gastric tumorigenesis. Dietary 
interventions are non-invasive, sustainable tools for modulating 
microbiota and lowering risk for GC. Specific dietary patterns 

influence the composition and function of the gut microbiota, with 
certain diets associated with favorable microbial profiles (Rinninella 
et al., 2019). A diet rich in fiber, whole grains, fruits, and vegetables 
promotes the growth of beneficial gut microbiota and the synthesis 
of SCFAs, particularly butyrate, which exhibits anti-inflammatory 
and anti-carcinogenic properties (Bultman, 2017). High-fiber diets 
are also linked to enhanced immune function, decreased oxidative 
stress, and a strengthened gut barrier, all of which reduce the 
risk of GC.

Polyphenols, bioactive compounds found in foods such as 
berries, green tea, and dark chocolate, further contribute to gut 
microbiota modulation (Plamada and Vodnar, 2021). These 
compounds act as fermentation substrates for beneficial bacterial 
like Bifidobacterium and Lactobacillus. In gastric tissues, 
polyphenol-derived metabolites have been shown to induce 
apoptosis and inhibit angiogenesis, thereby suppressing tumor 
growth (Gade and Kumar, 2023). Additionally, plant-based diets are 
rich in antioxidants and phytochemicals that counteract oxidative 
stress and inflammation, key drivers of GC (Guan et  al., 2021). 
While dietary interventions hold promise, individual variability in 
gut microbiota composition and dietary responses highlights the 
potential need for personalized nutrition strategies to maximize 
their therapeutic potential.

5.4 Fecal microbiota transplantation

FMT, a novel therapy involving the transfer of feces from a healthy 
donor to a recipient, offers the potential to restore a balanced gut 
microbiota (Biazzo and Deidda, 2022). FMT has gained attention as a 
potential treatment for dysbiosis-related diseases, including 
GC. Preclinical and clinical studies have demonstrated that FMT can 
alter gut microbiota, with reports in patients with GC showing increased 
microbial diversity and the growth of beneficial bacteria. These changes 

TABLE 2 Mechanisms linking gut microbiota to gastric cancer.

Aim of study Main findings Conclusions References

 • To analyze the role of chronic 

inflammation in GC progression

 • H. pylori and Fusobacterium nucleatum activate NF-κB and 

STAT3 pathways, increasing inflammatory cytokine 

production and epithelial damage

 • Chronic inflammation induced by gut 

microbiota contributes to 

tumorigenesis

Chen et al. (2022)

 • To study the gut microbiota’s role 

in immunosuppression in GC

 • Dysbiosis suppresses anti-tumor immunity via Tregs 

and MDSCs

 • Microbial metabolites like LPS contribute to immune evasion

 • Targeting gut microbiota-immunity 

interactions could enhance cancer 

immunotherapies

Dong et al. (2022)

 • To examine epigenetic and genetic 

modifications caused by microbiota

 • H. pylori and other microbes induce DNA methylation

 • H. pylori and other microbes cause histone modifications and 

oncogenic microRNA expression

 • Microbial-driven epigenetic changes 

contribute to carcinogenesis and 

represent potential therapeutic targets

Jones and Neish 

(2017)

 • To investigate metabolic 

reprogramming mediated by gut 

microbiota

 • Microbial metabolites, such as SCFAs, ROS, and lactate, alter 

energy metabolism

 • Promote immune evasion and tumor growth

 • Gut microbiota-induced metabolic 

changes influence GC progression and 

therapy resistance

Wu et al. (2024)

 • To assess how gut microbiota 

influences chemotherapy and 

immunotherapy efficacy

 • Dysbiosis can alter drug metabolism and reduce response rates 

to treatments like checkpoint inhibitors

 • Some gut bacteria enhance chemotherapy effectiveness by 

modulating drug bioavailability

 • Understanding gut microbiota 

composition could lead to 

personalized cancer therapies

Guan et al. (2021)

 • To explore gut microbiota-derived 

toxins and their role in gastric 

carcinogenesis

 • Bacterial toxins, such as colibactin, hydrogen sulfide, and 

nitrosamines, promote DNA damage and mutations

 • Increase oxidative stress, leading to genomic instability

 • Microbiota profiling could help 

identify high-risk patients for early 

GC screening

Cammarota et al. 

(2020)
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have been associated with improved efficacy of chemotherapy and 
immunotherapy (Park et al., 2020). FMT has also been shown to reduce 

systemic inflammation and restore immune responses, thereby curbing 
tumor progression (Tian et al., 2024) (Figure 3; Table 3).

FIGURE 3

Therapeutic modulation of gut microbiota in gastric cancer. Created in Biorender.com.

TABLE 3 Therapeutic modulation of gut microbiota in gastric cancer.

Aim of study Main findings Conclusions References

 • To evaluate the efficacy of 

probiotics and prebiotics for GC

 • Probiotics, such as Lactobacillus and Bifidobacterium, reduce 

inflammation and enhance gut barrier integrity

 • Probiotics modulate immune responses

 • Probiotics and prebiotics are promising 

interventions but require strain-specific 

optimization and further clinical 

validation

He et al. (2023)

 • To assess the impact of antibiotics 

and H. pylori eradication

 • Eradication of H. pylori reduces gastric inflammation and 

cancer risk

 • Potential risks include microbiota disruption and antibiotic 

resistance

 • Antibiotic use must be carefully 

balanced with strategies to preserve 

microbiota integrity to avoid 

unintended dysbiosis

Piscione et al. 

(2021)

 • To explore dietary interventions 

in modulating gut microbiota

 • High-fiber and polyphenol-rich diets promote beneficial 

bacteria and SCFAs production

 • Reduce oxidative stress and inflammation

 • Dietary modifications are a key strategy 

for maintaining gut homeostasis and 

may contribute to GC prevention

Bultman (2017) 

and Rinninella 

et al. (2019)

 • To examine the potential of FMT 

in GC treatment

 • FMT restores microbial diversity

 • Improves chemotherapy response

 • Reduces systemic inflammation

 • FMT is a promising therapeutic 

approach but remains experimental, 

requiring further clinical trials and 

standardized safety protocols

Park et al. (2020)

 • To assess microbiota-derived 

biomarkers for early GC 

detection

 • Specific microbial signatures correlate with early-stage GC

 • Non-invasive stool and saliva microbiome tests show promise 

for diagnostics

 • Microbiota-based biomarkers could 

enhance early detection and risk 

stratification

Liu et al. (2024) 

and Mukherjee 

et al. (2025)

 • To evaluate the long-term safety 

and feasibility of microbiota-

targeted therapies

 • Probiotic-based therapies are generally safe but have 

variable efficacy

 • Long-term impacts of microbiota alteration remain unclear

 • More controlled studies are needed to 

establish safety guidelines for clinical 

applications

Yue et al. (2021)
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FIGURE 4

Gut microbiota diagnostic of gastric cancer. Created in Biorender.com.

6 Diagnostic and prognostic 
implications of gut microbiota

6.1 Microbial biomarkers for early detection

The gut microbiota harbors microbial biomarkers that offer 
significant diagnostic potential for GC. Research has shown that the 
composition of the gut microbiota varies among individuals with 
different stages of gastric disease, including superficial gastritis, 
atrophic gastritis, gastric mucosal atypical hyperplasia, and advanced 
GC, distinct microbial compositional changes were identified (Miao 
et al., 2022). For instance, dysbiosis in GC is often characterized by an 
overabundance of pro-inflammatory bacterial species, such as 
Fusobacterium nucleatum and Escherichia coli, alongside a reduction 
in beneficial microbes like Lactobacillus and Bifidobacterium 
(Mukherjee et al., 2025). Non-invasive methods, such as stool and 
saliva microbiota analysis, have emerged as promising tools for early 
GC detection. Another study demonstrated that a combination of 
Lactobacillus and Streptococcus in fecal samples could effectively 
discriminate between GC patients and healthy individuals, with an 
area under the curve (AUC) of 0.7949 in one analysis and 0.7712 in 
an independent cohort, suggesting their potential as non-invasive 
diagnostic markers (Wang Y. et al., 2024).

6.2 Predictive models for treatment 
outcomes

The gut microbiota significantly influences the efficacy of GC 
treatments, including chemotherapy, immunotherapy, and precision 
medicine. Emerging evidence suggests that microbiota-based 
predictors can stratify patients and guide personalized therapeutic 
strategies. For example, the response of immunotherapy patients to 
immune checkpoint inhibitors has been shown to correlate with gut 
microbiota composition (Tomela et  al., 2020). Specific microbial 
species, such as Akkermansia muciniphila and Bifidobacterium 
longum, have been associated with immune checkpoint inhibitors in 
patients with GC (Kiousi et  al., 2023). These microbes not only 
enhance antigen presentation and T cell activation, thereby boosting 
anti-tumor immunity, but also modulate the tumor 
microenvironment. The gut microbiota also plays a role in 
chemotherapy outcomes by interacting with chemotherapeutic drugs. 
Certain bacteria produce enzymes that metabolize these drugs, 
altering their efficacy and toxicity. For instance, microbial metabolism 
of irinotecan generates toxic metabolites that exacerbate 
gastrointestinal side effects (Yue et al., 2021). Conversely, microbiota 
profiles that promote the production of SCFAs have been linked to 
reduced toxicity and better treatment tolerance (Figure 4).
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7 Challenges and future directions

7.1 Limitations of existing 
microbiota-targeted therapies

Microbiota-targeted therapies, including probiotics, prebiotics, and 
FMT, have shown promise in clinical applications. However, several 
limitations hinder their broader adoption. One major limitation is the 
lack of standardized protocols. Variability in probiotic strains, dosages, 
and delivery methods complicates the generalization of findings across 
studies and populations. For example, while FMT has proven effective in 
treating recurrent Clostridium Difficile infections, its application in 
cancer patients remains limited due to logistical and safety concerns, 
such as the risk of transmitting infections and introducing pathogenic 
microbes (Sandhu and Chopra, 2021). Additionally, the long-term effects 
of altering gut microbial communities are poorly understood, raising 
concerns about potential unintended consequences. The inconsistent 
efficacy of microbiota-targeted therapies in GC further underscores the 
need for personalized approaches that consider individual microbiota 
profiles and genetic predispositions (Nagpal et al., 2018).

7.2 Challenges in clinical translation

One of the most significant challenges in microbiota research 
is the variability of gut microbiota across individuals. Factors 
such as diet, age, genetics, and geographical location contribute 
to this variability, making it difficult to develop universal 
microbiota-based therapies (Sandoval-Motta et  al., 2017). 
Research has shown that gut microbiota composition varies 
widely between populations from different geographical regions, 
highlighting the influence of local environmental conditions, 
dietary habits, and nutritional intake on microbial diversity 
(Gupta et  al., 2017; Healey et  al., 2017). In addition, research 
using germ-free mice humanized with microbiome samples from 
donors of different countries have demonstrated that geographic 
origin can affect susceptibility to enteric infections like 
Citrobacter rodentium (Porras et al., 2021). While host genetics 
play a role in microbiome variability, environmental factors such 
as shared household environments often exert a more pronounced 
effect. To address this, future research should focus on 
personalized microbiota interventions, leveraging multi-omics 
technologies and machine learning to tailor therapies based on 
individual microbiota profiles.

Another critical issue is the standardization of FMT protocols. The 
absence of standardized protocols for FMT represents a significant 
obstacle to its broad clinical adoption. Heterogeneity in donor 
selection, fecal processing methodologies, and administration 
techniques complicates the interpretation of research outcomes and 
restricts the generalizability of findings. Recent efforts have been made 
to address these challenges, such as the joint workshop by the 
International Alliance for Biological Standardization (IABS) and the 
BIOASTER Microbiology Technology Institute, which aimed to 
provide a multidisciplinary perspective on developing FMT guidelines, 
including technical, regulatory, and standardization requirements 
(Servetas et al., 2022). Variations in fecal processing approaches, such 
as the use of fresh versus frozen samples, may influence the viability 
and composition of the transplanted microbiota. Furthermore, 

concerns persist regarding the safety of FMT in cancer patients, given 
the incomplete understanding of risks associated with introducing 
pathogenic microbes or disturbing the recipient’s microbiota. To ensure 
the safe and effective utilization of FMT in GC management, it is 
imperative to establish comprehensive standardized guidelines 
encompassing stringent donor screening and robust quality control 
measures (Karimi et al., 2024).

Ethical and logistical considerations also play a significant role in 
microbiota-based interventions. Ensuring patient safety is paramount, 
particularly in vulnerable populations like cancer patients. For example, 
the potential risks associated with FMT, including the transmission of 
infections and unintended alterations to the recipient’s microbiota, must 
be carefully managed (Merrick et al., 2020). Ethical considerations also 
extend to the use of microbiota data, as issues of data privacy and 
informed consent become increasingly relevant (Ma et  al., 2018). 
Patients must be adequately informed about how their microbiota data 
will be used and protected. Logistically, the scalability of microbiota-
based therapies is a significant challenge, as the infrastructure and 
economic investment required for large-scale production and 
distribution are substantial (Rabaey et  al., 2020). Addressing these 
challenges will require collaboration among researchers, clinicians, and 
policymakers to develop ethical guidelines and scalable solutions.

7.3 Inter-study comparability issues

Inter-study comparability is a significant challenge in microbiota 
research, primarily due to variability in experimental design, 
heterogeneity in study populations, and methodological differences. 
Differences in experimental design, such as variations in sample size, 
follow-up duration, and control group selection, can lead to 
inconsistent results. Studies with small sample sizes may lack the 
statistical power to detect significant effects, while those with short 
follow-up periods may fail to capture the long-term impacts of 
microbiota interventions. To enhance comparability, future research 
should adopt standardized experimental designs, including predefined 
sample size calculations and follow-up protocols.

The heterogeneity of study populations further complicates the 
interpretation of microbiota research. Differences in age, gender, 
disease stage, and geographical location can influence microbiota 
composition and intervention outcomes. For instance, elderly 
patients often exhibit reduced microbiota diversity compared to 
younger individuals, which may affect their response to probiotics or 
prebiotics. Similarly, dietary habits and environmental exposures 
vary across regions, further contributing to population-specific 
differences. To address this, future studies should aim to include 
diverse and representative cohorts, enabling a more comprehensive 
understanding of microbiota dynamics in GC.

Variability in microbiota analysis techniques and data processing 
methods also hinders inter-study comparability. For example, 16S rRNA 
sequencing and metagenomic sequencing differ in their resolution and 
coverage, leading to potential discrepancies in the identification of 
microbial taxa. Additionally, differences in bioinformatics pipelines, 
such as the use of operational taxonomic units (OTUs) versus amplicon 
sequence variants (ASVs), can affect the interpretation of results. To 
minimize these discrepancies, researchers should adopt standardized 
protocols for microbiota analysis and data processing, and transparently 
report methodological details in their publications.
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7.4 Advances in gut microbiota research

Recent developments in gut microbiome research have opened 
promising avenues for overcoming these challenges. The use of multi-
omics methods, such as metagenomics, transcriptomic, proteomics, and 
metabolomics, has revolutionized the study of microbiota-host 
interactions (Sanches et al., 2024). These methods enable researchers to 
examine microbial communities in depth and determine their role in 
health and disease. Significant progress has also been made in 
personalized medicine, allowing researchers to develop tailored 
therapeutic strategies based on individual microbiota profiles by 
integrating clinical and environmental factors with machine learning and 
multi-omics data. For example, personalized probiotics and prebiotics are 
being studied to optimize gut health and improve treatment outcomes in 
GC patients (Bianchetti et al., 2023). Moreover, precision nutrition, an 
emerging strategy that uses microbiota data to tailor dietary interventions, 
has advanced as a complementary approach for cancer management 
(Shukla et al., 2024).

Artificial intelligence (AI) and machine learning are also transforming 
microbiota research. These technologies enable the analysis of large datasets 
to identify microbial biomarkers, predict response to treatment, and 
uncover novel therapy targets. Integrating microbiota data with other omics 
layers through AI-driven algorithms has broadened the scope of research, 
leading to more accurate diagnostics and targeted therapies (Biswas and 
Chakrabarti, 2020). Collaborative efforts, such as the ImmUniverse 
Consortium, are further advancing personalized medicine by combining 
multi-omics approaches combined with clinical data to build predictive 

models for improved decision-making and patient to outcomes in 
immune-mediated diseases like GC.

7.5 Future directions

To address current limitations, we propose key future directions for 
microbiota research. First, standardized protocols for microbiota analysis 
and intervention delivery are needed to enhance reproducibility and 
comparability. Second, personalized microbiota interventions, such as 
probiotics, prebiotics, and precision nutrition, should be  expanded to 
optimize therapeutic outcomes across diverse populations. Third, robust 
computational tools are essential for integrating and interpreting multi-
omics data, enabling a deeper understanding of microbiota-host 
interactions. Fourth, AI-driven models should be validated in independent 
cohorts to improve their utility in predicting treatment responses and 
identifying therapeutic targets. Finally, international collaborations and 
multi-center studies should be fostered to harmonize protocols, share data, 
and improve the generalizability of findings. These efforts will accelerate the 
translation of microbiota-based therapies into clinical practice (Figure 5).

8 Conclusion

The study of gut microbiota in GC has unveiled its critical role in 
tumorigenesis, progression, and therapeutic outcomes. Dysbiosis drives 
chronic inflammation, immune modulation, metabolic reprogramming, 

FIGURE 5

Prognostics implications of gut microbiome for gastric cancer. Created in Biorender.com.
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and epigenetic changes, contributing to gastric carcinogenesis. Key 
microbes like H. pylori and microbial metabolites exhibit context-
dependent roles in tumor growth, highlighting the complexity of 
microbiota-host interactions. Therapeutic strategies, including probiotics, 
prebiotics, dietary interventions, antibiotics, and FMT, offer promise in 
restoring microbial balance, enhancing treatment efficacy, and reducing 
toxicity. Advances in microbial biomarkers and multi-omics technologies 
further enable early diagnosis and personalized medicine. Integrating 
microbiota modulation into clinical practice represents a transformative 
opportunity to shift from reactive treatment to proactive prevention, paving 
the way for predictive, preventive, and personalized care in the 
management of GC.
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