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The human gut microbiome, traditionally linked to infectious diseases, is now 
recognized as a hub of non-pathogenic microorganisms that play pivotal roles in 
host communication and homeostasis. Advances in microbiome engineering have 
enabled the design of “smart” living therapeutics for inflammatory bowel disease 
(IBD), leveraging engineered symbiotic bacteria, yeasts, and bacteriophages. This 
review synthesizes recent progress in reprogramming microbes using synthetic 
biology tools, emphasizing their capacity to sense pathological signals and deliver 
targeted therapies. We critically evaluate three key approaches: synthetic gene 
circuits in bacteria for precision drug delivery, phage-mediated modulation of 
dysbiotic microbiota, and yeast-based systems for metabolic intervention (e.g., 
butyrate production). Challenges in biocontainment, genetic stability, and clinical 
translation are discussed, alongside emerging strategies such as outer membrane 
vesicles (OMVs) for immunomodulation. By distilling these advances, we highlight a 
roadmap for translating engineered microbes into safe and effective IBD therapies.
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1 Introduction

Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, 
presents a significant and growing global health challenge characterized by chronic intestinal 
inflammation. Current treatment strategies often face limitations, including variable efficacy, 
systemic side effects, and the potential for loss of response over time, highlighting the urgent need 
for novel, targeted therapeutic approaches (Riglar and Silver, 2018; Leventhal et al., 2020; Zaiss et al., 
2021; Mager et al., 2020). The gut microbiome plays a crucial role in IBD pathogenesis and is 
increasingly recognized as a promising therapeutic target. While historically implicated in disease, 
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recent advances in microbiome research and genomic technologies have 
revealed its potential for therapeutic manipulation (Charbonneau et al., 
2020; Kurtz et al., 2019; Sanna et al., 2019). Microbiome engineering, 
particularly utilizing engineered bacteria, has emerged as a strategy with 
distinct potential advantages for IBD management, offering possibilities 
for localized diagnosis and treatment (Riglar and Silver, 2018; Leventhal 
et al., 2020; Zaiss et al., 2021; Mager et al., 2020). The continuous evolution 
of gene editing tools and synthetic biology further enables the design of 
bacteria with increasingly sophisticated functions, making this approach 
more feasible and cost-effective (Table  1; Leventhal et  al., 2020; 
Charbonneau et al., 2020; Kurtz et al., 2019; Federici et al., 2022).

Genetically engineered bacteria therapy offers several compelling 
benefits for IBD. Engineered bacteria can localize to specific sites of 
inflammation within the gut, areas often difficult to reach effectively with 
conventional systemic drugs. This targeted approach allows for direct 
interaction with the diseased tissue, potentially lowering off-target effects 
and improving safety compared to traditional administration routes 
(Riglar and Silver, 2018; Steidler et al., 1998; Saltzman et al., 1996). It also 
minimizes drug loss during systemic circulation or gastrointestinal 
transit, enhancing local bioavailability (Forkus et al., 2017; Hanson et al., 
2014; Steidler et al., 2000; Motta, 2012; Vandenbroucke et al., 2004). As 
living therapeutics, engineered bacteria can be designed to sense and 
respond to dynamic physiological and pathological signals within the gut 
environment (Riglar and Silver, 2018; Riglar et al., 2017; Daeffler, 2017). 
This sensing ability holds promise for real-time monitoring of disease 
activity and drug response, providing more intuitive insights. Engineered 
bacteria can be programmed to interact with the host immune system, 
for example, by expressing immunomodulatory molecules or presenting 
specific antigens, thereby potentially enhancing therapeutic immune 
responses (Zhan et al., 2019; Sterner and Sterner, 2021).

Given these capabilities, microbiome engineering is positioned as an 
emerging vehicle to diagnose and treat diseases (Riglar and Silver, 2018; 

Figure  1). Despite this significant promise, translating engineered 
microbiome therapies into clinical practice for IBD faces substantial 
hurdles. Key challenges include ensuring the safety and long-term stability 
of genetically modified organisms within the complex gut ecosystem, 
addressing ethical and regulatory concerns, and demonstrating consistent 
efficacy and viability of the engineered microbes in human patients 
(Riglar and Silver, 2018; Marsh and Ley, 2022). Furthermore, a 
comprehensive review synthesizing the latest advancements in synthetic 
biology tools for microbiome engineering, the design principles for 
therapeutic bacterial strains, the strategies for targeted delivery in the gut, 
and the use of novel carriers (such as bacteriophages, engineered yeast, 
and OMVs) specifically within the context of IBD treatment is currently 
lacking. This gap in the literature motivates our review.

Therefore, this review specifically focuses on the application and 
challenges of engineered microbiome therapeutics for IBD. We aim to 
discuss current developments in synthetic biology tools applied to 
re-program microbes into human therapeutic agents, introduce the 
design of engineered therapeutic strains, and evaluate practical 
approaches for targeted therapeutic delivery within the gastrointestinal 
tract. Furthermore, we elaborate on common carriers in the synthetic 
biology area, such as bacteriophages, engineered yeast and engineered 
bacteria outer membrane nanovesicles (OMVs). Finally, we discuss 
the perspective, future developments, and outstanding challenges of 
engineered microbiome therapy.

2 Methodology

2.1 Literature search strategy

This narrative review employed a structured literature search in 
PubMed to synthesize recent advances in microbiome engineering 
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for IBD therapy. The search strategy combined core conceptual 
keywords and Medical Subject Headings (MeSH) terms:

	•	 Primary Concepts: (“microbiome engineering” OR “synthetic 
biology”) AND (“inflammatory bowel disease” OR “IBD” OR 
“Crohn’s disease” OR “ulcerative colitis”)

	•	 Intervention-Specific Terms:
	o	 Engineered bacteria: (“engineered bacteria” OR “genetically 

modified bacteria” OR “bacterial therapeutics”)
	o	 Bacteriophages: (“bacteriophage therapy” OR “phage 

modulation” OR “phage*“)
	o	 Engineered yeast: (“engineered yeast” OR “Saccharomyces 

cerevisiae” OR “yeast*” OR “saccharomycete* “)
	o	 Outer membrane vesicles (OMVs): (“outer membrane vesicles” 

OR “OMVs” OR “bacterial vesicles” OR “vesicle*”)
	•	 Mechanistic Terms: (“synthetic gene circuits” OR “CRISPR” 

OR “TALEN” OR “ZFN” OR “quorum sensing” OR 
“immunomodulation”)

Boolean operators (AND/OR) optimized retrieval. Filters 
included: English language, publication years 2000–2024 (prioritizing 
2018–2024 for rapid technological advances), and article types 
(original research, reviews, clinical trials).

Inclusion and Exclusion Criteria

	•	 Inclusion:

	 o	 Studies on synthetic biology tools (e.g., CRISPR, TALEN) 
applied to microbiome engineering.

	 o	 Preclinical/clinical studies of engineered microbes (bacteria, 
yeast, phages, OMVs) for IBD therapy.

	 o	 Key mechanistic insights into gut microbiome-immune 
interactions in IBD.

	 o	 High-impact reviews (>50 citations) framing 
foundational concepts.

	•	 Exclusion:

	 o	 Studies unrelated to IBD or microbiome engineering.
	 o	 Articles focused solely on diagnostics without 

therapeutic translation.
	 o	 Low-evidence publications (e.g., editorials without data).

2.2 Screening and selection process

Initial searches yielded >1,200 publications. Titles/abstracts were 
screened for relevance to four thematic pillars:

	 1	 Design of engineered strains.
	 2	 Bacteriophage modulation.
	 3	 Yeast-based therapeutics.
	 4	 OMVs as delivery systems.

Full texts of 328 articles were assessed. 198 references were 
retained based on:

	•	 Impact: Priority to high-citation papers and recent breakthroughs.

	•	 Thematic Coverage: Balance across engineering strategies 
(bacteria/phages/yeast/OMVs) and mechanistic depth.

	•	 Critical Appraisal: Emphasis on studies with robust models (e.g., 
gnotobiotic mice, human microbiota transplants) and 
translational validation.

2.3 Data synthesis and limitations

As a critical narrative review, this work synthesizes evidence 
thematically rather than via meta-analysis. Key claims are supported 
by primary data from cited references.

	•	 Limitations: PubMed-centric search may omit niche engineering 
studies; non-English articles were excluded. Recent preprints 
were incorporated where peer-reviewed.

	•	 Bias Mitigation: Cross-referencing seminal reviews (e.g., Riglar 
and Silver, 2018; Cubillos-Ruiz et al., 2021) ensured coverage of 
landmark studies.

2.4 Review type clarification

This is a comprehensive narrative review with critical appraisal, 
not a systematic/scoping review. It emphasizes:

	•	 Mechanistic Innovation: e.g., CRISPR-based editing, closed-loop 
yeast circuits.

	•	 Therapeutic Translation: Clinical challenges and emerging solutions.

3 Design of engineered therapeutic 
strains

3.1 Synthetic biology

The advancement of synthetic biology enables the development of 
genetically engineered microbial therapies (Cubillos-Ruiz et al., 2021). 
While these tools permit the construction of diagnostic-therapeutic 
circuits where bacteria sense biomarkers (e.g., TNF-α), process signals via 
genetic logic gates (AND/OR), and deliver effectors (e.g., anti-
inflammatory cytokines) their application to IBD faces significant 
translational barriers (Pedrolli et al., 2019; Tanna et al., 2021; Nandagopal 
and Elowitz, 2011; Kobayashi et  al., 2004). Circuit instability under 
dynamic gut conditions (pH fluctuations, microbiota competition), safety 
concerns regarding off-target effects or horizontal gene transfer, and 
limited clinical validation in human studies remain critical limitations 
(Claesen and Fischbach, 2015). To bridge preclinical advances to 
therapeutic translation, future designs must incorporate IBD-specific 
features such as fail-safe self-destruction mechanisms and mucosa-
targeting delivery systems, rather than presenting generalized 
technical overviews.

3.2 Genome edition for engineered bacteria

Selecting suitable microbial chassis (e.g., mucus-adherent 
Bacteroides or immunomodulatory L. lactis) and editing tools is 
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essential for IBD therapy (Table 1; Claesen and Fischbach, 2015; 
Watterlot et  al., 2010). As summarized in Table  2, Zinc Finger 
Nucleases (ZFNs) offer moderate delivery efficiency but suffer from 
low tolerance to non-G-rich sequences; TALENs provide high 
specificity yet require thymine at target sites and face delivery 
challenges due to size; while CRISPR-Cas systems dominate with 
modular design and efficiency despite PAM dependency and 

off-target risks (Li et  al., 2020; Kim and Kim, 2014). Figure  2 
illustrates how CRISPR enables genome editing. For IBD, CRISPR’s 
multiplex editing capacity is advantageous but requires 
optimization to minimize off-target effects in commensal bacteria 
(Kaniecki et al., 2018; Verma and Greenberg, 2016; Chang et al., 
2017), underscoring the need for tool-specific adaptation rather 
than generic technical descriptions.

TABLE 1  Genetic engineered bacterial strains.

Target 
disease

Chassis Mechanism of action Reference

Low-grade 

intestinal 

inflammation

Bifidobacterium bifidum

The Bifidobacteria expression System (BEST) system enables Bifidobacterium bifidum to produce 

heterologous proteins (IL-10, etc.)using a broad host range plasmid, stress-inducible promoter, 

and two different signal peptides from Lactococcus lactis and Bifidobacterium longum.

Wright et al. (2019)

CD Commensal Escherichia coli

Engineered commensal E. coli produce and release a biotherapeutic in response to nitric oxide 

(NO), a biomarker for Crohn’s disease (CD), by co-expressing transmembrane protein TolA 

(TolAIII) and granulocyte-macrophage colony-stimulating factor (GM-CSF).

Shuwen and Kefeng 

(2022)

IBD
Escherichia coli Nissle 1917 

(EcN)

EcN produces fibrous matrices composed of curli nanofibers displaying trefoil factors (TFFs), 

which promote gut epithelial integrity, immunomodulation and mucosal healing.

Gogokhia et al. 

(2019)

UC
Dairy Lactococcus lactis 

NZ9000

Engineering of Lactococcus lactis NZ9000 to express murine interleukin-35 (IL-35; NZ9000/

IL-35) results in the accumulation of IL-35 in the gut, leading to a decrease in Th17 cells and an 

increase in Treg cells in the lamina propria, as well as elevated levels of IL-10 and reduced levels 

of pro-inflammatory cytokines IL-6, IL-17A, IFN-γ, and TNF-α in both colon tissue and serum.

Nikolich and 

Filippov (2020)

Crohn’s 

disease

Engineered Lactobacillus casei 

BL23 strains

Decreasing the levels of reactive oxygen species by producing antioxidant enzymes such as 

catalase (CAT) or superoxide dismutase (SOD).

Pires et al. (2021)

IBD
Food-grade lactic acid 

bacteria (LAB)

Expressing and delivering Elafin, reducing elastase activity and inflammation, preventing 

increased intestinal permeability, and inhibiting the release of cytokines and chemokines.

Riglar et al. (2017)

IBD
Lactobacillus casei BL23

Bifidobacterium

Express manganese superoxide dismutase (MnSOD) to reduce oxidative stress and inflammation 

in the gut.

Chang et al. (2017); 

Majewska et al. 

(2019)

IBD Lactococcus lactis
The engineered bacterium secretes the cytokine IL-10 for localized delivery. Vandenbroucke et al. 

(2004)

UC Lactococcus lactis
Oral administration of SlpA-expressing L. lactis induces higher expression of IL-27 by myeloid 

cells and increases IL-10 and cMAF expression in T cells.

Hsu et al. (2020)

IBD Lb. casei BL23

Expression of MnKat from L. plantarum boosts Lb. casei BL23 survival under oxidative stress, 

while sodA gene from L. lactis enhances MnSOD activity, reducing oxidative stress and 

inflammation in cell and murine colitis models.

Chang et al. (2017)

IBD
Recombinant lactic acid 

bacteria (LAB)

An IL-10 expression system regulated by stress: Stress-Inducible Controlled Expression (SICE) 

system.

Mimee and Nagler 

(2021)

IBD Saccharomyces boulardii

Engineered Saccharomyces boulardii probiotics deliver anti-inflammatory proteins like IL-10, 

TNFR1-ECD, alkaline phosphatase, and atrial natriuretic peptide (ANP) locally to the gut, easing 

dextran sulfate sodium salt (DSS)-induced colitis in mice when orally administered.

Scott et al. (2021)

IBD Clostridium butyricum
Production of butyrate and modulation of molecular and immunological signals in the digestive 

system, extending to other organs such as the liver, adipose tissue, and brain.

Kong et al. (2024)

IBD Clostridium butyricum
Secretory overexpression of pEGF in C. butyricum could enhance intestinal protective functions, 

partly through STAT3 signal activation in IPECs

Wu et al. (2024)

UC Lactobacillus paracasei F19
Lactobacillus paracasei F19 express palmitoylethanolamide (PEA) in response to ultra-low 

palmitate supply, which alleviate UC symptoms.

Federici et al. (2023)

IBD Escherichia coli
Bacterial strains are engineered with trigger circuits to detect specific biomarkers, such as 

tetrathionate, a transient product of reactive oxygen species produced during inflammation.

Zhan et al. (2019)

IBDs, Inflammatory bowel diseases; IL-10, interleukin-10; NO, nitric oxide; CD, Crohn’s disease; TolAIII, transmembrane protein TolA; GM-CSF, granulocyte-macrophage colony-stimulating 
factor; TFFs, trefoil factors; IL-35, interleukin-35; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor-α; CAT, catalase; SOD, superoxide dismutase; MnSOD, manganese superoxide dismutase; 
SICE, Stress-Inducible Controlled Expression; ANP, atrial natriuretic peptide; DSS, easing dextran sulfate sodium salt; EGF, epidermal growth factor; PEA, palmitoylethanolamide; UC, 
ulcerative colitis.
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3.3 Targeting therapeutic delivery

Precise localization to inflamed mucosa and sustained persistence 
constitute major translational hurdles for IBD therapies. Motility 
engineering (e.g., chemotaxis toward AHL signals) may fail in 
dysbiotic IBD guts with distorted metabolite gradients, while synthetic 
adhesins (e.g., INP-fused proteins) show promise but lack validation 
in human inflamed tissue (Van Houdt et al., 2007; Ho et al., 2018). 
Although Bacteroides spp. naturally colonize mucus layers (Esposito 
et  al., 2021; Barrett, 2010), enhancing their persistence requires 
IBD-optimized strategies: Surface modifications (e.g., alginate 
encapsulation) risk impairing host-microbe crosstalk; genetic 
overexpression of adhesion factors (e.g., BINDs) could trigger 
immune activation (Anselmo et al., 2016; Hou et al., 2021; Gunzburg 
et al., 2020; Nguyen et al., 2014; Duraj-Thatte et al., 2019).; and niche 
competition via nutrient engineering faces instability due to IBD 
dietary variability (Shepherd et  al., 2018; Celebioglu et  al., 2017). 
Critically, the absence of clinical data on engineered strains in colitis 
models and scalability challenges for personalized formulations 
highlight the gap between preclinical advances and therapeutic reality.

4 Microbiome modulation by 
bacteriophages

The human microbiome, composed of trillions of microorganisms 
inhabiting diverse anatomical sites, plays a critical role in maintaining 
health and homeostasis. Bacteriophages, or phages, represent an 
essential component of this intricate ecosystem, significantly 
influencing the composition, diversity, and functional dynamics of 
microbial communities. A comprehensive understanding of the 
mechanisms by which bacteriophages modulate the microbiome is 
pivotal for harnessing their therapeutic potential in addressing 
various diseases, including IBD (Dion et al., 2020). Dysbiosis of the 
gut microbiota has been closely linked to the pathogenesis and 
progression of IBD (Sinha et  al., 2022). The gut virome, 
predominantly consisting of bacteriophages, is recognized as a 
critical regulator of gut microbiota composition and function (Sinha 
et al., 2022).

Bacteriophages are viruses characterized by their specific tropism 
for infecting and replicating within bacterial hosts (Dion et al., 2020). 
Through these interactions, phages can profoundly reshape microbial 
communities and impact ecosystem stability and host health by 
altering microbial diversity and abundance (Dion et al., 2020).

The role of bacteriophages in regulating gut homeostasis and 
disease pathogenesis is an active area of research, with observed 
alterations in phage composition during disease progression (Federici 
et al., 2023). Under healthy conditions, the gut virome is characterized 
by a stable, long-term community structure, dominated by crAss-like 
and Microviridae phages, which constitute the majority of intestinal 
viruses (Shkoporov et al., 2019). These phages are closely associated 
with specific bacterial taxa and contribute to maintaining gut 
microbiota equilibrium (Shkoporov et  al., 2019; Cornuault et  al., 
2018). In contrast, in IBD, this equilibrium is disrupted, resulting in 
significant alterations to the gut virome (Clooney et al., 2019). For 
example, in patients with active ulcerative colitis (UC), an 
overrepresentation of temperate phages has been linked to a reduction 
in Bacteroides thetaiotaomicron and Bacteroides uniformis (Nishiyama 

et  al., 2020). Furthermore, studies report altered abundance of 
Caudovirales in IBD, which is associated with reduced bacterial 
diversity and exacerbated colitis in models (Wagner et al., 2013; Zuo 
et al., 2019). Gut inflammation is hypothesized to trigger the induction 
of prophages into the lytic cycle, thereby destabilizing the phage 
community (Clooney et  al., 2019). Additionally, an increased 
abundance of Caudovirales phages has been observed in IBD patients, 
correlating positively with disease severity (Zuo et al., 2019). These 
findings highlight the dynamic nature of the gut virome during health 
and disease, underscoring its critical relationship with gut microbiota 
structure and disease pathogenesis.

All pathogenic bacteria associated with the progression of IBD 
represent potential targets for phage combination therapy. For 
instance, studies in a susceptible mouse model of ulcerative colitis 
(UC), an IBD-related model, demonstrated that a phage combination 
effectively suppressed Klebsiella pneumoniae and attenuated its 
induction of proinflammatory responses (Federici et  al., 2023; 
Kitamoto et al., 2020). Moreover, genetic engineering can expand the 
host range of phages. For example, phages originally targeting 
Escherichia coli have been engineered to infect Yersinia and Klebsiella 
species, and vice versa, through the modification of their tail fibers 
(Ando et al., 2015). However, a limitation of phage therapy is the 
potential emergence of resistance mutations, comparable to antibiotic 
therapy (Dedrick et al., 2019). To address this issue, the use of phage 
combinations, where each phage employs distinct mechanisms to 
infect target bacteria, can delay resistance development and exert 
longer-term suppressive effects (Wright et al., 2019). Additionally, 
phage therapy exhibits immunomodulatory potential. Elevated phage 
levels have been shown to induce interferon-γ (IFN-γ) secretion, 
mediated by toll-like receptor 9 (TLR9) in mouse models and human 
cells (Shuwen and Kefeng, 2022). This immunomodulatory effect 
suggests phage therapy might function as a tolerogenic strategy for 
UC, as proposed based on preclinical findings (Shuwen and Kefeng, 
2022; Gogokhia et al., 2019).

Phage therapy offers several significant advantages. First, it can 
delay the development of bacterial resistance (Nikolich and Filippov, 
2020). Through the design of diverse phage combinations, it is possible 
to suppress multiple strains and species of pathogens while reducing 
the likelihood of treatment resistance emergence, as each phage targets 
bacteria through distinct mechanisms (Dedrick et  al., 2019). The 
second advantage is specificity and self-replication of phages. Phages 
have narrow host specificity, allowing them to selectively target 
pathogenic bacteria without disrupting the surrounding microbial 
community (Federici et al., 2022). Furthermore, the ability of phages 
to self-replicate within host bacteria ensures sustained therapeutic 
efficacy when target pathogen levels exceed a critical threshold 
(Federici et al., 2022). The selection of strictly lytic bacteriophages, or 
the genetic modification of natural bacteriophages through the 
deletion of integrase genes or the alteration of their specificity to 
pre-identified hosts, can enhance bacterial lysis efficiency while 
minimizing the risk of horizontal gene transfer of toxins or antibiotic 
resistance genes into bacterial chromosomes via lysogeny (Pires et al., 
2021). The third advantage is the feasibility of oral administration. 
Orally administered phages can accumulate in the gastrointestinal 
tract, particularly in the lower gut and fecal matter. This administration 
route avoids immunogenic reactions associated with systemic delivery, 
thereby improving treatment acceptability (Majewska et al., 2019). 
Furthermore, encapsulation of phages in materials such as alginate, 
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polyethylenimine, and pectin enables controlled release in the lower 
gastrointestinal tract, optimizing oral delivery efficacy while reducing 
potential physiological disruptions (Hsu et al., 2020). In summary, 
phage therapy represents a promising therapeutic strategy, providing 
precise targeting of specific pathogens, mitigating the risk of bacterial 
resistance development, and offering broad potential applications in 
microbiome research.

While preclinical evidence, particularly from IBD-relevant models 
like UC, supports the potential of phage therapy for IBD, critical 
evaluation reveals gaps (Federici et al., 2023; Kitamoto et al., 2020). 
Many mechanistic insights linking phage dysbiosis to IBD stem from 
association studies, necessitating further causal investigation in 
relevant models (Clooney et al., 2019; Zuo et al., 2019). The promising 
immunomodulatory effects observed require validation in the 

complex inflammatory milieu of human IBD (Shuwen and Kefeng, 
2022). Furthermore, robust clinical data demonstrating efficacy and 
safety of phage cocktails specifically in IBD patients are currently 
lacking (Federici et al., 2022; Federici et al., 2023). Challenges such as 
the rapid evolution of phage resistance, potential immunogenicity 
upon repeated dosing, and the need for standardized, personalized 
phage cocktail formulations remain significant hurdles for clinical 
translation in IBD (Dedrick et al., 2019).

5 Engineered yeast

Engineered yeast represents a distinct and promising therapeutic 
modality for IBD, leveraging its eukaryotic cellular machinery and 

FIGURE 1

Microbiome engineering is mainly used to change the composition of microbiota or the composition or activity of active microbiota.

TABLE 2  Comparison of genome-editing tools for IBD microbial engineering.

Tool Precision Efficiency IBD applicability Key limitations

ZFNs Moderate Low Limited by G-rich sequence requirements Complex protein engineering needed (Riglar and Silver, 2018)

TALENs High Moderate Suitable for large inserts (e.g., IL-35) Size limits viral delivery (Riglar and Silver, 2018)

CRISPR-Cas9 High High
Preferred for multiplexed edits (e.g., ROS-

scavenging enzymes)
PAM sequence dependency (Riglar and Silver, 2018)

Critique: CRISPR-Cas9 is optimal for IBD due to multiplexed editing (e.g., L. casei MnSOD + Bifidobacterium IL-10; Leventhal et al., 2020; Zaiss et al., 2021), but off-target effects risk unintended 
immune activation (Mager et al., 2020; Charbonneau et al., 2020). TALENs are viable for eukaryotic chassis (e.g., S. boulardii) but suffer from low throughput (Riglar and Silver, 2018).
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genetic tractability for sophisticated engineering (Mimee and Nagler, 
2021). Currently, engineered yeast is employed to modulate 
dysregulated purinergic signaling, a key feature of IBD pathogenesis. 
Scott et al. investigated the enzymatic conversion of extracellular ATP 
(eATP) into immunosuppressive adenosine as a potential strategy to 
disrupt the inflammatory cycle (Scott et al., 2021). However, excessive 
adenosine signaling can lead to adverse effects, such as fibrosis and 
tissue destruction, and a delicate imbalance between eATP and 
adenosine levels in the gut (Mimee and Nagler, 2021; Scott et al., 
2021). To address this issue, Scott et  al. developed a closed-loop 
therapeutic system using engineered yeast. They designed a 
transcriptional biosensor in Saccharomyces cerevisiae to detect eATP 
levels associated with inflammation and connected it to a secreted 

potato apyrase enzyme capable of degrading eATP (Mimee and 
Nagler, 2021; Scott et  al., 2021). In mouse models of chemically 
induced colitis, this closed-loop system demonstrated superior 
efficacy compared to open-loop designs, specifically evidenced by 
reduced inflammation, mitigated tissue fibrosis, and ameliorated 
dysbiosis, underscoring its therapeutic potential (Mimee and Nagler, 
2021; Scott et al., 2021).

Significant progress has also been made in engineering yeast 
strains for sustained butyrate production to combat intestinal 
inflammation. Butyrate, a crucial short-chain fatty acid produced by 
fibrolytic bacteria, exhibits immunomodulatory properties and 
promotes the proliferation of regulatory T cells (Tregs) in the intestinal 
mucosa (Kong et al., 2024). Recent studies have engineered brewer’s 

FIGURE 2

CRISPR-Cas technology for genome editing in bacteria. Editing was performed by (a) NHEJ (non-homologous end joining), (b) HDR (homology-
directed repair), and (c) alternative end joining.
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yeast (Saccharomyces cerevisiae) to serve as an efficient butyrate 
producer (Wu et al., 2024). The engineering process involves several 
key steps. First, genes essential for butyrate production in various 
hosts are identified and codon-optimized for yeast, followed by the 
synthesis of these gene sequences. Subsequently, these genes are 
introduced into yeast cells via plasmid vectors, which are integrated 
into the S. cerevisiae genome to enable gene expression (Wu et al., 
2024). To enhance butyrate production under anaerobic conditions, 
researchers introduced metabolic modules, including acetoacetyl-CoA 
enhancement, acetyl-CoA enhancement, NADH enhancement, and 
acyl-CoA regulation modules. These modifications enabled the 
engineered yeast to sustain butyrate production in the intestinal 
environment, ensuring consistent therapeutic efficacy (Wu et  al., 
2024). Experimental results demonstrated that strains with moderate 
butyrate production levels exhibited the most pronounced therapeutic 
effects. Furthermore, synthetic biology approaches provided 
mechanisms for butyrate release in response to disease-specific 
signals, potentially improving therapeutic outcomes. Engineered yeast 
can autonomously regulate butyrate production based on 
environmental butyrate concentrations, enabling precise and 
controlled therapeutic dose delivery (Wu et al., 2024).

However, critical translational challenges persist beyond proof-of-
concept efficacy. Engineered yeast strains exhibit transient gut 
colonization (detectable for ≤48 h post-administration) and lack 
sustained engraftment, necessitating frequent dosing that may 
compromise patient compliance in chronic IBD management (Scott 
et  al., 2021; Wu et  al., 2024). Immunogenicity risks remain 
underexplored, as repeated exposure to engineered eukaryotic chassis 
(e.g., expressing heterologous enzymes like apyrase or bacterial 
butyrate-pathway genes) could provoke host immune responses, 
including neutralizing antibodies or unintended inflammation (Scott 
et al., 2021; Wu et al., 2024). Long-term safety assessments are limited 
by short-duration preclinical studies (typically ≤7 days), leaving gaps 
in understanding chronic toxicity, genomic instability, horizontal gene 
transfer, or ecological disruption of commensal mycobiota (Scott 
et al., 2021; Wu et al., 2024).

Additionally, the role of yeast in modulating mucosal immunity, 
particularly via IgA, provides another therapeutic avenue. It has been 
found that dysbiosis in the gut microbiota leads to impaired immune 
function, characterized by atrophy of lymphoid organs and decreased 
levels of immunoglobulin A (IgA; Díaz-Garrido et al., 2021). Secretory 
immunoglobulin A (sIgA) antibodies are widely regarded as critical 
regulators of intestinal homeostasis, serving as the primary defense 
mechanism against invasive pathogens, toxins, and harmful dietary or 
bacterial metabolites (Conrey et al., 2023). Previous studies have shown 
that sIgA exhibits broad cross-reactivity with various bacterial species 
(Doron et al., 2021). Furthermore, Candida albicans and its hyphal form 
have been identified as key targets and potent inducers of antifungal sIgA 
responses. These findings suggest potential for engineering 
non-pathogenic yeast strains (e.g., S. cerevisiae) to modulate sIgA 
responses beneficially in IBD, although this concept requires direct 
experimental validation in disease models (Doron et al., 2021).

In conclusion, engineered yeast offers unique advantages for IBD 
therapy, including sophisticated eukaryotic gene regulation circuits 
and potentially lower endotoxin concerns compared to some bacterial 
platforms (Cubillos-Ruiz et al., 2021). Substantial progress has been 
made in developing systems for eATP/adenosine modulation and 
butyrate production. Nevertheless, significant challenges persist 

beyond the core engineering achievements. These include ensuring 
reliable long-term colonization and engraftment of engineered strains 
within the competitive gut niche, comprehensively assessing potential 
immunogenicity upon repeated administration, establishing long-
term safety profiles in humans, and fine-tuning therapeutic windows 
to maximize efficacy while minimizing off-target effects (Mimee and 
Nagler, 2021; Scott et al., 2021; Wu et al., 2024). Furthermore, direct 
comparisons of delivery efficiency, control precision, and therapeutic 
efficacy between engineered yeast, bacteria, and phage-based 
approaches within relevant IBD models are needed to fully define 
their respective niches (Federici et al., 2022; Federici et al., 2023; 
Mimee and Nagler, 2021). Despite these hurdles, synthetic biology 
tools continue to provide exciting avenues for developing 
personalized yeast-based treatments and optimizing therapeutic 
outcomes for IBD.

6 Engineered bacteria out-membrane 
nanovesicles

IBD therapeutics have witnessed significant advancements in 
recent years, with bacterial outer membrane vesicles (OMVs) 
emerging as a promising therapeutic strategy (Toyofuku et al., 2023; 
Toyofuku et al., 2019; Guerrero-Mandujano et al., 2017; Sartorio et al., 
2021; Figure 3). OMVs, nano-scale (20–250 nm) extracellular vesicles 
constitutively released by both Gram-negative and Gram-positive 
bacteria, mediate important interactions within the intestinal 
microenvironment through intercellular and cross-species 
communication, thereby maintaining intestinal homeostasis 
(Toyofuku et al., 2019; Pegtel and Gould, 2019; Jiang et al., 2016; Chu 
et  al., 2016). These vesicular structures exhibit distinct biological 
properties, including membrane protein enrichment (e.g., 
phospholipids, glycoproteins) and cargo molecule encapsulation (e.g., 
virulence factors, nucleic acids), which differ substantially from their 
parental bacterial cells (Toyofuku et al., 2023; Toyofuku et al., 2019). 
OMV biogenesis occurs through two distinct mechanisms: membrane 
blebbing, characterized by the formation and fission of outer 
membrane protrusions (Toyofuku et al., 2019; Turnbull et al., 2016), 
and endolysin-mediated cell lysis, which is triggered under 
environmental stress conditions (e.g., DNA damage) via enzymatic 
degradation of peptidoglycan layers (Toyofuku et al., 2019; Brown 
et  al., 2015). Their inherent biomimetic properties, including cell 
membrane permeability and structural stability, enable OMVs to 
translocate across biological barriers and deliver functional cargo to 
recipient cells (Toyofuku et al., 2023; Toyofuku et al., 2019; Kulp and 
Kuehn, 2010). This delivery capability highlights the potential of 
OMVs as versatile nanoplatforms for targeted drug delivery and 
immunomodulation in IBD management (Toyofuku et  al., 2019; 
Turnbull et al., 2016).

Within the host-microbe interactome, OMVs mediate important 
biological functions through two principal mechanisms. First, OMVs 
mediate horizontal gene transfer (HGT) by delivering bacterial genetic 
cargo (e.g., genomic DNA, non-coding RNAs) to eukaryotic cells, a 
process conserved across diverse bacterial taxa (Tashiro, 2017; Mills 
et al., 2024; Tran and Boedicker, 2017). This vesicle-facilitated nucleic 
acid transport induces host epigenetic reprogramming via 
RNA-mediated transcriptional modulation, though the molecular 
basis of vesicle internalization remains mechanistically unresolved, 
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which may involve receptor-mediated competitive uptake (Toyofuku 
et al., 2023). Such HGT proficiency underscores their potential as 
tools for microbial genome engineering.

Second, OMVs harbor bacteriolytic enzymes (e.g., glycoside 
hydrolases) and antimicrobial metabolites capable of lysing competing 
microbiota (Kadurugamuwa and Beveridge, 1996; Yue et al., 2021). 
This innate antimicrobial activity, combined with engineered cargo 
encapsulation, positions OMVs as targeted therapeutics for IBD 
management. Specifically, synthetic OMV formulations could 
selectively deplete pro-inflammatory pathobionts while preserving 
commensal symbionts, thereby rectifying intestinal dysbiosis  - a 
central pathogenic driver in IBD.

Beyond their role in microbial communication, OMVs function 
as potent immunomodulators through pathogen-associated molecular 
pattern (PAMP) recognition (Kaparakis-Liaskos and Ferrero, 2015). 
Specifically, OMVs-associated ligands activate an array of pattern 
recognition receptors (PRRs) on innate immune cells, eliciting 
cytokine release, inflammasome activation, and apoptotic cascade 
initiation (Kaparakis-Liaskos and Ferrero, 2015; Söderblom, 2005). 
Notably, OMVs exhibit bidirectional immunoregulatory activity  - 
exacerbating or attenuating inflammatory responses via PRR 
engagement, while concurrently transferring non-coding RNAs that 
post-transcriptionally regulate host immune gene networks (Cañas 
et  al., 2018; Gilmore et  al., 2022). Of translational significance, 
probiotic-derived OMVs mediate calibrated immune stimulation, 
preserving intestinal immune equilibrium through TLR ligand 
exposure (Shen et al., 2012). Bacteroides fragilis OMVs encapsulate 
polysaccharide A (PSA), which activates TLR2/4-dependent signaling 
to dampen hyperactive immunity while enhancing commensal 
microbiota colonization (Mazmanian et  al., 2008; Molina-Tijeras 
et al., 2019; Rothfield and Pearlman-Kothencz, 1969). This supports a 
novel therapeutic hypothesis for IBD.

Emerging evidence highlights the immunomodulatory role of 
probiotic-derived OMVs in maintaining intestinal homeostasis (Shen 
et  al., 2022). Specifically, Bacteroides fragilis OMVs activate TLR2 
signaling in dendritic cells (DCs), resulting in the induction of 
regulatory T cell (Treg) differentiation and the production of 
interleukin-10 (IL-10), thereby ameliorating 2,4,6-trinitrobenzene 
sulfonic acid (TNBS)-induced colitis in rodent models (Chu et al., 
2016; Shen et  al., 2012). Mechanistically, OMVs-DC interactions 
upregulate IL-10 expression through the IBD-associated autophagy 
gene ATG16L1, suppressing intestinal inflammation in preclinical 
models (Chu et  al., 2016; Durant et  al., 2020). Furthermore, 
administration of Bacteroides fragilis OMVs was shown to ameliorate 
dextran sulfate sodium (DSS)-induced colitis in mice, reducing 
disease activity and histological damage, further supporting their 
therapeutic potential in IBD-relevant models (Durant et al., 2020). 
Notably, the abundance of probiotic species (e.g., Bacteroides fragilis) 
is markedly reduced in IBD patients, suggesting that OMVs-mediated 
immunoregulation primarily operates in healthy physiological states 
(Durant et  al., 2020). Intriguingly, Bacteroides thetaiotaomicron 
(Bt)-derived OMVs (BEVs) exhibited state-dependent 
immunomodulation: in healthy conditions, BEVs enriched cycling 
monocytes and maintained tissue-resident macrophage pools (Swirski 
et  al., 2014). However, BEV proteins enhanced DNA repair in 
monocytes, potentially mitigated oxidative DNA damage linked to 
colorectal carcinogenesis in UC (Liao et al., 2008). Furthermore, BEVs 
modulated the unfolded protein response (UPR) in inflammatory 

monocytes by promoting apoptosis and endoplasmic reticulum-
associated degradation (ERAD), thereby alleviating ER stress and 
attenuating intestinal inflammation (Jones et al., 2018). These findings 
underscored the therapeutic potential of exogenous OMVs 
supplementation in IBD management (Shen et al., 2022).

In the field of synthetic biology, OMVs are mainly applied as 
vaccine delivery platforms and drug delivery systems (Sartorio et al., 
2021; Gnopo et al., 2017; Carvalho et al., 2019; Elhenawy et al., 2014). 
By fusing exogenous antigens with OMVs-enriched proteins, such as 
ClyA, these antigens are more readily transported into the periplasmic 
space and subsequently packaged into the OMVs lumen (Gnopo et al., 
2017; Wai et al., 2003; Chen et al., 2010). This capability enables OMVs 
to carry multiple antigens and elicit specific antibody responses, 
thereby conferring protection against pathogenic microorganisms 
(Sartorio et al., 2021). Engineered bacterial strains can produce OMVs 
loaded with therapeutic proteins or drugs, which serve as efficient 
delivery vehicles for transporting these agents to targeted sites 
(Sartorio et al., 2021; Carvalho et al., 2019). A critical limitation in 
such applications stems from the inherent self-toxicity of OMVs. To 
mitigate this challenge, two principal strategies have been developed 
through rigorous investigation (Gnopo et al., 2017). The first one is to 
modify the structure of lipopolysaccharides (LPS). Techniques include 
reducing acyl chain numbers or converting to monophosphorylated 
lipid A, resulting in detoxified OMVs (Gnopo et al., 2017; Chen et al., 
2016; Needham et al., 2013; Irene et al., 2019). The other is to edit the 
bacterial gene related to LPS expression. Genetic engineering can 
control LPS synthesis pathways, producing OMVs with reduced 
immune system activation and adverse effects (Gnopo et al., 2017).

There are many mysteries about OMVs yet to be  revealed, 
including its formation process and mechanisms about nucleic acid 
packaging. In addition, OMVs are usually purified from bacteria 
cultured under standard laboratory conditions, but their composition 
may differ in wild type strains. Nevertheless, with the development of 
research on OMVs, the therapeutic potential of OMVs for IBD is 
gaining more and more attention (Sartorio et al., 2021).

7 Perspective and future 
developments

7.1 Technical challenges

Bacteria serve as pivotal platforms in microbiome engineering, 
demonstrating remarkable potential for IBD therapeutics through genetic 
modification, surface engineering, and targeted delivery approaches 
(Figure  4). These engineered bacterial systems offer unprecedented 
precision in gut microbiota modulation, paving the way for next-
generation personalized microbial therapies. However, translating this 
potential into clinical reality faces significant technical hurdles.

Engineering Complexity: microbiome engineering seeks to 
modulate the composition or activity of microbial communities, the 
extraordinary diversity and structural complexity of these ecosystems 
present formidable barriers to targeted manipulation (Marsh and Ley, 
2022). This challenge is compounded by the prevalence of unculturable 
species under standard laboratory conditions and species-specific 
variations in DNA uptake mechanisms and integration pathways that 
hinder horizontal gene transfer (Marsh and Ley, 2022; Jin et al., 2022; 
Waller et al., 2017). Furthermore, microbial defense systems (e.g., 
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restriction-modification, phage exclusion) act as evolutionary 
safeguards against foreign genetic material, necessitating species-
tailored engineering approaches (Bernheim and Sorek, 2020). Current 
methodologies remain predominantly optimized for individual 
microbial taxa rather than complex consortia (Marsh and Ley, 2022; 
Johnston et al., 2019).

Circuit Burden and Genetic Stability: Engineered microbes 
sense, memorize, and respond to biological signals through 
synthetic circuits (Riglar and Silver, 2018). However, the “circuit 
burden”—the metabolic load or cost incurred—can impact cell 
stability, mutation rates, and lead to loss of function (Ceroni et al., 
2015). This necessitates establishing an optimal equilibrium between 
circuit functionality and metabolic load, presenting substantial 
design and implementation challenges (Pedrolli et  al., 2019). 
Successful implementation requires synergistic integration of 
biosensors, intracellular logic processors, and effectors, but 
biological components exhibit limited orthogonality, mandating 
dedicated circuit architectures per cellular unit to prevent cross-talk 
(Pedrolli et  al., 2019). Regarding genetic stability optimization, 
contemporary therapeutic strains predominantly utilize 
chromosomal integration of recombinant DNA to ensure heritable 
stability. Notably, plasmid-based systems demonstrate inherent 
instability due to segregational loss under non-selective conditions 
and unequal partitioning during cytokinesis (Hwang et al., 2017). 

Current stabilization strategies include: essential gene 
complementation systems involving chromosomal deletion paired 
with plasmid-borne rescue cassettes, and advanced maintenance 
mechanisms employing toxin-antitoxin modules and plasmid 
partition proteins for longitudinal plasmid persistence (Ho 
et al., 2018).

Delivery System Limitations: While viral vectors (retrovirus, 
lentivirus, adenovirus, AAV) offer high delivery efficiency, safety 
concerns like immunogenicity and insertional mutagenesis persist 
(Maggio et  al., 2014). Nonviral systems (electroporation, 
hydrodynamic injection, lipid nanoparticles) provide 
biocompatibility but often suffer from reduced efficacy in vivo (Li 
et al., 2020). To address these limitations, optimization strategies 
include hybrid viral vectors (e.g., PEGylated adenovirus/AAV (Zou, 
2022), gold nanoparticle-polymer hybrids; Lee et al., 2017), structural 
modifications (e.g., minicircle DNA; Kay et  al., 2010), chemical 
conjugation, and nonviral polymer complexes (Guenther et al., 2014), 
collectively enhancing precision, efficiency, and safety (Koo et al., 
2017; Figure 5).

Biocontainment and Safety: Beyond technical challenges, ethical and 
biosafety considerations constitute critical barriers. Central to this is 
implementing stringent biocontainment protocols during deployment 
to prevent horizontal gene transfer, regulate proliferation, and ensure 
safety (Riglar and Silver, 2018). Advanced strategies include 

FIGURE 3

Genetic engineering modified naturally occurring OMVs to obtain a versatile transformation platform. Engineering approaches included fusion of 
several transmembrane proteins on OMVs; spy tags/spy traps; Hbp platforms; intrinsic antigens; glycosylation; and ice nucleoprotein fusions.
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FIGURE 5

Multi-modal engineered biotherapeutic system for IBD intervention. This figure illustrates the synergistic therapeutic mechanism of four engineered 
biological components for IBD: Bacteriophages: Selectively eliminate pro-inflammatory bacteria, correcting microbial dysbiosis; Engineered bacteria: 
1. Secrete repair factors (TFS) to inhibit epithelial apoptosis. 2. Secrete anti-inflammatory agents (IL-10). Engineered yeast: Produce butyrate and 
degrade the pro-inflammatory factor eATP, alleviating metabolic imbalance; OMVs: 1. Deliver PSA to activate immune tolerance. 2. Restore barrier 
function via the ERAD/UPR pathway. 3. Deliver CRISPR components to engineered bacteria.

FIGURE 4

The future application of microbiome engineering.
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environmentally triggered kill switches (e.g., temperature-sensitive toxin-
antitoxin; Piraner et  al., 2017; Mandell et  al., 2015) and synthetic 
auxotrophy mechanisms (metabolic dependency on non-canonical 
amino acids/xenonucleotides (Stirling et  al., 2017; Gallagher et  al., 
2015)). While effective at reducing escape frequencies, long-term efficacy 
is challenged by evolutionary pressures favoring mutation-driven 
resistance (Riglar and Silver, 2018). This urgently requires development 
of next-generation containment modules tailored for living therapeutics. 
Strain selection and attenuation are equally pivotal safety determinants 
(Brockstedt, 2004; Wallecha, 2009). Episodes of residual pathogenicity 
(e.g., listeriosis in CRS-207 trials) highlight the need for rigorous safety 
protocols (Riglar and Silver, 2018).

7.2 Clinical translation barriers and future 
research directions

Despite the promise, the effectiveness of engineered microbiome 
therapies in humans remains to be  fully verified. Techniques for 
assessing in vivo effects lag behind gene editing advancements (Riglar 
and Silver, 2018). Specific challenges and future research foci vary by 
therapeutic modality:

Engineered Bacteria and Yeast: Key challenges include 
achieving stable colonization and persistent therapeutic activity in 
the dynamic gut environment during active inflammation (Mimee 
and Nagler, 2021; Wu et  al., 2024), assessing potential 
immunogenicity upon repeated dosing, establishing long-term 
human safety profiles, and fine-tuning therapeutic windows 
(Mimee and Nagler, 2021; Scott et al., 2021; Wu et al., 2024). Future 
research prioritizes refining dose–response calibration, optimizing 
site-specific delivery (e.g., synthetic adhesins; Piñero-Lambea 
et  al., 2015), exploring polymodal therapeutic synergies, and 
integrating synthetic gene networks for patient-specific regimens 
stratified by disease endotypes (Wu et  al., 2024). Precisely 
modulating critical balances (e.g., extracellular ATP and adenosine; 
Mimee and Nagler, 2021) within narrow therapeutic windows is 
crucial for minimizing off-target effects. Prospectively, engineered 

yeast systems hold particular promise, with designs enabling 
sophisticated multi-input/output regulatory circuits (Mimee and 
Nagler, 2021).

Phage Therapy: Phage therapy encounters substantial challenges in 
complex IBD management (Federici et al., 2023). Primary limitations 
encompass rapid evolution of phage-resistant strains and unintended 
immunomodulatory effects. While rationally designed polyphage 
cocktails targeting specific pathogens (Federici et al., 2022; Dedrick 
et al., 2019) and computational optimization (genomic mining, machine 
learning; Federici et al., 2023; Thiebes et al., 2020; Yehl et al., 2019) are 
promising, critical unresolved issues include phage stability in the GI 
tract, biodistribution, and immune interactions. Elucidating phage-
mediated immune modulation mechanisms is a critical priority 
(Shuwen and Kefeng, 2022). Combination therapies with antibiotics or 
FMT show synergistic potential preclinically (Eskenazi et al., 2022; Suez 
et al., 2018). Rigorous clinical validation through large-scale RCTs is 
imperative to establish pharmacodynamics and biosafety (Federici et al., 
2022; Federici et al., 2023).

OMVs: Emerging evidence demonstrates the dual 
immunomodulatory capacity of OMVs, which can either exacerbate 
pathology or induce tolerance (Toyofuku et al., 2023; Kaparakis-Liaskos 
and Ferrero, 2015). While applications expand beyond vaccines into 
drug delivery and synthetic biology (Sartorio et al., 2021; Mashburn and 
Whiteley, 2005; Hoefler et  al., 2017), significant translation hurdles 
persist: inherent heterogeneity complicating characterization, scalability 
limitations, and potential immunogenicity from endogenous 
components like LPS (Sartorio et al., 2021; Needham et al., 2013). These 
limitations drive efforts to engineer OMVs with tailored compositions. 
Robust clinical validation across IBD models remains imperative 
(Toyofuku et al., 2023).

7.3 Roadmap to clinical translation

Translating engineered microbiome therapies from bench to 
bedside for IBD patients requires a defined clinical development 
pathway. This sequential roadmap, outlined in Table 3, encompasses 

TABLE 3  Proposed clinical translation roadmap for engineered microbiome therapies in IBD.

Stage Primary goals Key considerations

Preclinical optimization 	•	 Safety (biocontainment, toxicity)

	•	 Efficacy (models, engraftment)

	•	 PK/PD,

	•	 Scalable manufacturing

	•	 Sophisticated models (gnotobiotic, humanized),

	•	 GMP protocols

Phase I (Safety) 	•	 Tolerability

	•	 Initial safety profile

	•	 Preliminary PK/PD

	•	 Small cohorts (healthy volunteers/small IBD group)

	•	 Dose escalation

Phase II (Proof-of-Concept) 	•	 Efficacy signals (clinical, endoscopic, biomarkers)

	•	 Optimal dosing

	•	 Further safety

	•	 IBD patient populations

	•	 Mechanistic substudies

	•	 Biomarker validation

Phase III (Confirmation) 	•	 Confirm efficacy vs. standard care/placebo

	•	 Safety in large diverse populations

	•	 Large RCTs

	•	 Realistic endpoints (clinical remission, mucosal healing)

Regulatory approval & Phase IV 	•	 Submission to agencies

	•	 Post-marketing surveillance

	•	 Defining clear regulatory pathways

	•	 Long-term safety monitoring

	•	 Real-world effectiveness
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key stages from preclinical optimization through regulatory approval 
and post-marketing surveillance, addressing the unique challenges of 
these living therapeutics.

In conclusion, while significant technical and clinical 
challenges persist, engineered live biotherapeutics—including 
symbiotic bacteria, yeast consortia, phage systems, and 
programmable OMVs—exhibit considerable therapeutic 
potential for IBD. Though distinct, their strategic integration 
through systems biology frameworks could catalyze paradigm-
shifting advances in precision microbiome therapeutics. 
Navigating the outlined roadmap, with focused research 
addressing the key barriers and a commitment to robust 
clinical evaluation, is essential for realizing this potential for 
IBD patients.
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Glossary

IBDs - Inflammatory bowel diseases

OMVs - out-membrane nanovesicles

ZFNs - Zinc Finger Nucleases

TALENs - transcription activator-like  
effector nucleases

CRISPR - clustered regularly interspaced short palindromic repeat-
Cas-associated nucleases

DSBs - double-stranded breaks

HDR - homology-directed repair

NHEJ - non-homologous end joining

AAV - adeno-associated virus

AHL - N-acyl-L-homoserine lactone

QS - Quorum sensing

INP - ice nucleation protein

BINDs - Biofilm Integrated Nanofiber Displays

NO - nitric oxide

TFFs - trefoil factors

EcN - Escherichia coli Nissle

IL-35 - interleukin-35

IL-10 - interleukin-10

CAT - catalase

SOD - superoxide dismutase

MnSOD - manganese superoxide dismutase

SICE - Stress-Inducible Controlled Expression

ANP - atrial natriuretic peptide

PEA - paracasei F19 express

UC - ulcerative colitis

CD - Crohn’s disease

EGF - epidermal growth factor

IFN-γ - interferon-γ

eATP - extracellular ATP

IgA - immunoglobulin A

sIgA - Secretory immunoglobulin A

HGT - horizontal gene transfer

PRRs - pattern recognition receptors

TLR - toll-like receptors

DCs - dendritic cells

TNBS - trinitrobenzene sulfonic acid

Bt - Bacteroides thetaiotaomicron

BEVs - Bacteroides thetaiotaomicron derived OMVs

UPR - unfolded protein response

ER - endoplasmic reticulum stress

ERAD - endoplasmic reticulum-associated degradation

LPS - lipopolysaccharides

BE - base editor

C - cytosine

U - uracil

PEG - polyethylene glycol
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