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The human gut microbiome, traditionally linked to infectious diseases, is now
recognized as a hub of non-pathogenic microorganisms that play pivotal roles in
host communication and homeostasis. Advances in microbiome engineering have
enabled the design of “smart” living therapeutics for inflammatory bowel disease
(IBD), leveraging engineered symbiotic bacteria, yeasts, and bacteriophages. This
review synthesizes recent progress in reprogramming microbes using synthetic
biology tools, emphasizing their capacity to sense pathological signals and deliver
targeted therapies. We critically evaluate three key approaches: synthetic gene
circuits in bacteria for precision drug delivery, phage-mediated modulation of
dysbiotic microbiota, and yeast-based systems for metabolic intervention (e.qg.,
butyrate production). Challenges in biocontainment, genetic stability, and clinical
translation are discussed, alongside emerging strategies such as outer membrane
vesicles (OMVs) for immunomodulation. By distilling these advances, we highlight a
roadmap for translating engineered microbes into safe and effective IBD therapies.

KEYWORDS

microbiome, synthetic biology, inflammatory bowel disease, extracellular vesicles,
therapy

1 Introduction

Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis,
presents a significant and growing global health challenge characterized by chronic intestinal
inflammation. Current treatment strategies often face limitations, including variable efficacy,
systemic side effects, and the potential for loss of response over time, highlighting the urgent need
for novel, targeted therapeutic approaches (Riglar and Silver, 2018; Leventhal et al., 2020; Zaiss et al.,
2021; Mager et al., 2020). The gut microbiome plays a crucial role in IBD pathogenesis and is
increasingly recognized as a promising therapeutic target. While historically implicated in disease,
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GRAPHICAL ABSTRACT
The microbiome engineering therapies in the field of IBD.

recent advances in microbiome research and genomic technologies have
revealed its potential for therapeutic manipulation (Charbonneau et al.,
2020; Kurtz et al,, 2019; Sanna et al., 2019). Microbiome engineering,
particularly utilizing engineered bacteria, has emerged as a strategy with
distinct potential advantages for IBD management, offering possibilities
for localized diagnosis and treatment (Riglar and Silver, 2018; Leventhal
etal.,, 2020; Zaiss et al., 2021; Mager et al., 2020). The continuous evolution
of gene editing tools and synthetic biology further enables the design of
bacteria with increasingly sophisticated functions, making this approach
more feasible and cost-effective (Table 1; Leventhal et al., 2020;
Charbonneau et al., 2020; Kurtz et al., 2019; Federici et al., 2022).

Genetically engineered bacteria therapy offers several compelling
benefits for IBD. Engineered bacteria can localize to specific sites of
inflammation within the gut, areas often difficult to reach effectively with
conventional systemic drugs. This targeted approach allows for direct
interaction with the diseased tissue, potentially lowering off-target effects
and improving safety compared to traditional administration routes
(Riglar and Silver, 2018; Steidler et al., 1998; Saltzman et al., 1996). It also
minimizes drug loss during systemic circulation or gastrointestinal
transit, enhancing local bioavailability (Forkus et al., 2017; Hanson et al.,
2014; Steidler et al., 2000; Motta, 2012; Vandenbroucke et al., 2004). As
living therapeutics, engineered bacteria can be designed to sense and
respond to dynamic physiological and pathological signals within the gut
environment (Riglar and Silver, 2018; Riglar et al., 2017; Daeffler, 2017).
This sensing ability holds promise for real-time monitoring of disease
activity and drug response, providing more intuitive insights. Engineered
bacteria can be programmed to interact with the host immune system,
for example, by expressing immunomodulatory molecules or presenting
specific antigens, thereby potentially enhancing therapeutic immune
responses (Zhan et al., 2019; Sterner and Sterner, 2021).

Given these capabilities, microbiome engineering is positioned as an
emerging vehicle to diagnose and treat diseases (Riglar and Silver, 2018;
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Figure 1). Despite this significant promise, translating engineered
microbiome therapies into clinical practice for IBD faces substantial
hurdles. Key challenges include ensuring the safety and long-term stability
of genetically modified organisms within the complex gut ecosystem,
addressing ethical and regulatory concerns, and demonstrating consistent
efficacy and viability of the engineered microbes in human patients
(Riglar and Silver, 2018; Marsh and Ley, 2022). Furthermore, a
comprehensive review synthesizing the latest advancements in synthetic
biology tools for microbiome engineering, the design principles for
therapeutic bacterial strains, the strategies for targeted delivery in the gut,
and the use of novel carriers (such as bacteriophages, engineered yeast,
and OMVss) specifically within the context of IBD treatment is currently
lacking. This gap in the literature motivates our review.

Therefore, this review specifically focuses on the application and
challenges of engineered microbiome therapeutics for IBD. We aim to
discuss current developments in synthetic biology tools applied to
re-program microbes into human therapeutic agents, introduce the
design of engineered therapeutic strains, and evaluate practical
approaches for targeted therapeutic delivery within the gastrointestinal
tract. Furthermore, we elaborate on common carriers in the synthetic
biology area, such as bacteriophages, engineered yeast and engineered
bacteria outer membrane nanovesicles (OMVs). Finally, we discuss
the perspective, future developments, and outstanding challenges of
engineered microbiome therapy.

2 Methodology
2.1 Literature search strategy

This narrative review employed a structured literature search in
PubMed to synthesize recent advances in microbiome engineering
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for IBD therapy. The search strategy combined core conceptual
keywords and Medical Subject Headings (MeSH) terms:

 Primary Concepts: (“microbiome engineering” OR “synthetic
biology”) AND (“inflammatory bowel disease” OR “IBD” OR
“Crohn’s disease” OR “ulcerative colitis”)

Intervention-Specific Terms:
o Engineered bacteria: (“engineered bacteria” OR “genetically
modified bacteria” OR “bacterial therapeutics”)
o Bacteriophages: (“bacteriophage therapy” OR “phage
modulation” OR “phage**)
o Engineered yeast: (“engineered yeast” OR “Saccharomyces
cerevisiae” OR “yeast*” OR “saccharomycete* )
o Outer membrane vesicles (OMVs): (“outer membrane vesicles”
OR “OMVSs” OR “bacterial vesicles” OR “vesicle*”)
o Mechanistic Terms: (“synthetic gene circuits” OR “CRISPR”
OR “TALEN” OR “ZFN” OR “quorum sensing” OR

“immunomodulation”)

Boolean operators (AND/OR) optimized retrieval. Filters
included: English language, publication years 2000-2024 (prioritizing
2018-2024 for rapid technological advances), and article types
(original research, reviews, clinical trials).

Inclusion and Exclusion Criteria

« Inclusion:

o Studies on synthetic biology tools (e.g., CRISPR, TALEN)
applied to microbiome engineering.

o Preclinical/clinical studies of engineered microbes (bacteria,
yeast, phages, OMVs) for IBD therapy.

o Key mechanistic insights into gut microbiome-immune
interactions in IBD.

o High-impact  reviews  (>50  citations)  framing
foundational concepts.
o Exclusion:
o Studies unrelated to IBD or microbiome engineering.
o Articles focused solely on diagnostics  without

therapeutic translation.
o Low-evidence publications (e.g., editorials without data).
2.2 Screening and selection process

Initial searches yielded >1,200 publications. Titles/abstracts were
screened for relevance to four thematic pillars:

1 Design of engineered strains.
2 Bacteriophage modulation.
3 Yeast-based therapeutics.

4 OMVs as delivery systems.

Full texts of 328 articles were assessed. 198 references were
retained based on:

o Impact: Priority to high-citation papers and recent breakthroughs.
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o Thematic Coverage: Balance across engineering strategies
(bacteria/phages/yeast/OMVs) and mechanistic depth.

« Critical Appraisal: Emphasis on studies with robust models (e.g.,
gnotobiotic mice, human microbiota transplants) and

translational validation.

2.3 Data synthesis and limitations

As a critical narrative review, this work synthesizes evidence
thematically rather than via meta-analysis. Key claims are supported
by primary data from cited references.

« Limitations: PubMed-centric search may omit niche engineering
studies; non-English articles were excluded. Recent preprints
were incorporated where peer-reviewed.

« Bias Mitigation: Cross-referencing seminal reviews (e.g., Riglar
and Silver, 2018; Cubillos-Ruiz et al., 2021) ensured coverage of
landmark studies.

2.4 Review type clarification

This is a comprehensive narrative review with critical appraisal,
not a systematic/scoping review. It emphasizes:

o Mechanistic Innovation: e.g., CRISPR-based editing, closed-loop
yeast circuits.
o Therapeutic Translation: Clinical challenges and emerging solutions.

3 Design of engineered therapeutic
strains

3.1 Synthetic biology

The advancement of synthetic biology enables the development of
genetically engineered microbial therapies (Cubillos-Ruiz et al., 2021).
While these tools permit the construction of diagnostic-therapeutic
circuits where bacteria sense biomarkers (e.g., TNF-a), process signals via
genetic logic gates (AND/OR), and deliver effectors (e.g., anti-
inflammatory cytokines) their application to IBD faces significant
translational barriers (Pedrolli et al., 2019; Tanna et al., 2021; Nandagopal
and Elowitz, 2011; Kobayashi et al., 2004). Circuit instability under
dynamic gut conditions (pH fluctuations, microbiota competition), safety
concerns regarding off-target effects or horizontal gene transfer, and
limited clinical validation in human studies remain critical limitations
(Claesen and Fischbach, 2015). To bridge preclinical advances to
therapeutic translation, future designs must incorporate IBD-specific
features such as fail-safe self-destruction mechanisms and mucosa-
targeting delivery systems, rather than presenting generalized
technical overviews.

3.2 Genome edition for engineered bacteria

Selecting suitable microbial chassis (e.g., mucus-adherent
Bacteroides or immunomodulatory L. lactis) and editing tools is

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1610029
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Kong et al.

10.3389/fmicb.2025.1610029

TABLE 1 Genetic engineered bacterial strains.

Target

disease

Chassis

Mechanism of action

Reference

Low-grade The Bifidobacteria expression System (BEST) system enables Bifidobacterium bifidum to produce Wright et al. (2019)
intestinal Bifidobacterium bifidum heterologous proteins (IL-10, etc.)using a broad host range plasmid, stress-inducible promoter,
inflammation and two different signal peptides from Lactococcus lactis and Bifidobacterium longum.
Engineered commensal E. coli produce and release a biotherapeutic in response to nitric oxide Shuwen and Kefeng
CD Commensal Escherichia coli (NO), a biomarker for Crohn’s disease (CD), by co-expressing transmembrane protein TolA (2022)
(TolAIII) and granulocyte-macrophage colony-stimulating factor (GM-CSF).
IBD Escherichia coli Nissle 1917 EcN produces fibrous matrices composed of curli nanofibers displaying trefoil factors (TFFs), Gogokhia et al.
(EcN) which promote gut epithelial integrity, immunomodulation and mucosal healing. (2019)
Engineering of Lactococcus lactis NZ9000 to express murine interleukin-35 (IL-35; NZ9000/ Nikolich and
ue Dairy Lactococcus lactis IL-35) results in the accumulation of IL-35 in the gut, leading to a decrease in Th17 cells and an Filippov (2020)
NZ9000 increase in Treg cells in the lamina propria, as well as elevated levels of IL-10 and reduced levels
of pro-inflammatory cytokines IL-6, IL-17A, IFN-y, and TNF-a in both colon tissue and serum.
Crohn’s Engineered Lactobacillus casei | Decreasing the levels of reactive oxygen species by producing antioxidant enzymes such as Pires et al. (2021)
disease BL23 strains catalase (CAT) or superoxide dismutase (SOD).
8D Food-grade lactic acid Expressing and delivering Elafin, reducing elastase activity and inflammation, preventing Riglar et al. (2017)
bacteria (LAB) increased intestinal permeability, and inhibiting the release of cytokines and chemokines.
Express manganese superoxide dismutase (MnSOD) to reduce oxidative stress and inflammation Chang et al. (2017);
Lactobacillus casei BL23
IBD in the gut. Majewska et al.
Bifidobacterium
(2019)
The engineered bacterium secretes the cytokine IL-10 for localized delivery. Vandenbroucke et al.
IBD Lactococcus lactis
(2004)
Oral administration of SlpA-expressing L. lactis induces higher expression of IL-27 by myeloid Hsu et al. (2020)
ucC Lactococcus lactis
cells and increases IL-10 and cMAF expression in T cells.
Expression of MnKat from L. plantarum boosts Lb. casei BL23 survival under oxidative stress, Chang et al. (2017)
IBD Lb. casei BL23 while sodA gene from L. lactis enhances MnSOD activity, reducing oxidative stress and
inflammation in cell and murine colitis models.
8D Recombinant lactic acid An IL-10 expression system regulated by stress: Stress-Inducible Controlled Expression (SICE) Mimee and Nagler
bacteria (LAB) system. (2021)
Engineered Saccharomyces boulardii probiotics deliver anti-inflammatory proteins like IL-10, Scott et al. (2021)
IBD Saccharomyces boulardii TNFR1-ECD, alkaline phosphatase, and atrial natriuretic peptide (ANP) locally to the gut, easing
dextran sulfate sodium salt (DSS)-induced colitis in mice when orally administered.
Production of butyrate and modulation of molecular and immunological signals in the digestive Kong et al. (2024)
IBD Clostridium butyricum
system, extending to other organs such as the liver, adipose tissue, and brain.
Secretory overexpression of pEGF in C. butyricum could enhance intestinal protective functions, = Wu et al. (2024)
IBD Clostridium butyricum
partly through STAT3 signal activation in IPECs
Lactobacillus paracasei F19 express palmitoylethanolamide (PEA) in response to ultra-low Federici et al. (2023)
ucC Lactobacillus paracasei F19
palmitate supply, which alleviate UC symptoms.
Bacterial strains are engineered with trigger circuits to detect specific biomarkers, such as Zhan et al. (2019)
IBD Escherichia coli
tetrathionate, a transient product of reactive oxygen species produced during inflammation.

IBDs, Inflammatory bowel diseases; IL-10, interleukin-10; NO, nitric oxide; CD, Crohn's disease; TolAIIl, transmembrane protein TolA; GM-CSF, granulocyte-macrophage colony-stimulating
factor; TFFs, trefoil factors; IL-35, interleukin-35; IFN-y, interferon-y; TNF-a, tumor necrosis factor-o; CAT, catalase; SOD, superoxide dismutase; MnSOD, manganese superoxide dismutase;
SICE, Stress-Inducible Controlled Expression; ANP, atrial natriuretic peptide; DSS, easing dextran sulfate sodium salt; EGE, epidermal growth factor; PEA, palmitoylethanolamide; UC,

ulcerative colitis.

essential for IBD therapy (Table 1; Claesen and Fischbach, 2015;
Watterlot et al., 2010). As summarized in Table 2, Zinc Finger
Nucleases (ZFNs) offer moderate delivery efficiency but suffer from
low tolerance to non-G-rich sequences; TALENs provide high
specificity yet require thymine at target sites and face delivery
challenges due to size; while CRISPR-Cas systems dominate with
modular design and efficiency despite PAM dependency and
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than generic technical descriptions.

04

off-target risks (Li et al., 2020; Kim and Kim, 2014). Figure 2
illustrates how CRISPR enables genome editing. For IBD, CRISPR’s
multiplex editing capacity is advantageous but requires
optimization to minimize off-target effects in commensal bacteria
(Kaniecki et al., 2018; Verma and Greenberg, 2016; Chang et al.,
2017), underscoring the need for tool-specific adaptation rather
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3.3 Targeting therapeutic delivery

Precise localization to inflamed mucosa and sustained persistence
constitute major translational hurdles for IBD therapies. Motility
engineering (e.g., chemotaxis toward AHL signals) may fail in
dysbiotic IBD guts with distorted metabolite gradients, while synthetic
adhesins (e.g., INP-fused proteins) show promise but lack validation
in human inflamed tissue (Van Houdt et al., 2007; Ho et al., 2018).
Although Bacteroides spp. naturally colonize mucus layers (Esposito
et al., 2021; Barrett, 2010), enhancing their persistence requires
IBD-optimized strategies: Surface modifications (e.g., alginate
encapsulation) risk impairing host-microbe crosstalk; genetic
overexpression of adhesion factors (e.g., BINDs) could trigger
immune activation (Anselmo et al., 2016; Hou et al., 2021; Gunzburg
etal,, 2020; Nguyen et al., 2014; Duraj-Thatte et al., 2019).; and niche
competition via nutrient engineering faces instability due to IBD
dietary variability (Shepherd et al., 2018; Celebioglu et al., 2017).
Critically, the absence of clinical data on engineered strains in colitis
models and scalability challenges for personalized formulations
highlight the gap between preclinical advances and therapeutic reality.

4 Microbiome modulation by
bacteriophages

The human microbiome, composed of trillions of microorganisms
inhabiting diverse anatomical sites, plays a critical role in maintaining
health and homeostasis. Bacteriophages, or phages, represent an
essential component of this intricate ecosystem, significantly
influencing the composition, diversity, and functional dynamics of
microbial communities. A comprehensive understanding of the
mechanisms by which bacteriophages modulate the microbiome is
pivotal for harnessing their therapeutic potential in addressing
various diseases, including IBD (Dion et al., 2020). Dysbiosis of the
gut microbiota has been closely linked to the pathogenesis and
progression of IBD (Sinha et al, 2022). The gut virome,
predominantly consisting of bacteriophages, is recognized as a
critical regulator of gut microbiota composition and function (Sinha
etal., 2022).

Bacteriophages are viruses characterized by their specific tropism
for infecting and replicating within bacterial hosts (Dion et al., 2020).
Through these interactions, phages can profoundly reshape microbial
communities and impact ecosystem stability and host health by
altering microbial diversity and abundance (Dion et al., 2020).

The role of bacteriophages in regulating gut homeostasis and
disease pathogenesis is an active area of research, with observed
alterations in phage composition during disease progression (Federici
etal, 2023). Under healthy conditions, the gut virome is characterized
by a stable, long-term community structure, dominated by crAss-like
and Microviridae phages, which constitute the majority of intestinal
viruses (Shkoporov et al., 2019). These phages are closely associated
with specific bacterial taxa and contribute to maintaining gut
microbiota equilibrium (Shkoporov et al., 2019; Cornuault et al.,
2018). In contrast, in IBD, this equilibrium is disrupted, resulting in
significant alterations to the gut virome (Clooney et al., 2019). For
example, in patients with active ulcerative colitis (UC), an
overrepresentation of temperate phages has been linked to a reduction
in Bacteroides thetaiotaomicron and Bacteroides uniformis (Nishiyama
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et al.,, 2020). Furthermore, studies report altered abundance of
Caudovirales in IBD, which is associated with reduced bacterial
diversity and exacerbated colitis in models (Wagner et al., 2013; Zuo
etal,, 2019). Gut inflammation is hypothesized to trigger the induction
of prophages into the lytic cycle, thereby destabilizing the phage
community (Clooney et al, 2019). Additionally, an increased
abundance of Caudovirales phages has been observed in IBD patients,
correlating positively with disease severity (Zuo et al., 2019). These
findings highlight the dynamic nature of the gut virome during health
and disease, underscoring its critical relationship with gut microbiota
structure and disease pathogenesis.

All pathogenic bacteria associated with the progression of IBD
represent potential targets for phage combination therapy. For
instance, studies in a susceptible mouse model of ulcerative colitis
(UC), an IBD-related model, demonstrated that a phage combination
effectively suppressed Klebsiella pneumoniae and attenuated its
induction of proinflammatory responses (Federici et al., 2023;
Kitamoto et al., 2020). Moreover, genetic engineering can expand the
host range of phages. For example, phages originally targeting
Escherichia coli have been engineered to infect Yersinia and Klebsiella
species, and vice versa, through the modification of their tail fibers
(Ando et al., 2015). However, a limitation of phage therapy is the
potential emergence of resistance mutations, comparable to antibiotic
therapy (Dedrick et al., 2019). To address this issue, the use of phage
combinations, where each phage employs distinct mechanisms to
infect target bacteria, can delay resistance development and exert
longer-term suppressive effects (Wright et al., 2019). Additionally,
phage therapy exhibits immunomodulatory potential. Elevated phage
levels have been shown to induce interferon-y (IFN-y) secretion,
mediated by toll-like receptor 9 (TLRY) in mouse models and human
cells (Shuwen and Kefeng, 2022). This immunomodulatory effect
suggests phage therapy might function as a tolerogenic strategy for
UC, as proposed based on preclinical findings (Shuwen and Kefeng,
2022; Gogokhia et al., 2019).

Phage therapy offers several significant advantages. First, it can
delay the development of bacterial resistance (Nikolich and Filippov,
2020). Through the design of diverse phage combinations, it is possible
to suppress multiple strains and species of pathogens while reducing
the likelihood of treatment resistance emergence, as each phage targets
bacteria through distinct mechanisms (Dedrick et al., 2019). The
second advantage is specificity and self-replication of phages. Phages
have narrow host specificity, allowing them to selectively target
pathogenic bacteria without disrupting the surrounding microbial
community (Federici et al., 2022). Furthermore, the ability of phages
to self-replicate within host bacteria ensures sustained therapeutic
efficacy when target pathogen levels exceed a critical threshold
(Federici et al., 2022). The selection of strictly lytic bacteriophages, or
the genetic modification of natural bacteriophages through the
deletion of integrase genes or the alteration of their specificity to
pre-identified hosts, can enhance bacterial lysis efficiency while
minimizing the risk of horizontal gene transfer of toxins or antibiotic
resistance genes into bacterial chromosomes via lysogeny (Pires et al.,
2021). The third advantage is the feasibility of oral administration.
Orally administered phages can accumulate in the gastrointestinal
tract, particularly in the lower gut and fecal matter. This administration
route avoids immunogenic reactions associated with systemic delivery,
thereby improving treatment acceptability (Majewska et al., 2019).
Furthermore, encapsulation of phages in materials such as alginate,
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FIGURE 1
Microbiome engineering is mainly used to change the composition of microbiota or the composition or activity of active microbiota.

TABLE 2 Comparison of genome-editing tools for IBD microbial engineering.

Precision Efficiency IBD applicability Key limitations
ZFNs Moderate Low Limited by G-rich sequence requirements Complex protein engineering needed (Riglar and Silver, 2018)
TALENs High Moderate Suitable for large inserts (e.g., IL-35) Size limits viral delivery (Riglar and Silver, 2018)
Preferred for multiplexed edits (e.g., ROS-
CRISPR-Cas9 | High High PAM sequence dependency (Riglar and Silver, 2018)
scavenging enzymes)

Critique: CRISPR-Cas9 is optimal for IBD due to multiplexed editing (e.g., L. casei MnSOD + Bifidobacterium IL-10; Leventhal et al., 2020; Zaiss et al., 2021), but off-target effects risk unintended
immune activation (Mager et al., 2020; Charbonneau et al., 2020). TALENS are viable for eukaryotic chassis (e.g., S. boulardii) but suffer from low throughput (Riglar and Silver, 2018).

polyethylenimine, and pectin enables controlled release in the lower
gastrointestinal tract, optimizing oral delivery efficacy while reducing
potential physiological disruptions (Hsu et al., 2020). In summary,
phage therapy represents a promising therapeutic strategy, providing
precise targeting of specific pathogens, mitigating the risk of bacterial
resistance development, and offering broad potential applications in
microbiome research.

While preclinical evidence, particularly from IBD-relevant models
like UG, supports the potential of phage therapy for IBD, critical
evaluation reveals gaps (Federici et al., 2023; Kitamoto et al., 2020).
Many mechanistic insights linking phage dysbiosis to IBD stem from
association studies, necessitating further causal investigation in
relevant models (Clooney et al., 2019; Zuo et al,, 2019). The promising
immunomodulatory effects observed require validation in the
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complex inflammatory milieu of human IBD (Shuwen and Kefeng,
2022). Furthermore, robust clinical data demonstrating efficacy and
safety of phage cocktails specifically in IBD patients are currently
lacking (Federici et al., 2022; Federici et al., 2023). Challenges such as
the rapid evolution of phage resistance, potential immunogenicity
upon repeated dosing, and the need for standardized, personalized
phage cocktail formulations remain significant hurdles for clinical
translation in IBD (Dedrick et al., 2019).

5 Engineered yeast

Engineered yeast represents a distinct and promising therapeutic
modality for IBD, leveraging its eukaryotic cellular machinery and
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genetic tractability for sophisticated engineering (Mimee and Nagler,
2021).
dysregulated purinergic signaling, a key feature of IBD pathogenesis.

Currently, engineered yeast is employed to modulate

Scott et al. investigated the enzymatic conversion of extracellular ATP
(eATP) into immunosuppressive adenosine as a potential strategy to
disrupt the inflammatory cycle (Scott et al., 2021). However, excessive
adenosine signaling can lead to adverse effects, such as fibrosis and
tissue destruction, and a delicate imbalance between eATP and
adenosine levels in the gut (Mimee and Nagler, 2021; Scott et al,,
2021). To address this issue, Scott et al. developed a closed-loop
therapeutic system using engineered yeast. They designed a
transcriptional biosensor in Saccharomyces cerevisiae to detect eATP
levels associated with inflammation and connected it to a secreted
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potato apyrase enzyme capable of degrading eATP (Mimee and
Nagler, 20215 Scott et al., 2021). In mouse models of chemically
induced colitis, this closed-loop system demonstrated superior
efficacy compared to open-loop designs, specifically evidenced by
reduced inflammation, mitigated tissue fibrosis, and ameliorated
dysbiosis, underscoring its therapeutic potential (Mimee and Nagler,
2021; Scott et al., 2021).

Significant progress has also been made in engineering yeast
strains for sustained butyrate production to combat intestinal
inflammation. Butyrate, a crucial short-chain fatty acid produced by
fibrolytic bacteria, exhibits immunomodulatory properties and
promotes the proliferation of regulatory T cells (Tregs) in the intestinal
mucosa (Kong et al., 2024). Recent studies have engineered brewer’s
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yeast (Saccharomyces cerevisiae) to serve as an efficient butyrate
producer (Wu et al., 2024). The engineering process involves several
key steps. First, genes essential for butyrate production in various
hosts are identified and codon-optimized for yeast, followed by the
synthesis of these gene sequences. Subsequently, these genes are
introduced into yeast cells via plasmid vectors, which are integrated
into the S. cerevisiage genome to enable gene expression (Wu et al.,
2024). To enhance butyrate production under anaerobic conditions,
researchers introduced metabolic modules, including acetoacetyl-CoA
enhancement, acetyl-CoA enhancement, NADH enhancement, and
acyl-CoA regulation modules. These modifications enabled the
engineered yeast to sustain butyrate production in the intestinal
environment, ensuring consistent therapeutic efficacy (Wu et al,,
2024). Experimental results demonstrated that strains with moderate
butyrate production levels exhibited the most pronounced therapeutic
effects. Furthermore, synthetic biology approaches provided
mechanisms for butyrate release in response to disease-specific
signals, potentially improving therapeutic outcomes. Engineered yeast
can autonomously regulate butyrate production based on
environmental butyrate concentrations, enabling precise and
controlled therapeutic dose delivery (Wu et al., 2024).

However, critical translational challenges persist beyond proof-of-
concept efficacy. Engineered yeast strains exhibit transient gut
colonization (detectable for <48 h post-administration) and lack
sustained engraftment, necessitating frequent dosing that may
compromise patient compliance in chronic IBD management (Scott
et al, 2021; Wu et al, 2024). Immunogenicity risks remain
underexplored, as repeated exposure to engineered eukaryotic chassis
(e.g., expressing heterologous enzymes like apyrase or bacterial
butyrate-pathway genes) could provoke host immune responses,
including neutralizing antibodies or unintended inflammation (Scott
etal, 2021; Wu et al,, 2024). Long-term safety assessments are limited
by short-duration preclinical studies (typically <7 days), leaving gaps
in understanding chronic toxicity, genomic instability, horizontal gene
transfer, or ecological disruption of commensal mycobiota (Scott
etal., 2021; Wu et al., 2024).

Additionally, the role of yeast in modulating mucosal immunity,
particularly via IgA, provides another therapeutic avenue. It has been
found that dysbiosis in the gut microbiota leads to impaired immune
function, characterized by atrophy of lymphoid organs and decreased
levels of immunoglobulin A (IgA; Diaz-Garrido et al., 2021). Secretory
immunoglobulin A (sIgA) antibodies are widely regarded as critical
regulators of intestinal homeostasis, serving as the primary defense
mechanism against invasive pathogens, toxins, and harmful dietary or
bacterial metabolites (Conrey et al., 2023). Previous studies have shown
that sIgA exhibits broad cross-reactivity with various bacterial species
(Doron etal., 2021). Furthermore, Candida albicans and its hyphal form
have been identified as key targets and potent inducers of antifungal sIgA
responses. 'These findings suggest potential for engineering
non-pathogenic yeast strains (e.g., S. cerevisiae) to modulate sIgA
responses beneficially in IBD, although this concept requires direct
experimental validation in disease models (Doron et al., 2021).

In conclusion, engineered yeast offers unique advantages for IBD
therapy, including sophisticated eukaryotic gene regulation circuits
and potentially lower endotoxin concerns compared to some bacterial
platforms (Cubillos-Ruiz et al., 2021). Substantial progress has been
made in developing systems for eATP/adenosine modulation and
butyrate production. Nevertheless, significant challenges persist
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beyond the core engineering achievements. These include ensuring
reliable long-term colonization and engraftment of engineered strains
within the competitive gut niche, comprehensively assessing potential
immunogenicity upon repeated administration, establishing long-
term safety profiles in humans, and fine-tuning therapeutic windows
to maximize efficacy while minimizing off-target effects (Mimee and
Nagler, 2021; Scott et al., 2021; Wu et al., 2024). Furthermore, direct
comparisons of delivery efficiency, control precision, and therapeutic
efficacy between engineered yeast, bacteria, and phage-based
approaches within relevant IBD models are needed to fully define
their respective niches (Federici et al., 2022; Federici et al., 2023;
Mimee and Nagler, 2021). Despite these hurdles, synthetic biology
tools continue to provide exciting avenues for developing
personalized yeast-based treatments and optimizing therapeutic
outcomes for IBD.

6 Engineered bacteria out-membrane
nanovesicles

IBD therapeutics have witnessed significant advancements in
recent years, with bacterial outer membrane vesicles (OMVs)
emerging as a promising therapeutic strategy (Toyofuku et al., 2023;
Toyofuku et al., 2019; Guerrero-Mandujano et al., 2017; Sartorio et al.,
2021; Figure 3). OMVs, nano-scale (20-250 nm) extracellular vesicles
constitutively released by both Gram-negative and Gram-positive
bacteria, mediate important interactions within the intestinal
through
communication, thereby maintaining intestinal homeostasis
(Toyofuku et al., 2019; Pegtel and Gould, 2019; Jiang et al., 2016; Chu
et al., 2016). These vesicular structures exhibit distinct biological
(e.g.
phospholipids, glycoproteins) and cargo molecule encapsulation (e.g.,

microenvironment intercellular and cross-species

properties, including membrane protein enrichment
virulence factors, nucleic acids), which differ substantially from their
parental bacterial cells (Toyofuku et al., 2023; Toyofuku et al., 2019).
OMYV biogenesis occurs through two distinct mechanisms: membrane
blebbing, characterized by the formation and fission of outer
membrane protrusions (Toyofuku et al., 2019; Turnbull et al., 2016),
and endolysin-mediated cell lysis, which is triggered under
environmental stress conditions (e.g., DNA damage) via enzymatic
degradation of peptidoglycan layers (Toyofuku et al., 2019; Brown
et al,, 2015). Their inherent biomimetic properties, including cell
membrane permeability and structural stability, enable OMVs to
translocate across biological barriers and deliver functional cargo to
recipient cells (Toyofuku et al., 2023; Toyofuku et al., 2019; Kulp and
Kuehn, 2010). This delivery capability highlights the potential of
OMVs as versatile nanoplatforms for targeted drug delivery and
immunomodulation in IBD management (Toyofuku et al., 2019;
Turnbull et al., 2016).

Within the host-microbe interactome, OMVs mediate important
biological functions through two principal mechanisms. First, OMV's
mediate horizontal gene transfer (HGT) by delivering bacterial genetic
cargo (e.g., genomic DNA, non-coding RNAs) to eukaryotic cells, a
process conserved across diverse bacterial taxa (Tashiro, 2017; Mills
etal., 2024; Tran and Boedicker, 2017). This vesicle-facilitated nucleic
acid transport induces host epigenetic reprogramming via
RNA-mediated transcriptional modulation, though the molecular
basis of vesicle internalization remains mechanistically unresolved,
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which may involve receptor-mediated competitive uptake (Toyofuku
et al., 2023). Such HGT proficiency underscores their potential as
tools for microbial genome engineering.

Second, OMVs harbor bacteriolytic enzymes (e.g., glycoside
hydrolases) and antimicrobial metabolites capable of lysing competing
microbiota (Kadurugamuwa and Beveridge, 1996; Yue et al., 2021).
This innate antimicrobial activity, combined with engineered cargo
encapsulation, positions OMVs as targeted therapeutics for IBD
management. Specifically, synthetic OMV formulations could
selectively deplete pro-inflammatory pathobionts while preserving
commensal symbionts, thereby rectifying intestinal dysbiosis - a
central pathogenic driver in IBD.

Beyond their role in microbial communication, OMVs function
as potent immunomodulators through pathogen-associated molecular
pattern (PAMP) recognition (Kaparakis-Liaskos and Ferrero, 2015).
Specifically, OMVs-associated ligands activate an array of pattern
recognition receptors (PRRs) on innate immune cells, eliciting
cytokine release, inflammasome activation, and apoptotic cascade
initiation (Kaparakis-Liaskos and Ferrero, 2015; S6derblom, 2005).
Notably, OMVs exhibit bidirectional immunoregulatory activity -
exacerbating or attenuating inflammatory responses via PRR
engagement, while concurrently transferring non-coding RNAs that
post-transcriptionally regulate host immune gene networks (Canas
et al, 2018; Gilmore et al, 2022). Of translational significance,
probiotic-derived OMVs mediate calibrated immune stimulation,
preserving intestinal immune equilibrium through TLR ligand
exposure (Shen et al., 2012). Bacteroides fragilis OMV's encapsulate
polysaccharide A (PSA), which activates TLR2/4-dependent signaling
to dampen hyperactive immunity while enhancing commensal
microbiota colonization (Mazmanian et al.,, 2008; Molina-Tijeras
etal, 2019; Rothfield and Pearlman-Kothencz, 1969). This supports a
novel therapeutic hypothesis for IBD.

Emerging evidence highlights the immunomodulatory role of
probiotic-derived OMV's in maintaining intestinal homeostasis (Shen
et al., 2022). Specifically, Bacteroides fragilis OMVs activate TLR2
signaling in dendritic cells (DCs), resulting in the induction of
regulatory T cell (Treg) differentiation and the production of
interleukin-10 (IL-10), thereby ameliorating 2,4,6-trinitrobenzene
sulfonic acid (TNBS)-induced colitis in rodent models (Chu et al.,
20165 Shen et al., 2012). Mechanistically, OMVs-DC interactions
upregulate IL-10 expression through the IBD-associated autophagy
gene ATGI6L1, suppressing intestinal inflammation in preclinical
models (Chu et al, 2016; Durant et al, 2020). Furthermore,
administration of Bacteroides fragilis OMV's was shown to ameliorate
dextran sulfate sodium (DSS)-induced colitis in mice, reducing
disease activity and histological damage, further supporting their
therapeutic potential in IBD-relevant models (Durant et al., 2020).
Notably, the abundance of probiotic species (e.g., Bacteroides fragilis)
is markedly reduced in IBD patients, suggesting that OMVs-mediated
immunoregulation primarily operates in healthy physiological states
(Durant et al., 2020). Intriguingly, Bacteroides thetaiotaomicron
(Bt)-derived OMVs  (BEVs)  exhibited
immunomodulation: in healthy conditions, BEVs enriched cycling

state-dependent

monocytes and maintained tissue-resident macrophage pools (Swirski
et al, 2014). However, BEV proteins enhanced DNA repair in
monocytes, potentially mitigated oxidative DNA damage linked to
colorectal carcinogenesis in UC (Liao et al., 2008). Furthermore, BEV's
modulated the unfolded protein response (UPR) in inflammatory
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monocytes by promoting apoptosis and endoplasmic reticulum-
associated degradation (ERAD), thereby alleviating ER stress and
attenuating intestinal inflammation (Jones et al., 2018). These findings
underscored the therapeutic potential of exogenous OMVs
supplementation in IBD management (Shen et al., 2022).

In the field of synthetic biology, OMVs are mainly applied as
vaccine delivery platforms and drug delivery systems (Sartorio et al.,
2021; Gnopo et al., 2017; Carvalho et al., 2019; Elhenawy et al., 2014).
By fusing exogenous antigens with OMVs-enriched proteins, such as
ClyA, these antigens are more readily transported into the periplasmic
space and subsequently packaged into the OMVs lumen (Gnopo et al.,
2017; Wai et al., 2003; Chen et al., 2010). This capability enables OMV's
to carry multiple antigens and elicit specific antibody responses,
thereby conferring protection against pathogenic microorganisms
(Sartorio et al., 2021). Engineered bacterial strains can produce OMV's
loaded with therapeutic proteins or drugs, which serve as efficient
delivery vehicles for transporting these agents to targeted sites
(Sartorio et al., 2021; Carvalho et al., 2019). A critical limitation in
such applications stems from the inherent self-toxicity of OMVs. To
mitigate this challenge, two principal strategies have been developed
through rigorous investigation (Gnopo et al., 2017). The first one is to
modify the structure of lipopolysaccharides (LPS). Techniques include
reducing acyl chain numbers or converting to monophosphorylated
lipid A, resulting in detoxified OMVs (Gnopo et al., 2017; Chen et al.,
20165 Needham et al., 2013; Irene et al., 2019). The other is to edit the
bacterial gene related to LPS expression. Genetic engineering can
control LPS synthesis pathways, producing OMVs with reduced
immune system activation and adverse effects (Gnopo et al., 2017).

There are many mysteries about OMVs yet to be revealed,
including its formation process and mechanisms about nucleic acid
packaging. In addition, OMVs are usually purified from bacteria
cultured under standard laboratory conditions, but their composition
may differ in wild type strains. Nevertheless, with the development of
research on OMVs, the therapeutic potential of OMVs for IBD is
gaining more and more attention (Sartorio et al., 2021).

7 Perspective and future
developments

7.1 Technical challenges

Bacteria serve as pivotal platforms in microbiome engineering,
demonstrating remarkable potential for IBD therapeutics through genetic
modification, surface engineering, and targeted delivery approaches
(Figure 4). These engineered bacterial systems offer unprecedented
precision in gut microbiota modulation, paving the way for next-
generation personalized microbial therapies. However, translating this
potential into clinical reality faces significant technical hurdles.

Engineering Complexity: microbiome engineering seeks to
modulate the composition or activity of microbial communities, the
extraordinary diversity and structural complexity of these ecosystems
present formidable barriers to targeted manipulation (Marsh and Ley,
2022). This challenge is compounded by the prevalence of unculturable
species under standard laboratory conditions and species-specific
variations in DNA uptake mechanisms and integration pathways that
hinder horizontal gene transfer (Marsh and Ley, 2022; Jin et al., 2022;
Waller et al., 2017). Furthermore, microbial defense systems (e.g.,
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restriction-modification, phage exclusion) act as evolutionary
safeguards against foreign genetic material, necessitating species-
tailored engineering approaches (Bernheim and Sorek, 2020). Current
methodologies remain predominantly optimized for individual
microbial taxa rather than complex consortia (Marsh and Ley, 2022;
Johnston et al., 2019).

Circuit Burden and Genetic Stability: Engineered microbes
sense, memorize, and respond to biological signals through
synthetic circuits (Riglar and Silver, 2018). However, the “circuit
burden”—the metabolic load or cost incurred—can impact cell
stability, mutation rates, and lead to loss of function (Ceroni et al,,
2015). This necessitates establishing an optimal equilibrium between
circuit functionality and metabolic load, presenting substantial
2019).
Successful implementation requires synergistic integration of

design and implementation challenges (Pedrolli et al.,

biosensors, intracellular logic processors, and effectors, but
biological components exhibit limited orthogonality, mandating
dedicated circuit architectures per cellular unit to prevent cross-talk
(Pedrolli et al., 2019). Regarding genetic stability optimization,
contemporary therapeutic strains predominantly utilize
chromosomal integration of recombinant DNA to ensure heritable
stability. Notably, plasmid-based systems demonstrate inherent
instability due to segregational loss under non-selective conditions

and unequal partitioning during cytokinesis (Hwang et al., 2017).
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Current stabilization strategies include: essential gene
complementation systems involving chromosomal deletion paired
with plasmid-borne rescue cassettes, and advanced maintenance
mechanisms employing toxin-antitoxin modules and plasmid
partition proteins for longitudinal plasmid persistence (Ho
etal., 2018).

Delivery System Limitations: While viral vectors (retrovirus,
lentivirus, adenovirus, AAV) offer high delivery efficiency, safety
concerns like immunogenicity and insertional mutagenesis persist
2014).

injection,

(Maggio et al, Nonviral systems (electroporation,

hydrodynamic lipid nanoparticles)  provide
biocompatibility but often suffer from reduced efficacy in vivo (Li
et al,, 2020). To address these limitations, optimization strategies
include hybrid viral vectors (e.g., PEGylated adenovirus/AAV (Zou,
2022), gold nanoparticle-polymer hybrids; Lee et al., 2017), structural
modifications (e.g., minicircle DNA; Kay et al., 2010), chemical
conjugation, and nonviral polymer complexes (Guenther et al., 2014),
collectively enhancing precision, efficiency, and safety (Koo et al.,
2017; Figure 5).

Biocontainment and Safety: Beyond technical challenges, ethical and
biosafety considerations constitute critical barriers. Central to this is
implementing stringent biocontainment protocols during deployment
to prevent horizontal gene transfer, regulate proliferation, and ensure

safety (Riglar and Silver, 2018). Advanced strategies include
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environmentally triggered kill switches (e.g., temperature-sensitive toxin-
antitoxin; Piraner et al,, 2017; Mandell et al., 2015) and synthetic
auxotrophy mechanisms (metabolic dependency on non-canonical
amino acids/xenonucleotides (Stirling et al., 2017; Gallagher et al.,
2015)). While effective at reducing escape frequencies, long-term efficacy
is challenged by evolutionary pressures favoring mutation-driven
resistance (Riglar and Silver, 2018). This urgently requires development
of next-generation containment modules tailored for living therapeutics.
Strain selection and attenuation are equally pivotal safety determinants
(Brockstedt, 2004; Wallecha, 2009). Episodes of residual pathogenicity
(e.g., listeriosis in CRS-207 trials) highlight the need for rigorous safety
protocols (Riglar and Silver, 2018).

7.2 Clinical translation barriers and future
research directions

Despite the promise, the effectiveness of engineered microbiome
therapies in humans remains to be fully verified. Techniques for
assessing in vivo effects lag behind gene editing advancements (Riglar
and Silver, 2018). Specific challenges and future research foci vary by
therapeutic modality:

Engineered Bacteria and Yeast: Key challenges include
achieving stable colonization and persistent therapeutic activity in
the dynamic gut environment during active inflammation (Mimee
and Nagler, 2021; Wu et al, 2024), assessing potential
immunogenicity upon repeated dosing, establishing long-term
human safety profiles, and fine-tuning therapeutic windows
(Mimee and Nagler, 2021; Scott et al., 2021; Wu et al., 2024). Future
research prioritizes refining dose-response calibration, optimizing
site-specific delivery (e.g., synthetic adhesins; Pifiero-Lambea
et al., 2015), exploring polymodal therapeutic synergies, and
integrating synthetic gene networks for patient-specific regimens
stratified by disease endotypes (Wu et al, 2024). Precisely
modulating critical balances (e.g., extracellular ATP and adenosine;
Mimee and Nagler, 2021) within narrow therapeutic windows is
crucial for minimizing off-target effects. Prospectively, engineered

10.3389/fmicb.2025.1610029

yeast systems hold particular promise, with designs enabling
sophisticated multi-input/output regulatory circuits (Mimee and
Nagler, 2021).

Phage Therapy: Phage therapy encounters substantial challenges in
complex IBD management (Federici et al,, 2023). Primary limitations
encompass rapid evolution of phage-resistant strains and unintended
immunomodulatory effects. While rationally designed polyphage
cocktails targeting specific pathogens (Federici et al., 2022; Dedrick
etal,, 2019) and computational optimization (genomic mining, machine
learning; Federici et al., 2023; Thiebes et al., 2020; Yehl et al., 2019) are
promising, critical unresolved issues include phage stability in the GI
tract, biodistribution, and immune interactions. Elucidating phage-
mediated immune modulation mechanisms is a critical priority
(Shuwen and Kefeng, 2022). Combination therapies with antibiotics or
FMT show synergistic potential preclinically (Eskenazi et al., 2022; Suez
et al,, 2018). Rigorous clinical validation through large-scale RCTs is
imperative to establish pharmacodynamics and biosafety (Federici et al.,
2022; Federici et al., 2023).

OMVs: the  dual
immunomodulatory capacity of OMVs, which can either exacerbate

Emerging  evidence = demonstrates
pathology or induce tolerance (Toyofuku et al., 2023; Kaparakis-Liaskos
and Ferrero, 2015). While applications expand beyond vaccines into
drug delivery and synthetic biology (Sartorio et al., 2021; Mashburn and
Whiteley, 2005; Hoefler et al., 2017), significant translation hurdles
persist: inherent heterogeneity complicating characterization, scalability
limitations, and potential immunogenicity from endogenous
components like LPS (Sartorio et al,, 2021; Needham et al., 2013). These
limitations drive efforts to engineer OMV's with tailored compositions.
Robust clinical validation across IBD models remains imperative
(Toyofuku et al., 2023).

7.3 Roadmap to clinical translation

Translating engineered microbiome therapies from bench to
bedside for IBD patients requires a defined clinical development
pathway. This sequential roadmap, outlined in Table 3, encompasses

TABLE 3 Proposed clinical translation roadmap for engineered microbiome therapies in IBD.

Stage Primary goals

Preclinical optimization o Safety (biocontainment, toxicity)
« Efficacy (models, engraftment)
« PK/PD,

o Scalable manufacturing

Key considerations

« Sophisticated models (gnotobiotic, humanized),

« GMP protocols

o Post-marketing surveillance

Phase I (Safety) « Tolerability « Small cohorts (healthy volunteers/small IBD group)
« Initial safety profile « Dose escalation
« Preliminary PK/PD
Phase II (Proof-of-Concept) « Efficacy signals (clinical, endoscopic, biomarkers) « IBD patient populations
« Optimal dosing o Mechanistic substudies
o Further safety « Biomarker validation
Phase III (Confirmation) « Confirm efficacy vs. standard care/placebo o Large RCTs
o Safety in large diverse populations « Realistic endpoints (clinical remission, mucosal healing)
Regulatory approval & Phase IV « Submission to agencies « Defining clear regulatory pathways

« Long-term safety monitoring

« Real-world effectiveness
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key stages from preclinical optimization through regulatory approval
and post-marketing surveillance, addressing the unique challenges of
these living therapeutics.

In conclusion, while significant technical and clinical
challenges persist, engineered live biotherapeutics—including
symbiotic bacteria, yeast consortia, phage systems, and
OMYVs—exhibit
potential for IBD. Though distinct, their strategic integration

programmable considerable therapeutic
through systems biology frameworks could catalyze paradigm-
shifting advances in precision microbiome therapeutics.
Navigating the outlined roadmap, with focused research
addressing the key barriers and a commitment to robust
clinical evaluation, is essential for realizing this potential for

IBD patients.
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Glossary

IBDs - Inflammatory bowel diseases
OMYVs - out-membrane nanovesicles
ZFNs - Zinc Finger Nucleases

TALENS - transcription activator-like
effector nucleases

CRISPR - clustered regularly interspaced short palindromic repeat-
Cas-associated nucleases

DSBs - double-stranded breaks

HDR - homology-directed repair

NHE]J - non-homologous end joining

AAV - adeno-associated virus

AHL - N-acyl-L-homoserine lactone

QS - Quorum sensing

INP - ice nucleation protein

BINDs - Biofilm Integrated Nanofiber Displays
NO - nitric oxide

TFFs - trefoil factors

EcN - Escherichia coli Nissle

IL-35 - interleukin-35

IL-10 - interleukin-10

CAT - catalase

SOD - superoxide dismutase

MnSOD - manganese superoxide dismutase

SICE - Stress-Inducible Controlled Expression
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ANP - atrial natriuretic peptide

PEA - paracasei F19 express

UC - ulcerative colitis

CD - Crohn’s disease

EGF - epidermal growth factor
IFN-y - interferon-y

eATP - extracellular ATP

IgA - immunoglobulin A

sIgA - Secretory immunoglobulin A
HGT - horizontal gene transfer
PRRs - pattern recognition receptors
TLR - toll-like receptors

DCs - dendritic cells

TNBS - trinitrobenzene sulfonic acid
Bt - Bacteroides thetaiotaomicron
BEV:s - Bacteroides thetaiotaomicron derived OMV's
UPR - unfolded protein response

ER - endoplasmic reticulum stress
ERAD - endoplasmic reticulum-associated degradation
LPS - lipopolysaccharides

BE - base editor

C - cytosine

U - uracil

PEG - polyethylene glycol
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