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Root exudates in a plant’s rhizosphere alters microbial community membership 
and activity, which can in turn alter a plant’s health and fitness. In this study 
we characterized bacterial community composition, using 16S rRNA-gene (DNA) 
sequencing to define total community membership and 16S rRNA-transcripts 
(RNA) to define protein synthesis potential (PSP) as a proxy of microbial activity 
in both rhizosphere and bulk soils of a Wyoming native plant Boechera stricta. 
Using PSP rather than total microbial membership reveals fine-scale differences in 
genera between the rhizosphere and control soil communities. This study found 
DNA community analysis alone disproportionately increased the importance of 
Saccharibacteria and Gemmatimonadetes phyla in the overall soil community 
profile, and underestimated the importance of several known root associates 
(Comamonadaceae, Rhizobacter, and Variovorax), which had elevated PSP in the 
rhizosphere soil. Thus, the use of DNA-vs. RNA-based community characterization 
reveals that community composition (DNA) may not completely capture community 
activity (RNA). Analysis of the PSP community profile also indicated elevated 
levels of proteins associated with carbohydrate and amino acid metabolism in the 
rhizosphere-associated bacteria, which may shed light on potential mechanisms 
by which root exudates shape the rhizosphere soil community.
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Introduction

The thin layer of soil around plant roots, called the rhizosphere, contains microorganisms 
that affect plant health and fitness, and these effects are sufficiently large that the rhizosphere 
microbiome has been described as the second genome of a plant (Berendsen et al., 2012). The 
rhizosphere microbiome increases plant nutrient access (Chen et al., 2002; Richardson and 
Simpson, 2011; Mendes et al., 2013), relieves and increases tolerance to abiotic stress (Mendes 
et al., 2013; Zolla et al., 2013), provides protection of a plant against disease (Mendes et al., 
2011; van der Voort et al., 2016), promotes plant growth and health both directly and indirectly 
(Bashan, 1998; Lugtenberg and Kamilova, 2009; Zarraonaindia et al., 2015; Henning et al., 
2016), and can alter the plant’s phenology, such as flowering time (Wagner et al., 2014; Panke-
Buisse et al., 2015).

The majority of the rhizosphere microbial community is recruited from microbes in the 
surrounding bulk soil (Mendes et  al., 2013; Philippot et  al., 2013; Wagner et  al., 2014; 
Zarraonaindia et al., 2015; van der Voort et al., 2016), and recruitment is driven by substrate 
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utilization of root exudates given off by the plant, resulting in niche 
partitioning of soil microbes into the rhizosphere (Bulgarelli et al., 
2013; Chaparro et al., 2013; Baetz and Martinoia, 2014; Huang et al., 
2014; Zhalnina et al., 2018). The degree to which a plant’s rhizosphere 
differs from the surrounding bulk soil is called the rhizosphere effect 
(Philippot et  al., 2013; Sasse et  al., 2018), which varies by plant 
genotype, developmental age, life history, and numerous other factors 
(Lundberg et al., 2012; Bulgarelli et al., 2013; Chaparro et al., 2013; 
Schreiter et al., 2014; Shi et al., 2015; Pérez-Jaramillo et al., 2017).

Microbial communities may differ with regard to total microbial 
community membership or potential community activity. The 16S 
rRNA-gene (referred hereafter to as DNA) encodes for the small 
ribosomal subunit rRNA, which is a conserved marker gene used in 
many studies to rapidly characterize bacterial communities and which 
reflects the total microbial membership in a community (Caporaso 
et al., 2012; Kozich et al., 2013). The 16S rRNA-transcript (referred 
hereafter to as RNA) is the non-coding nucleic acid component of the 
small ribosomal subunit, which is essential to protein synthesis 
(Lindahl, 1975; Nomura et al., 1984). In addition to metabolically 
active cells, DNA-derived community characterization can also reflect 
the presence of DNA from dead or lysed cells, extracellular free DNA, 
and dormant cells that may not be  significantly active within a 
community (Hamilton et al., 1968; Lorenz and Wackernagel, 1987; 
England et al., 2004; Bakken and Frostegård, 2006). RNA molecules 
degrade more quickly than DNA (Karl and Bailiff, 1989), therefore 
RNA-based community characterization will exclude these inactive 
players from analysis. Community analysis using DNA and RNA 
allow for the calculation of RNA: DNA ratios (referred to hereafter as 
16S-ratio), which normalize the concentration of RNA ribosomes by 
the abundance of DNA gene copies and have been used by many 
studies to estimate recent microbial activity (e.g., Muttray and Mohn, 
1999; Zhang et al., 2014; Denef et al., 2016; Bowsher et al., 2019). RNA 
indicates a population’s potential to catalyze protein synthesis, via the 
presence of ribosomes, not the realized function and outcome of 
protein synthesis, therefore a more accurate descriptor of RNA and 
16S-ratios is protein synthesis potential (PSP), or potential activity, 
rather than recent microbial activity (Blazewicz et al., 2013).

RNA-derived microbial community diversity is shown to respond 
more sensitively to shifting local abiotic and biotic conditions than 
DNA-derived community characterization (Hunt et al., 2013; Charvet 
et al., 2014). Among the abiotic factors changing in the rhizosphere, 
root exudates have been shown to alter microbial community activity 
and functions in addition to community membership (Hanson et al., 
2008; Stuart Chapin et al., 2009; Eilers et al., 2010; Shi et al., 2011). 
Several studies have shown a significant increase in microbial activity 
in the rhizosphere due to root exudates (Drake et al., 2011; Goldfarb 
et al., 2011; Phillips et al., 2011; Shi et al., 2011), and it is theorized that 
as much as 30–50% of activity in the soil is fueled by recent root 
exudates generated by photosynthesis (Högberg et al., 2010; Bradford 
et al., 2012). Using RNA to visualize protein synthesis potential for 
community analysis may reveal more nuanced differentiation between 
soil environments in comparison to DNA-derived 
community characterization.

Though many studies have investigated the differences between 
bulk and rhizosphere soils using DNA-derived community 
characterization (e.g., Sharma et al., 2005; Aira et al., 2010; Mendes 
et al., 2011; Lundberg et al., 2012; Philippot et al., 2013; Guyonnet 
et al., 2018; Ma et al., 2019; Tkacz et al., 2020; Liu et al., 2022), only a 

few have used both DNA- and RNA-derived communities in crop 
species (grains and legumes in Sharma et al., 2005; rice paddy soils in 
Liu et  al., 2019). The relative importance of differences in total 
microbial membership vs. protein synthesis potential in bulk and 
rhizosphere soils is even less well understood for wild plant species 
(Vieira et al., 2020). Using the short-lived perennial Boechera stricta 
grown in native sites, this study characterizes the total microbial 
membership and protein synthesis potential of bacterial communities 
in rhizosphere and bulk soils, by comparing 16S-transcript (RNA) and 
16S-gene (DNA) generated amplicons. We  hypothesized that the 
community profiles of rhizosphere and bulk soils would be  more 
distinct from one another when looking at protein synthesis potential 
(RNA-derived) than total membership (DNA-derived) communities. 
To address this hypothesis, experimental B. stricta were planted in the 
field along with control pots containing soil of similar composition 
with no plants. Soil was harvested from both treatments as well as bulk 
soils directly from the plots over the course of 3 days, and the soil 
bacterial community composition was investigated at both RNA and 
DNA levels using Illumina high-throughput sequencing. We  also 
investigated two methods of estimating PSP, by using 16S-ratios and 
wholesale analysis of the RNA-derived community. Hypothetical 
functional profiles of taxa differing between soil environments 
(rhizosphere vs. control soils) were generated to elucidate potential 
metabolic pathways that might be more prevalent in one environment 
vs. the other.

Methods and materials

Plant material and growth conditions

We tested for differences in community characterization based on 
16S RNA vs. DNA biomarker sequence patterns in the rhizosphere of 
B. stricta, a perennial herb native to Wyoming. Seeds for this study 
were originally collected from the Snowy Range Mountains 
(41.32971759902109 N, -106.50515422710646 W), and grown for one 
generation in the greenhouse to increase seed numbers and minimize 
maternal effects. Prior to planting, seeds were surface sterilized, by 
rinsing for 1 min in 70% ethanol 0.1% Triton 30% RO water mixture, 
then rinsed in RO water, then rinsing for 12 min in a 10% bleach 0.1% 
Triton 90% water mixture. Seeds were then rinsed a final three times 
with RO water, before being placed on sterile filter paper for ease of 
planting (adapted from Lundberg et al., 2012).

Surface-sterilized seeds were planted into pots with a mixture of 
field and potting soils. For the field soil, we  collected soil from 
unvegetated sites adjacent to a field location with a native B. stricta 
population, referred to hereafter as the Crow Creek field site (CRW). 
Field soil was sieved to 4 mm to remove large debris, then autoclaved 
three times for 30 min with the soil being mixed between autoclaving 
steps. This soil was then mixed with autoclaved potting soil [Redi-
Earth Potting Mix (Sungro Horticulture, Agawam, MA, United States)] 
in a 9:1 ratio; we included a small percentage of potting mix because 
its greater water-holding capacity relative to the field soil improves the 
overall rate and synchrony of seed germination. This soil mixture was 
next inoculated with a 4% v/v of non-autoclaved field soil inocula. 
This approach of autoclaving all soil and then applying a field soil 
inoculation was used to ensure that detected microbes were those 
native to B. stricta and not derived from the potting mix.
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Before field transplanting, seeds germinated in 2″ mesh net pots 
(2″ Inch TEKU Net Slit Pots for Hydroponic Aeroponic Use) and were 
allowed to grow for 4 weeks under greenhouse conditions (UW 
Laramie Research and Extension Center, Laramie, WY) with ambient 
day/night light and temperature cycles. In addition to pots planted 
with seeds, which would be  used to characterize the rhizosphere 
microbiome, we also prepared soil-filled pots without plants, which 
would be used to estimate the microbiome of bulk soil or unvegetated 
microsites, referred to hereafter as the “control soil.” Pots were placed 
in a randomized checkerboard array into tray blocks, such that no pot 
was directly adjacent to another. Plastic covers were placed over all 
trays to retain humidity and promote germination. All materials for 
planting, such as bench tops, trays, pots, and covers were bleached and 
rinsed before use. Pots were individually watered, initially via 
subirrigation and after 2 weeks of growth via overhead misting. 
Covers were removed 2 weeks after germination. Three weeks after 
germination, all pots were acclimated to the outside environment via 
2-h field exposures. Plant germination time, rosette size, and true leaf 
number were measured weekly to estimate plant performance.

In June of 2019, 4 weeks after germination, plants were transferred 
to the Crow Creek field site, which has a naturally occurring 
population of B. stricta. The Crow Creek (CRW) field site was located 
in the Medicine Bow-Routt National Forest in south-eastern Wyoming 
(41.227318 N, -105.383343 W), with an elevation of ~2,560 m. Six 
26 cm by 140 cm plots were cleared of plants and debris. Mesh pots 
were randomized into each plot and planted roughly 10 cm apart in 
two rows of 24 pots. Mesh pots were removed from filters and cups 
and placed directly in field site plots, to minimize root damage while 
transplanting and to facilitate collection of plant rhizospheres. Rosette 
size and true leaf number were measured weekly to estimate plant 
performance. All pots were watered every other day using RO water, 
and checked for insect damage.

Sample collection and processing

Four weeks after being transplanted to the field site, soil and plant 
samples were harvested. Rhizosphere soil, bulk soil, and control soil 
samples were collected over the course of 3 days, from July 15 2019 to 
July 17 2019 between 1:30 p.m. and 2:30 p.m. At each collection time 
point, pots with and without plants were randomly harvested and bulk 
soil was collected directly from within each plot. Samples from the 
three treatments types were handled as follows: The large samples of 
soil collected in the field from (1) the control pots without plants and 
(2) the bulk soil were stored in whirlpacks (Whirl-Pak® Bags); smaller 
subsamples of these soils were taken and stored in 2 mL test tube for 
later nucleic acid extraction. (3) For collection of rhizosphere soil 
from the pots with plants, mesh pots were removed from the soil, with 
care taken to ensure that roots which had grown out of the mesh pots 
were damaged minimally. Plants were then removed from the pots 
and shaken to remove excess loose soil. Soil that adhered closely at 
approximately 1 mm to the root mass was considered to be rhizosphere 
soil. Roots and adhered soil were separated from plant leaves and stem 
using flame sterilized scissors, and placed in falcon tubes containing 
approximately 200 mL of PBS buffer (200 ul silwet, 900 mL RO water, 
100 mL 10 × PBS) (adapted from Bulgarelli et al., 2013). Samples were 
stored on ice in the field. Immediately upon returning to the lab, bulk 
and control soil samples were transferred to a-80°F freezer. For 

subsequent sample processing, falcon tubes containing rhizosphere 
soil and plant root tissue were defrosted, then lightly vortexed to 
remove adhered soil from root tissue. Root tissue was removed using 
sterile forceps. The soil slurry was then vacuum filtrated through a 
0.2 nm filter. The resulting soil and filter were transferred to a 0.5 mL 
centrifuge tube, and flash frozen with liquid nitrogen, before being 
stored long term at −80°C.

Nucleic acid extraction and amplicon 
library preparation

During the extraction process, we took several steps to minimize 
biases that might artificially inflate the differences between RNA- and 
DNA-derived community composition measurements. 
Methodological biases were minimized through the use of technical 
replicates, and the simultaneous extraction of nucleic acids from a 
single soil sample, so each paired DNA and RNA community profile 
derives from an identical collection (Moeseneder et al., 2005; Gentile 
et  al., 2006; Morgan et  al., 2010; McCarthy et  al., 2015). Some 
methodological differences were unavoidable, such as RNA but not 
DNA having a reverse transcription step (Zhen et al., 2015). Control, 
bulk, and rhizosphere soil RNA and DNA samples were simultaneously 
extracted using the methods described in the RNeasy PowerSoil Total 
RNA Kit and RNeasy PowerSoil DNA Elution Kit (Qiagen, 2017). 
After extraction, RNA was reverse transcribed to cDNA using the 
QuantiTect Reverse Transcription Kit (Qiagen, 2009). Negative 
control blank samples were included for extractions and reverse 
transcription. Samples were stored at −20°C until further processing.

Positive control (a ZymoBiomics mock community) and negative 
control (blank-H2O) samples were included in library preparation. 
16S rRNA-gene DNA and 16S rRNA-transcript cDNA amplicons were 
amplified using the 515–806 (Walters et  al., 2016) primer pair to 
amplify the V4 region of the 16S rRNA locus. Two technical replicates 
were made for each sample; non-blank samples were normalized to a 
standard concentration of 10 ng/ul. Kapa HiFi Hot Start polymerase, 
Kapa HiFi Hot Start buffer and reagents, and HPLC grade water were 
used during PCR. PCR conditions for the first round were: 95° for 
3 min; followed by 15 cycles of 98° for 30 s, 62° for 30 s, and 72° for 
30 s; with a final 72° elongation step for 5 min and a 4° hold. PCR 
products were cleaned using AxyPrep MagBead magnetic beads 
(Axygen; Union City, CA, United States). PCR conditions for the 
second round were: 95° for 3 min; followed by 19 cycles of 98° for 30 s, 
55° for 30 s, and 72° for 30 s; with a final 72° elongation step for 5 min 
and a 4° hold. Products from the second round of PCR were also 
cleaned using AxyPrep MagBead magnetic beads. Library 
amplification success was confirmed using a Bioanalyzer fragment 
analyzer (Agilent; Santa Clara, CA, United States). PCR amplicon 
libraries were sequenced by Psomagen (Rockville, Maryland, 
United  States) on an Illumina NovaSeq  6000 using 2 × 250 
paired-end sequencing.

Bioinformatic analysis

A custom perl script (created by C. Alex Buerkle) was used to 
demultiplex sequence data, and unique reads were dereplicated using 
vsearch v.2.9.0 (Edgar, 2010). Identified reads were clustered using the 
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“cluster_unoise” (Quast et al., 2015) algorithm and a 99% similarity 
threshold, and sequences that occurred 12 or more times were 
considered a potential OTU. Chimeric sequences were removed using 
“uchime3_denovo” algorithm (Edgar, 2010), and the resulting OTU 
were used to make an OTU table using the “usearch_global” 
algorithm. Taxonomy was assigned to each OTU using vsearch v 2.15 
and the Silvia v123 (Quast et al., 2015) reference database, with a 
minimum bootstrap confidence of 80%. Computing was performed 
using the Teton Computing Environment at the Advanced Research 
Computing Center, University of Wyoming, Laramie.1

Reads in negative control samples that occurred in low 
frequency (i.e., less than 100 reads per sample) in other samples 
were considered contamination and removed from the data set. 
Reads that did not assign to the kingdom bacteria were removed. 
Samples with less than 30,000 total reads were removed from 
analysis, and samples were filtered so each RNA derived sample 
had a corresponding DNA sample that was extracted from the 
same collected soil. OTU that occurred in less than 10% of all 
samples with less than 2 reads were removed. To minimize 
uninformative noise, OTU with less than 100 total reads across all 
samples were grouped together into a single taxonomic group. A 
total of 29,667 OTU consisting of 908,171 reads (1.2% of total 
reads; an average of 30 reads per OTU) were merged into a single 
OTU and labeled “Low Abundance OTU Group.”

The final data set consisted of 90 total samples; 36 rhizosphere soil, 
of which 18 were DNA derived and 18 RNA derived, 26 control soil 
samples, of which 13 were DNA derived and 13 RNA derived, and 28 
bulk soil samples, 14 of which were DNA derived and 14 RNA derived. 
These samples contained 17,896 unique OTU, and 33,732,811 total 
reads (64% RNA reads: 36% DNA reads). Notably, selecting an even 
number of samples at random from each treatment (rhizosphere, 
control, or bulk) did not alter the conclusions of the analysis, and 
we therefore present results based on all 90 samples.

Data analysis

Samples were rarified to 32,997 reads per sample, and alpha 
diversity was estimated using the phyloseq package “estimate_
richness.” Statistical differences between community nucleic acid 
derivation and soil type were determined using ANOVA (analysis of 
variance). To calculate beta diversity, we used the package Phyloseq 
v1.30.0 (McMurdie and Holmes, 2013). Reads assigned to an OTU in 
a sample were divided by the total number of reads per sample to 
calculate within site proportional abundances. MDS plots were used 
to visualize Bray-Curtis pairwise dissimilarities of community data. 
Significant differences between DNA and RNA derived communities, 
as well as the three soil types within and between communities were 
determined using PERMANOVA (pairwise adonis testing with 
Bonferroni correction). The corncob package (Martin et al., 2020) was 
used to estimate differential abundances between the DNA and 
RNA-derived communities, and between the DNA-derived and 
RNA-derived rhizosphere, bulk, and control soil samples, using the 
absolute abundance of reads, rather than the proportional abundances. 

1 https://doi.org/10.15786/M2FY47

Differentially abundant taxa with p-values < 0.01 were considered 
statistically significant.

T-tests of 16S-ratios and differential abundance analysis of the 
RNA-derived communities are two methods which can be used to 
determine elevated levels of RNA-derived reads, and therefore protein 
synthesis potential (PSP), between groups. In this study, we compared 
both analyses for overarching patterns of PSP in the microbial 
communities (see Supplementary Tables S1, S2). 16S-ratios were 
generated by normalizing the number of RNA reads (representing the 
number of ribosomes in a cell) by the number of DNA reads 
(representing the number of gene copies that code for ribosomes in a 
cell), using method 3 outlined in Bowsher et  al. (2019). Though 
16S-ratios are a common method of estimating overarching patterns 
of potential microbial activity in a community (Steven et al., 2017), 
we focused primarily on analyzing the RNA generated data, due to 
biases associated with 16S ratios such as (1) the within cell variability 
16S rRNA-gene copy number in different taxa, causing over 
estimations of the 16S-ratio, which cannot be corrected for (Schaechter 
et al., 1958; Cooper and Helmstetter, 1968; Klappenbach, 2001; Lee 
et al., 2009; Franklin et al., 2013; Louca et al., 2018), and (2) using a 
single arbitrary cutoff point of 16S-ratio activity, which is problematic 
in diverse microbial communities and may include dormant microbes 
in analysis (Jones and Lennon, 2010; Blagodatskaya and Kuzyakov, 
2013; Blazewicz et al., 2013; Steven et al., 2017). Mean 16S-ratios were 
calculated for each genus (Bowsher et  al., 2019), in order to 
be compared to the genus-level differential abundance analysis output 
from corncob. We  again used corncob to estimate RNA-based 
differential abundance. Though there are some concerns associated 
with directly using RNA as an indicator of PSP (outlined in depth in 
Blazewicz et  al., 2013) corncob corrects for errors inherent in 
microbial data analyses. Corncob correlates taxa to covariates of 
interest and infers possible taxa presence in samples with small 
sequencing depth, with calculated variance around that inference, 
thereby reducing sampling bias (Willis, 2019; Martin et al., 2020). It is 
likely that this analysis better reflects which genera have a higher 
number of RNA reads compared to DNA, and therefore which genera 
have higher PSP in the different soil types. This study therefore focuses 
on reporting the RNA-derived community results, with the 16S-ratio 
analysis as Supplementary material.

Hypothetical functional gene profiles were created using the 
package Tax4Fun (Aßhauer et al., 2015), the output of which shows 
what percentage of the sample being analyzed is associated with a 
known gene and function. The RNA-derived genera that were 
significantly different in abundance among the soil environments in 
the corncob analysis were included in the Tax4Fun analysis, as were 
genera with a mean 16S-ratio value over one deemed significantly 
different between soil types using t-tests. For the Tax4Fun analysis, 
taxonomy of the OTU were reassigned using the Silva123 library 
(Quast et al., 2015) to ensure data compatibility. Gene profiles were 
compared to the KEGG Orthology database (Kanehisa et al., 2016) to 
determine the metabolic pathways with which the identified genes 
were associated. Mean Tax4Fun abundances were calculated for each 
genus in the different sample types, and the differences between 
genera identified as enriched vs. depleted were calculated to determine 
whether a hypothetical gene was more abundant in a certain soil 
treatment compared to the other. For example, in taxa identified as 
significantly different between rhizosphere vs. control soils, relative 
gene abundances were calculated for genera depleted in the 
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rhizosphere and genera enriched in the rhizosphere soil. Genes with 
a positive value were more abundant in the “enriched (corncob −
log2(FoldChange) > 0, or 16S-ratio p < 0.01 & t > 0)” rhizosphere soil 
category, and genes with a negative value were more abundant in the 
“depleted (corncob −log2(FoldChange) < 0, or 16S-ratio p < 0.01 & 
t < 0)” rhizosphere soil category (Figure 1).

Results

Sequencing results

After quality filtering and removal of chimeras, an average of 
374,809 reads per sample were retained with 17,896 unique taxa in 90 
samples (45 DNA, 45 RNA). Of those taxa 17,851 were present in the 
RNA community (16 taxa unique to RNA), and 17,880 in the DNA 
community (45 taxa unique to DNA).

RNA vs. DNA microbial diversity

Using rarefied communities, alpha diversity did not differ 
significantly between the communities characterized by DNA and 

RNA, in richness, Shannon, or Simpsons diversity on average between 
the bulk soil or control treatments. However, between the DNA and 
RNA, rhizosphere soils differed significantly from one another in 
Shannon (p < 0.01**) and Simpsons diversity (p < 0.1*) (Figure 2), 
indicating that DNA vs. RNA characterization capture different 
diversity among member vs. potentially active microbes.

Visualization of the relative abundance of some representative 
phyla between the DNA and RNA derived communities showed 
differering patterns of PSP vs. microbial membership. Bacteriodetes 
was not significantly differ between communities, indicating an equal 
amount of PSP for the number of cells present in the community 
(Figures  3A, 4). Two phyla (p: Gemmatimonadetes, p: 
Saccharibacteria) were prevalent in the DNA-derived community 
compared to the RNA-derived community (Figures  3A,C,D), 
indicating little to no PSP for how present the two phyla were in the 
community. Proteobacteria showed significantly greater number of 
RNA- to DNA-derived reads, indicating a high level of PSP for 
number of cells present in the community (Figures  3A, 4). 
Visualization of the absolute abundance of phyla between the DNA 
and RNA derived communities show 21 phyla as being significantly 
different in abundance between the RNA and DNA communities, with 
13 of those significantly more abundant in the RNA-derived 
community and the remaining 6 more abundant in the DNA-derived 

FIGURE 1

Corncob differential abundances calculated at the genus level. Each line represents a phylum, and each point a unique genus within that phylum, with 
each line through a point representing the standard error around each point. Each genera has differential abundance significantly different p-value < 
0.01 between indicated community. Red colored points above the line represent genera derived from the RNA community, and black colored points 
below the line represent genera derived from the DNA community. (A) Compares abundances of RNA-derived (red) genera to DNA-derived genera, 
with zero being the baseline DNA. Genera above zero were more abundant in RNA community than DNA community, and genera below zero were 
less abundant in the RNA community. (B) Compares genera in the rhizosphere and bulk soils, within the RNA-derived (red) and DNA-derived (black) 
community, with zero being the baseline bulk soil genera the rhizosphere genera are compared to. (C) Compares genera in the rhizosphere and 
control soils, with zero being the baseline control soil genera the rhizosphere genera are compared to. (D) Compares genera in the bulk and control 
soils, with zero being the baseline bulk soil genera the rhizosphere genera are compared to.
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community (Figure 4). Visualization of the 16S-ratio PSP compared 
to the RNA-derived community (which indicates PSP) showed similar 
patterns of phyla abundance, though 16S-ratios showed a much higher 
PSP of p: Cyanobacteria (Figure 3B), despite making up less than 1% 
of both the total RNA- and DNA-derived community (Figures 3B,C).

Based on Bray-Curtis analysis of the normalized data, beta 
diversity was significantly different between the overall DNA- and 
RNA-characterized communities (p < 0.001***; R2 = 0.104) 
(Figure 5A). Differential abundance analysis via corncob identified 11 
phyla (137 genera) that differed in abundance based on whether they 
were characterized via DNA or RNA (p < 0.01). Of these, 71 genera 
were more abundant in the RNA- compared to the DNA-derived 
community estimation (Figure 1A).

Soil environment comparison

The three soil environments compared in this study were 
rhizosphere soil, control-bulk soil with a similar physical matrix as the 
soils that plants were grown in, and bulk soil taken directly from the 
study site.

Some expected artifacts of RNA- and DNA-derived community 
analysis were found, though these made up <1% of the total reads used 
for analysis and the three soil types do not significantly differ in OTU 

unique to each soil type. In the DNA-derived community 
reconstruction 62 taxa and 3,286 reads (<1% of DNA reads) were 
unique to the rhizosphere soils, 12 taxa and 64 reads (<1% total DNA 
reads) were unique to control soils, and 256 taxa and 12,016 reads 
(<1% of total DNA reads) were unique to the bulk soils. In the 
RNA-derived community 38 taxa and 227 reads (0.1% of RNA reads) 
were unique to the rhizosphere soils, 76 taxa and 629 reads (<1% total 
RNA reads) were unique to control soils, 245 and 15,765 taxa and 
reads (<1%% of total RNA reads) were unique to the bulk soils.

Within the DNA-derived community, significant differences 
were seen between the bulk and rhizosphere soils (p < 0.1*) and 
control and rhizosphere soils (p < 0.01**) in richness, between the 
bulk and rhizosphere soils (p < 0.1*) and control and rhizosphere 
soils (p < 0.1*) in Shannon Diversity Indices, and between the bulk 
and rhizosphere soils (p < 0.0001***) and bulk and control soils 
(p < 0.01**) in Simpsons Diversity Indices (Figure 2). Based on 
Bray-Curtis analysis of normalized data from the DNA-derived 
community, the three soil environments were significantly different 
from each other (p < 0.001***, R2 = 0.398) (Figure 5D). Differential 
abundance analysis via corncob identified 144 genera that differed 
significantly between rhizosphere and bulk soils, with 128 genera 
being more abundant in rhizosphere than bulk soils (p < 0.001***) 
(Figure 1B). Between rhizosphere and control soils, 83 total genera 
were differentially abundant, with 73 being more abundant in the 

FIGURE 2

Alpha-diversity metrics for DNA- and RNA-derived community soil type comparison. Columns indicate the community being investigated (DNA-
derived soil types, RNA-derived soil types), and rows indicate the analysis being used (A: Observed Richness, B: Shannons Diversity Indices, C: Simpsons 
Diversity Indices). Lines in the boxes indicate the median, with the top and bottom of boxes representing 75th and 25th quartiles. Whiskers represent 
the 1.5× inter quartile range (IQR). Stars indicate significant differences between community and soil types, with the black lines above the graph 
indicating significance between soil types within the RNA or DNA groups, and the dashed red lines below the graphs indicating significance of a soil 
type between the RNA and DNA groups (NS = p-value > 0.05, * = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001, **** = p-value < 0.0001).
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rhizosphere than control soils (Figure 1C). Between the control 
and bulk soils, 155 total genera were differentially abundant, with 
135 genera more abundant in the control than bulk soils 
(Figure 1D).

Within the RNA-derived community composition, no significant 
differences were seen between the three soil communities in terms of 
richness, Shannon Diversity, or Simpson Diversity (p = 0.185) 
(Figure 2). Based on Bray-Curtis analysis of normalized data from the 
RNA group, the three soil environments were significantly different 
from each other (p < 0.001***, R2 = 0.4169) (Figure 5C). Differential 
abundance analysis via corncob identified 168 genera that differed 
significantly between rhizosphere and bulk soils, with 120 genera 
being more abundant in rhizosphere than bulk soils (p < 0.01) 
(Figure 1B). Between rhizosphere and control soils, 113 total genera 
were differentially abundant, with 79 more abundant in the 
rhizosphere than control soils (Figure 1C). Between the control and 
bulk soils, 179 total genera were differentially abundant, with 129 
genera being more abundant in the control than bulk soils (Figure 1D). 
T-tests of significant differences between 16S-ratios of genera between 
soil types conflicted with corncob analysis of RNA-derived 
communities (Supplementary Table S1).

Hypothetical gene profiles

The genera of the RNA-derived community characterization that 
showed differential abundances between the rhizosphere and control 
soil environments were assigned hypothetical functional profiles using 
the software Tax4Fun (Aßhauer et  al., 2015), as were the genera 
deemed by convention significantly different between soil 
environments using 16S-ratio analysis T-tests (Figure  6; 
Supplementary Table S2). Tax4fun predicts functional capabilities of 
microbial communities using read abundance of 16S datasets, and 
returns what percentage of a community is associated with a particular 
gene, which relates to a metabolic capability.

In rhizosphere vs. control soils, profiles of hypothetical 
metabolism between the corncob and 16S-ratio t-test genera do follow 
some similar patterns. For example, the corncob analysis indicated a 
higher proportion of the community of genera enriched in the 
rhizosphere is dedicated to amino acid and carbohydrate metabolism 
compared to other forms of metabolism (Figure 6A), and the 16S-ratio 
t-test agrees, though it reverses which of these categories are more 
prevalent (Figure  6B). Genera derived from corncob analysis 
(Figure 6A) also indicate that lipid metabolism is prevalent in the 

FIGURE 3

Relative abundance of phyla within a community type. Phyla with notable differences between soil types and derived nucleic acids are colored, and 15 
phyla with <1% total reads in the community were pooled together into a single group. (A) Comparison of phyla between the RNA-derived and DNA-
derived communities. (B) Relative activity of each phyla within bulk, control, and rhizosphere soil types, as determined by OTU 16S-ratio. (C) Relative 
abundance of phyla in the RNA-derived community. (D) Relative abundance of phyla in the DNA-derived community.
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rhizosphere compared to control soils, which we do not see in the 
16S-ratio derived soils (Figure  6B). Genes associated with the 
metabolism of various compounds such as galactose were highly 
abundant in the rhizosphere soils compared to control soils, in both 
the corncob and 16S-ratio t-test analysis. Genes associated with fatty 
acid degradation were only visibly prevalent in the corncob genera 
analysis (Figure 6).

Discussion

The goal of this study was to determine whether protein synthesis 
potential (RNA) microbial community profiles provided more insight 

than total microbial membership (DNA) into the differences between 
the rhizosphere soils of B. stricta, control soils of similar composition 
to rhizosphere soils, and bulk soils taken directly from the study site. 
Simultaneous nucleic acid extraction of DNA and RNA was performed 
for each sample, and 16S rRNA-transcripts (RNA) and 16S rRNA-
genes (DNA) were used to create amplicon libraries. Bacterial 
communities generated using DNA and RNA reads were assembled 
for comparison, and RNA community analysis was compared to 
normalized 16S-ratio (RNA/DNA) community analysis. This study 
revealed distinct differences between the overall RNA- and 
DNA-derived community composition regarding OTU identity and 
absolute and relative abundance, which corresponds to previous 
studies (Denef et al., 2016; Li et al., 2019) (Figures 3, 4). The magnitude 

FIGURE 4

Absolute abundance of phyla compared between entire RNA and DNA communities. Lines in the boxes indicate the median, with the top and bottom 
of boxes representing 75th and 25th quartiles. Whiskers represent the 1.5× inter quartile range (IQR). Stars indicate significant differences between 
community and soil types, with the black lines above the graph indicating significance between soil types within the RNA or DNA groups, and the 
dashed red lines below the graphs indicating significance of a soil type between the RNA and DNA groups (NS = p-value > 0.05, * = p-value < 0.05, 
** = p-value < 0.01, *** = p-value < 0.001, **** = p-value < 0.0001).

FIGURE 5

Metric multidimensional scaling (PCoA) plot of bacterial community based on Bray-Curtis dissimilarities. (A) RNA-derived vs. DNA-derived community. 
Solid gray lines connect each RNA derived sample with its corresponding DNA sample. Shape represents soil type of origin (circle = Bulk Soil, 
square = Control Soil, triangle = Rhizosphere Soil), and color denotes nucleic acid of origin (red = RNA, black = DNA), (B) RNA-derived bacterial 
community, (C) DNA-derived bacterial community. All points were normalized by abundance within a sample. Points represent unique samples, with 
the color representing soil sample type (purple = Bulk Soil, yellow = Control Soil, green = Rhizosphere Soil). Ellipses represent the 95% confidence 
interval of the mean for each soil type.
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of differences between the three different soil communities varied 
depending on what data (DNA which tells microbial membership; 
RNA which tells PSP) was used for analysis.

When comparing the overall DNA- and RNA-derived 
communities, differences in read number and unique taxa were 
observed, and these differences were consistent with those reported 
on in other studies (Mikkonen et al., 2014; Schostag et al., 2015; Klein 
et al., 2016; Gill et al., 2017; Bowsher et al., 2019; Li et al., 2019, p. 201). 
The higher number of RNA- to DNA-derived reads likely reflects the 
higher abundance of ribosomes to gene copies within a cell 
(Moeseneder et al., 2005), which within a single prokaryotic cell can 
range from 800 to 35,000  in a Vibrio sp. (Flärdh et  al., 1992), 
200–2,000 in a Sphingomonas sp. (Fegatella et al., 1998) and 6,700 and 
72,000 in coli (Dennis and Bremer, 1974), while gene copy numbers 
usually vary from 1 to 15 copies per genome (Schaechter et al., 1958; 
Cooper and Helmstetter, 1968; Klappenbach, 2001; Lee et al., 2009). 
The taxa unique to the RNA-derived community [16 OTU and 2,695 
reads (<0.1% total reads)], also known as phantom taxa, can occur due 
to cells with a low gene copy number left undetected in DNA-derived 
analysis but a high ribosome copy number able to be detected in 

RNA-analysis being present in the samples (Moeseneder et al., 2005), 
or due to methodological differences such as biases caused by reverse 
transcription of RNA but not DNA (Zhen et  al., 2015). The taxa 
unique to the DNA-derived community [45 OTU with 5,668 reads 
(<0.1% total reads)] likely represented genes from dead or lysed cells, 
free extracellular DNA, or dormant cells with low ribosomal counts 
(Hamilton et al., 1968; Lorenz and Wackernagel, 1987; England et al., 
2004; Bakken and Frostegård, 2006).

More biologically meaningful differences in diversity between 
the DNA- and RNA- derived microbial community profiles are 
also consistent with other studies, which have found significant 
divergence in PSP and microbial membership in soils (Baldrian, 
2019). Rhizosphere soils were significantly different in Shannons 
and Simpsons Diversity Indices between the DNA- and 
RNA-derived community profiles, indicating a difference between 
microbial membership and PSP within samples (Figure 2). These 
differences were further emphasized by the significant divergence 
in DNA- and RNA-derived community compositions (Figure 5A), 
which were not proportional between phyla in many cases 
(Figures 3A, 4). Six Phyla were significantly more abundant in the 

FIGURE 6

Hypothetical functional profiles of rhizosphere vs. control-bulk soil microbial communities as calculated by Tax4Fun analysis, based on (A) RNA-
derived corncob analysis, and (B) 16S-ratio t-test analysis. Y-axis represents the difference in relative abundance of a gene within a community 
between enriched and depleted genera in the rhizosphere soils. X-axis represents the different categories of metabolism that identified genes were 
associated with. Each gray line in the barplot delineates the relative abundance of a specific gene KEGG number within the category of what that gene 
is able to metabolize. Differences in gene relative abundances above zero (yellow) represent genes which were more abundant in the “genera enriched 
in rhizosphere soils” category, and the values below zero (blue) represent genes which were more abundant in the “genera depleted in rhizosphere 
soils” category.
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DNA than the RNA communities, with Saccharibacteria and 
Gemmatimonadetes seen as significantly more abundant in DNA 
even after the communities had been normalized to relative 
abundance, which accounts for differences due to read count 
differences between the RNA- and DNA-derived communities. 
This indicates these two phyla have low PSP compared to cell 
presence within the soil community. Differential abundance 
analysis further supports these differences, showing 66 genera to 
be  lower in abundance in the RNA- than the DNA-derived 
community, implying lower PSP levels in those 66 genera, among 
which Gemmatimonadetes were included (Figure 1A). Taxa with 
low PSP levels are likely not active in the microbial community, 
despite being prevalent in terms of total microbial membership, 
which can affect analyses of microbial community functions and 
effects on soil environment biochemical cycles (Aira et al., 2010). 
Phyla significantly more abundant in the RNA- than the 
DNA-derived community, such as proteobacteria (Figures 3, 4) 
have a higher level of PSP for the number of cells detected in the 
community, while phyla such as Bacteriodites which are not 
significantly different between the RNA- and DNA-derived 
communities have an equivalent contribution to the PSP of the 
community to what their microbial membership would indicate.

When examining the bacterial communities of the rhizosphere, 
control, and bulk soil environments, some potential environmental 
interactions become visible when analyzing the RNA-derived 
community, which are not apparent in the DNA-derived community. 
Differential abundance analysis showed more genera to differ 
significantly between soil types in the RNA- than the DNA-derived 
community (Figure 4), indicating that these genera have different 
levels of potential activity within the microbial community than what 
is implied by microbial membership alone. Of note, 
Comamonadaceae, Rhizobacter, and Variovorax, known root 
associates of grasses and key members in sulfur cycling 
(Schmalenberger et al., 2008), were enriched in the rhizosphere, but 
went undetected in the DNA-derived community analysis. These 
genera were also detected to be significantly different between soil 
types in 16S-ratio T-tests (see Supplementary Tables S1, S2). It is not 
unexpected for these genera to have been found to be highly active at 
the field site, as Crow Creek is surrounded by pine trees and some 
local grasses. However, that we are seeing elevated levels of PSP in the 
B. stricta rhizospheres implies that while the cell presence of these 
genera remained relatively unchanged between the rhizosphere and 
control soils, some factor in the rhizosphere environment caused 
their PSP levels to rise compared to control soils.

While it is interesting to note that cyanobacteria have a very high 
PSP for the number of members in the community, indicated by 
16S-ratio (Figure 3B), they make up such a low number of reads in 
the RNA and DNA derived communities to be  insignificant in 
differential abundance analysis between soil types (Figures 3, 4), and, 
on average, are insignificant in terms of 16S-ratio t-tests as well 
(Supplementary Table S2). Looking solely at the 16S-ratio community 
analysis, cyanobacteria appear to be major players in the soil, however 
by comparing the 16S-ratios to the overall RNA-derived community 
we can see how the importance of the phylum is overestimated when 
determining differences between the three soil types in terms of PSP 
and total microbial membership.

In order to gage how the two methods of measuring 
significant levels of PSP (RNA-derived community profile 

differential abundance analysis and 16S-ratio t-test) affected 
analysis of microbial community functions, Tax4Fun was utilized 
to generate hypothetical functional profiles of the genera deemed 
significantly different between rhizosphere and control soils 
(Figure  6). We  see similar overarching patterns where genes 
associated with the metabolism of amino acids and carbohydrates 
are most prevalent in the rhizosphere soils compared to the 
control soils. The RNA-derived community also indicates genes 
associated with fatty acid degradation to be  prevalent in 
rhizosphere soils, which is not indicated by the 16S-ratio analysis 
(Figure 6). Carbohydrates and lipids are a known category of root 
exudates, and include organic compounds such as sugars and 
fatty acids (Vives-Peris et  al., 2019). The prevalence of these 
genes may reflect the rhizosphere environment driving the 
abundance differences of ribosomes in these genera between 
different soil types. The higher prevalence of these genes in the 
rhizosphere, as indicated by both 16S-ratio and RNA-derived 
community analysis, could reflect resource utilization strategies 
of root exudates by bacteria. Confirming whether genes 
associated with metabolism are present in the microbial 
community, and whether root exudates are being metabolized by 
microbes would need further exploration using more 
comprehensive metabolomic and metagenomic techniques. 
However, preliminary research such as this study can provide 
jumping off points for more in depth questions.

In this study we showed that using protein synthesis potential 
along with total microbial membership is a useful tool in 
understanding soil microbial communities. The RNA-derived 
community analysis indicated that bacteria which may 
be insignificant in the DNA-based community analysis may have 
more of an effect on the overall microbial community functional 
profile. In terms of determining which genera are significantly 
different between soil treatments, RNA-derived analysis provides 
more information than DNA-based analysis, as RNA reflects how 
microorganisms are interacting with the different soils, exposing 
more fine-scale differences in the communities between 
treatments and indicators of which genera are driving the majority 
of soil community function. How the RNA-derived data is 
analyzed, whether by using 16S-ratios or by analyzing the RNA 
reads as a community describing protein synthesis potential 
rather than microbial membership, changes which genera are 
defined as significant between soils as well as levels of relative 
activity. Using corncob differential abundance analysis may 
provide a more accurate reflection of the community PSP than 
16S-ratios, as corncob analysis reduces analyses biases inherent in 
microbial data. When using PSP to create hypothetical functional 
profiles of the microbial communities, the genera identified by 
corncob to be significantly different between soils revealed more 
about the rhizosphere community potential functions in a 
biologically relevant way than 16S-ratio significant genera. Future 
studies into the effects of the local soil microenvironment on 
microbial community composition and function should take PSP 
into account, as fine-scale differences between the rhizosphere 
and surrounding bulk soils can be lost or underestimated when 
only total microbial membership is observed. Understanding the 
fine-scale influences the plant rhizosphere environment has on 
the soil microbial community is important for researchers looking 
to optimize plant-microbiome relationships to maximize plant 
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health and fitness for agricultural purposes, as well as for 
environmental scientists researching the feedback systems 
between plants and local soil microbiomes.
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