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Harmful algal blooms (HABs) are increasing in frequency and intensity worldwide,

posing significant threats to aquatic ecosystems, fisheries, and human health.

While chemical algicides are widely used for HABs control due to their rapid

e�cacy, the lack of systematic data integration and concerns over environmental

toxicity limit their broader application. To address these challenges, we

developed AlgicideDB, a manually curated database containing 1,672 algicidal

records on 542 algicides targeting 110 algal species. Using this database,

we analyzed the physicochemical properties of algicides and proposed an

algicide-likeness scoring function to facilitate the exploration of compounds

with antialgal properties. Additionally, we evaluated the acute toxicity of

algicidal compounds to non-target aquatic organisms of di�erent trophic

levels to assess their ecological risks. The platform also incorporates a large

language model (LLM) enhanced by retrieval-augmented generation (RAG)

to address HAB-related queries, supporting decision-making and facilitating

knowledge dissemination. AlgicideDB, available at http://algicidedb.ocean-

meta.com/#/, serves as an innovative and comprehensive platform to explore

algicidal compounds and facilitate the development of safe and e�ective HAB

control strategies.

KEYWORDS

harmful algal blooms, algicide, aquatic toxicity, large language model, retrieval

augmented generation

1 Introduction

Algae play a crucial role in aquatic ecosystems as primary producers, supporting

food webs and maintaining ecological balance (Field et al., 1998; Lizotte, 2001;

Woodward, 2007). However, some algal species have the potential to undergo uncontrolled

proliferation in favorable conditions, resulting in the formation of mass blooms and/or

a high production of phycotoxins, known as harmful algal blooms (HABs) (Anderson

et al., 2012). Excessive algal growth generates dense biomass that forms unsightly scums

and foam, blocks sunlight to phytoplankton and benthic floras, depletes oxygen during

decay, and disrupts ecosystems, fisheries, and recreational activities (Anderson et al., 2012;

Brown et al., 2020). Moreover, certain algae contribute to biofilm formation, thus fouling
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water intake structures and impacting equipment maintenance

and water quality in public water systems and industrial cooling

water systems (Lv et al., 2022; Valeriani et al., 2024). Additionally,

some HAB-forming species release harmful toxins that accumulate

through the food web posing severe health risks to humans and

other organisms (Yan et al., 2022). Over the past few decades, the

frequency and intensity of HABs have increased globally (Dai et al.,

2023), driven by factors such as eutrophication, global warming,

and anthropogenic activities (Xiao et al., 2019). To address these

challenges, it is essential to develop effective and environmentally

friendly strategies to control algal outbreaks and mitigate their

associated risks.

Currently, strategies for preventing or managing HABs

involve physical methods such as nutrient load reduction and

hydrodynamic regulation, chemical interventions like algicide

application, and biological strategies including predation and

competitive exclusion (Gallardo-Rodríguez et al., 2019). Among

these approaches, chemical algicides are often used in emergencies

due to their rapid and effective suppression of algal blooms

(Huisman et al., 2018). Previous efforts have identified numerous

effective algicides, including synthetic chemicals, natural products

derived from plants and microorganisms, and their structural

analogs (Zhu et al., 2021). However, these data are scattered

across the literature and lack comprehensive risk assessments

of environmental toxicity, which hinders data accessibility and

practical application. Several publicly available databases, such

as the US EPA’s ECOTOX database and the NCBI’s PubChem

BioAssay, contain a vast amount of ecotoxicological information,

including some data related to algal toxicity. However, within

these broad resources, information relevant to algicides is often

dispersed among extensive datasets covering diverse organisms

and endpoints. This lack of a focused collection and specialized

tools makes it challenging to systematically extract, analyze,

and apply this information specifically for algicide research and

development. There is an urgent need to develop a comprehensive

database that organizes algicide-related information and facilitates

the evaluation of aquatic toxicity. The integration of information

also creates opportunities for developing domain-specific

large language models (LLM) to support algicide research and

HABs management.

Here, we present AlgicideDB (http://algicidedb.ocean-

meta.com/#/), a manually curated database that integrates

comprehensive data on algicides. Distinguished from existing

resources, AlgicideDB offers structured data organization through

its specialized focus on algicides, enhanced usability with

specifically designed tools, and unique functionalities like algicidal-

likeness scoring and aquatic toxicity predictions. Currently, the

database contains 1,672 records of algicidal activity, 1,329 algicide-

algae pairs, 542 unique algicides, and 110 algal species. On this

basis, we conducted a thorough analysis of these data, developed

algicidal-likeness scoring based on the molecular properties of

algicides, and performed aquatic toxicity predictions to assess their

ecological risks. Additionally, the platform features LLM-based

question-answering service designed to response HAB-related

queries. Overall, AlgicideDB serves as an integrated platform for

algicide discovery, management, and the development of effective

HABs control strategies.

2 Materials and methods

2.1 Data collection and curation

We searched the Web of Science and PubMed databases using

keywords such as “algicidal,” “antialgal,” “algal bloom control,”

and “harmful algae mitigation.” From the retrieved literature,

records of algicidal activity were extracted, including information

on target algae, algicides, algicidal effects, experimental conditions,

and the mechanisms (Figure 1). Details of these 204 articles

are provided in the Supporting Information file. Additional

information on target algae, such as their classifications and general

environment, was supplemented using the AlgaeBase (Guiry and

Guiry, 2024) (https://www.algaebase.org/). The phylogeny was

constructed based on taxonomic classification data from AlgaeBase

for each algal species in our database, which established a

hierarchical tree structure representing taxonomic relationships,

and was then visualized using the ggtree v3.5.3 package (Yu

et al., 2017). Details of algicides, including their form, source,

and structural information, were curated from the literature

and further analyzed using NPClassifier (Kim et al., 2021) and

ClassyFire (Djoumbou Feunang et al., 2016) tools for chemical

classification. To organize the curated data, we created five

interconnected database tables (Supplementary Figure S1) to store

information on algae species, algae strains, algicides, algicidal

activity records, and literature references. The data processing

workflow involved extracting experimental records from literature,

collecting additional information on algae from AlgaeBase and

chemical information from the literature and PubChem. Finally,

all collected data was systematically checked for consistency and

completeness to ensure data quality.

2.2 Quantitative estimation of
algicide-likeness

The concept of quantitative estimate of drug-likeness (QED),

introduced by Bickerton et al. (2012), provides a scoring system to

evaluate drug-likeness by describing the distribution of molecular

descriptors, with scores ranging from zero (low drug-likeness)

to one (high drug-likeness). Based this concept, Sorin et al.

developed the quantitative estimate of pesticide-likeness (QEP) to

assess pesticide potential (Avram et al., 2014). Inspired by these

approaches, we established a quantitative estimate of algicide-

likeness (QEA) to evaluate the algicidal potential of compounds.

First, six molecular descriptors were calculated using RDKit

(Landrum, 2006) including molecular weight (MW), octanol-

water partition coefficient (logP), the number of hydrogen bond

acceptors (HBA), the number of hydrogen bond donors (HBD),

the number of rotatable bonds (nRotB), and the number of

aromatic rings (nArR) (Avram et al., 2014). The selection of

these descriptors was guided by principles established in drug and

agrochemical discovery (Bickerton et al., 2012; Avram et al., 2014).

For each descriptor, a desirability function was fitted (Equation 1),

with values ranging from 0 to 1, representing the likelihood

of a molecule being an algicide (Supplementary Figure S2). The

coefficients (o, a, b, and c) used in the desirability function were
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FIGURE 1

Workflow for the construction of AlgicideDB, including algicide and algae information collection, algicide-likeness scoring, aquatic toxicity

assessment, and the development of RAG-based LLM.

derived from the distribution of physicochemical properties, as

detailed in Supplementary Table S1. For the continuous descriptors

(MW and logP), the optimal bin size for creating these frequency

counts was determined using Shimazaki-Shinimoto histogram

binningmethod (Shimazaki and Shinomoto, 2007). For the discrete

descriptors (HBA, HBD, nRotB, and nArR), the frequency of each

integer value was directly counted. The resulting frequency counts

and the corresponding values for each molecular descriptor then

served as input for curve fitting, which was processed using the

https://findcurves.com/ Curve Fitting and Surface Fitting Web

Site. Finally, the individual desirability functions, df(i), for each

molecular descriptor were combined into the QEA score using

geometric means and logarithms, as described in Equation 2. We

calculated the algicide-likeness scores for algicides in the database

(positive set) and 2,000 randomly selected compounds from the

ChEMBL dataset (negative set). A receiver operating characteristic

(ROC) curve was generated based on these scores, and the area

under the curve (AUC) was computed to evaluate the performance

of the QEA in distinguishing algicides from non-algicides.

df = o+ a∗e−e
−x−b

c −
x−b
c + 1 (1)

QEA = e
1
n

∑i=n
i=1 ln(dfi), d (i) > 0;QEA = 0, df (i) ≤ 0 (2)

2.3 Aquatic toxicity evaluation of algicide

The simplified molecular input line entry specification

(SMILES) representations of the algicides were obtained

using the Dicimer tool (Rajan et al., 2023) and the PubChem

database (https://pubchem.ncbi.nlm.nih.gov/). These SMILES

were input into the ADMET Evaluation functionality of

ADMETlab 3.0 (Fu et al., 2024) to predict toxicity values

for three aquatic species: Tetrahymena pyriformis (protozoa),

Daphnia magna (zooplankton), and Pimephales promelas (fish).

The predictions included comprehensive toxicity endpoints

under standardized experimental conditions, i.e., the 48 h

median effective concentration (EC50,48h) for T. pyriformis

(50% growth inhibition), the 48 h median lethal concentration

(LC50,48h) for D. magna (50% lethality), and the 96 h median

lethal concentration (LC50,96h) for P. promelas (50% lethality).

According to the guidelines established by the US Environmental

Protection Agency (EPA) (US EPA, 2015), the toxicity levels were

defined as follows: practically non-toxic (LC50 or EC50 > 100

mg/L), slightly toxic (10∼100 mg/L), moderately toxic (1∼10

mg/L), highly toxic (0.1∼1 mg/L), and very highly toxic (<

0.1 mg/L).

2.4 Construction of RAG-based LLM for
HAB-related queries

We constructed a knowledge base using RAGFlow (https://

github.com/infiniflow/ragflow), an open-source Retrieval-

Augmented Generation (RAG) engine (Figure 2). A total of

208 review articles on HABs published between 2010 and 2025

were manually collected. These articles cover topics related
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FIGURE 2

Workflow of RAG-based LLM agent system.

to the formation mechanisms, ecological impacts, monitoring

methods, and management strategies of HABs. The collected

articles were split by RAGFlow, resulting in 14,954 semantically

meaningful text chunks. These chunks were then vectorized

with the embedding model BAAI/bge-base-en-v1.5 (https://

huggingface.co/BAAI/bge-base-en-v1.5) and stored in the

retrieval database. This retrieval database was further integrated

with the LLM (DeepSeek-v3), enabling retrieval-augmented

generation for HABs-related question answering. To evaluate

the performance of the RAG-based LLM, we used DeepSeek

to automatically generate 1,040 high-quality question-answer

pairs, where questions were derived from randomly selected

literature chunks. The generated questions were then used

as input for the RAG-based LLM to produce responses. We

collected the generated answers and the retrieved references, and

evaluated their quality using metrics (Supplementary Table S2)

provided by Ragas (https://github.com/explodinggradients/

ragas).

2.5 Database implementation and
functionalities

The AlgicideDB platform is hosted on an Nginx (v.1.16.1)

web server (http://nginx.org/) running on a CentOS 7.4.1,708

system. The backend is built using a SQLite database (https://www.

sqlite.org/) for efficient data management, and developed with

the Django (v.4.2.8) framework (https://www.djangoproject.com/).

The frontend is built with Vue (v. 3.5.13) JavaScript framework

(https://v3.vuejs.org/) to provide interactive user interface. The

platform integrates functionalities including searching algicide

records, uploading and downloading data, calculating algicide-

likeness scores, predicting aquatic toxicity values. Additionally,

a RAG-based LLM chatbot is embedded to offer a question-

and-answer service, enabling real-time responses to HAB-

related queries.

3 Results

3.1 Diversity and characteristics of algae
targeted by algicides

In total, our database includes 110 algal species and 246 algal

strains, with the majority belonging to the Cyanobacteria (37

species), Chlorophyta (23 species), Dinoflagellata (22 species),

and Heterokontophyta (21 species) (Figure 3). Cyanobacteria

and dinoflagellates are prominent targets due to their toxic and

harmful nature, which poses significant challenges in ecological

management. Notably, Microcystis aeruginosa (Cyanobacteria),

linked to 260 algicides, along with harmful species such as

Heterosigma akashiwo (Heterokontophyta), associated with

88 algicides, and Cochlodinium polykrikoides (Dinoflagellata),

related to 50 algicides, are extensively studied. In contrast, some

widely distributed green algae and diatoms are commonly used

as controls to evaluate the selectivity of algicides, including

species such as Chlorella pyrenoidosa (Chlorophyta), Raphidocelis

subcapitata (Chlorophyta) and Phaeodactylum tricornutum

(Heterokontophyta). Moreover, green macroalgae such as Ulva

are well-studied for their association with biofouling and the

formation of green tides, large-scale blooms that cause significant

environmental and economic impacts. The distribution of algal

species in the database highlights current research priorities, with a

focus on managing harmful and toxic species while exploring the

selectivity of algicides for broader ecological applications.

3.2 Chemical profiles and sources of
algicides

The AlgicideDB database includes a total of 542 algicides,

of which 58.5% are derived from natural sources and 41.5% are

classified as non-natural sources (Figure 4a). Natural sources

include a diverse range of plants, microorganisms, animals
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FIGURE 3

Phylogenetic and ecological diversity of algae targeted by algicides. Di�erent colored branches correspond to di�erent phyla. The colored dots

denote the environmental distribution of each species: brackish (yellow), freshwater (cyan), marine (blue), and freshwater and marine (pink). Stars

represent the risk profiles of each species, classified as fouling (pink), toxic (purple), and harmful but non-toxic (orange). The outermost bar chart

illustrates the number of unique algicides associated with each species.

(summarized in Supplementary Tables S3–S5), showing the

important role of natural products in algicide discovery. Common

examples include aquatic plants such as Myriophyllum spicatum

(Zhu et al., 2010) and Arundo donax (giant reeds) (Hong et al.,

2010), macroalgae like Sargassum (Bazes et al., 2009; Cho, 2013),

terrestrial plant materials such as barley straw (Murray et al., 2010;

Xiao et al., 2014) and rice hulls (Park et al., 2009), and marine

bacteria including Vibrio sp. (Wang et al., 2012; Li et al., 2014), and

Bacillus sp. (Zhao et al., 2014; Quan et al., 2021).

The most abundant natural product classes are alkaloids, fatty

acids, and terpenoids (Figure 4b), which exhibit broad-spectrum

activity against diverse algal taxa. Especially, alkaloids in the

database target all seven algal phyla represented, highlighting

their effectiveness as algicidal agents. Non-natural sources also

contribute significantly to the diversity of the database, with

numerous synthetic derivatives and analogs inspired by natural

compounds (Supplementary Figure S3; Supplementary Table S6),

and commercial algicides (Supplementary Table S7). These

products expand the chemical diversity of available algicides,

offering enhanced efficacy and environmental adaptability.

Besides, our analysis of the 61 algicide-algae pairs with known

mechanisms reveals mechanistic diversity across different chemical

classes. Photosynthesis inhibition and membrane disruption

were the most prevalent mechanisms, each accounting for 25.3%

of the entries, followed closely by oxidative stress induction

(20.5%), and metabolic inhibition (6.0%). Fatty acids primarily

disrupted photosynthesis (40.0%) and cell membranes (20.0%),

while alkaloids tended to induce oxidative stress (37.5%) and

membrane disruption (31.2%). Notably, the mechanisms of

action for over 90% of the algicide-algae pairs in AlgicideDB

remain to be determined, indicating a significant area for

future investigation.
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FIGURE 4

Chemical profiles and sources of algicides in AlgicideDB. (a) Distribution of 542 algicides based on their sources, including natural (plants,

microorganisms, and animals) and non-natural origins (laboratory synthetic and commercial products). (b) Number of algicides across di�erent

chemical classes derived from natural sources (left bars) and the number of algal taxa targeted by each class (right bars). The colors in the right bars

represent the distribution of algal phyla. (c) Molecular property distributions of algicides including molecular weight (MolWt), octanol-water partition

coe�cient (MolLogP), number of rotatable bonds, number of aromatic rings, number of hydrogen bond acceptors, and number of hydrogen bond

donors. The red lines indicate median values for each descriptor.

3.3 Algicide property analysis and
algicide-likeness evaluation

We analyzed six key molecular descriptors for the algicides

in the database: molecular weight (MW), octanol-water partition

coefficient (logP), number of rotatable bonds, number of aromatic

rings, number of hydrogen bond acceptors (HBA), and number

of hydrogen bond donors (HBD). These properties are crucial

for evaluating pesticide-like molecules and their environmental

behavior (Avram et al., 2014). The distributions of these descriptors

(Figure 4c) indicate that the MW of algicides ranges from

approximately 100 to 1,000 g/mol, with themajority falling between

200 and 500 g/mol. The logP distribution shows a peak around 2–5,

reflecting moderate hydrophobicity favorable to algicidal activity.
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FIGURE 5

Algicide-likeness distribution and ecotoxicological risk assessment of algicides. (a) Distribution of algicide-likeness scores. (b) ROC curve for the

algicide-likeness scoring function, with an area under the curve (AUC) of 0.717. (c) Predicted toxicity levels of algicides for three aquatic species:

Tetrahymena pyriformis, Daphnia magna, and Pimephales promelas, categorized into five levels (practically nontoxic, slightly toxic, moderately toxic,

highly toxic, and very highly toxic). (d) Toxicity distribution of chemical classes, represented as –lg(EC50TP) for T. pyriformis, –lg(LC50DM) for D.

magna, and -lg(LC50PP) for P. promelas. Larger values indicate higher toxicity.

Most compounds have fewer than five rotatable bonds, ensuring

a balance between molecular flexibility and stability. Additionally,

the majority of algicides have 1–2 aromatic rings and fewer than

five HBA and two HBD.

Using these molecular descriptors, we developed a desirability

function to quantify algicide-likeness. The algicide-likeness

scores were computed (Figure 5a), and their ability to distinguish

algicides from non-algicides was evaluated using a negative

set of 2,000 randomly selected compounds from the ChEMBL

dataset. The receiver operating characteristic (ROC) analysis

yielded an area under the curve (AUC) of 0.717 (Figure 5b),

demonstrating that the algicide-likeness metric effectively

differentiates algicides, which aligns with the performance

observed in similar quantitative likeness estimation methods

within the broader agrochemical domain (e.g., herbicide-likeness

(QEH) AUC = 0.721, insecticide-likeness (QEI) AUC = 0.668,

and fungicide-likeness (QEF) AUC = 0.677) (Avram et al., 2014).

The algicide-likeness evaluation has been integrated into our

web-based platform to facilitate high-throughput screening and

algicide discovery.

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1611403
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zuo et al. 10.3389/fmicb.2025.1611403

FIGURE 6

Score distributions of four evaluation metrics for the RAG-based LLM including context recall, context precision, faithfulness, and answer relevancy.

The gray vertical lines indicate the mean values of each distribution.

3.4 Ecotoxicological risk assessment of
algicides

Besides algicide-likeness evaluation, we also considered the

potential toxicity of algicides to non-target aquatic organisms.

Among the 204 studies we collected, only 20 have evaluated

the toxicological effects of algicides on non-algal aquatic species.

To address this limitation, we predicted the toxicity of algicides

across three trophic levels: T. pyriformis (protozoa), D. magna

(zooplankton), and P. promelas (fish) (Figure 5c). The predictions

indicate that algicides generally exhibit relatively lower toxicity

toward T. pyriformis. However, more than half of the compounds

were categorized as moderately toxic or higher for D. magna

and P. promelas. Further analysis of toxicity levels across

chemical classifications revealed that amino acid-derived algicides

show relatively lower toxicity to all three aquatic species,

suggesting their potential as environmentally friendly algicides

(Figure 5d). This lower toxicity may be attributed to their

natural occurrence in ecosystems, which enables safer interactions

with aquatic organisms, as well as their potential for safe

environmental degradation. Conversely, certain classes, such as

thiazolidinedione and rhodanine derivatives, were associated with

higher toxicity levels across multiple species, possibly due to

their distinctive sulfur-containing heterocyclic structures. These

findings underscore the importance of incorporating toxicity

assessments into the development of safer and more sustainable

algicides. Considering that the confidence of these predictions

may vary across different chemical scaffolds, especially for

novel structures underrepresented in toxicological databases,

experimental validation remains essential to confirm these

toxicity patterns.

3.5 Application and performance of
RAG-based LLM

To explore innovative approaches in HABs management,

we applied a RAG-based LLM to construct a domain-specific

knowledge base for answering HABs-related queries. When a user

submits a question, the system first retrieves relevant literature

chunks from the database, which were then combined with the

user’s query as input for the LLM to enhance the contextuality and

factuality of the generated response. The replies not only address

the query but also provide references to the retrieved literature as

supporting evidence (Supplementary Figure S4). This RAG-based

LLM has been integrated into the AlgicideDB platform to provide

users with support for HABs-related research and decision-making

in HABs management.

To evaluate model performance, we calculated four metrics:

context recall, context precision, faithfulness, and answer relevancy

(Supplementary Table S2) based on the retrieved references and
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generated responses. The first two metrics assessed the precision

and relevance of the retrieved references, while the latter two

evaluated the relevance and factuality of the generated answers.

The model achieved scores of 0.732, 0.754, 0.834, and 0.896

(Figure 6), respectively, demonstrating robust performance in both

retrieval and generation tasks. To further illustrate the system’s

capabilities, we also assessed its performance on complex queries

that require synthesizing information from multiple sources

within the knowledge base (see Supplementary Figure S4 for

examples). For instance, one such query was “Compare the efficacy

of ultrasonic treatment and chemical algicides for controlling

Microcystis aeruginosa blooms in drinking water reservoirs,

considering potential side effects on water quality.” The system

demonstrated the ability to retrieve relevant information from

different articles and provide a synthesized response, supported

by citations.

4 Discussion

Chemical algicides are critical emergency measures for

HAB control. AlgicideDB provides a comprehensive toolkit for

systematic research andmanagement of algicides while establishing

a data foundation for HAB control. By focusing on algicidal

molecules and providing comprehensive, structured information,

AlgicideDB facilitates systematic data analysis, accelerates the

discovery and optimization of novel algicides, and supports

decision-making in HAB management.

Our analysis of algicidal molecules in the database revealed

a predominant focus on toxic cyanobacteria and dinoflagellates

due to their toxin production and severe ecological impacts, with

a notable emphasis on species relevant to East Asian waters

(e.g., Microcystis aeruginosa, Heterosigma akashiwo, Cochlodinium

polykrikoides). However, research on algicides targeting other

algal phyla, such as Aureococcus anophagefferens (causing brown

tides) and Sargassum (causing golden tides), remains relatively

scarce. Expanding the scope of investigation to include a broader

range of harmful algae is crucial for addressing the complex and

dynamic nature of HABs. Future development of the database

will focus on taxonomic diversification and geographic expansion

through international research collaborations and community

contributions to build a more comprehensive global resource for

HAB management.

While numerous algicidal molecules demonstrate promising

efficacy, these compounds primarily derive from single-species

laboratory studies, limiting their extrapolation to complex

natural ecosystems. When evaluating algicide applicability,

ecological safety should be comprehensively considered. In this

study, we identified potential toxicity risks through in silico

predictions, with our assessment of potential toxicity to non-

target aquatic organisms relying primarily on computational

predictions using tools like ADMETlab 3.0. Although such

computational toxicology tools offer valuable toxicity predictions,

these models may struggle with novel chemical scaffolds or specific

modes of action not well-represented in their training data,

potentially affecting the confidence of predictions across different

compound classes. Future research could utilize in silico toxicity

prediction for preliminary screening to increase the probability of

identifying promising candidates. For those candidate molecules,

besides validating their algicidal efficacy, toxicity testing on

non-target organisms is equally important, including acute

toxicity, chronic toxicity, and sublethal effects. Additionally, in

natural aquatic environments, these compounds interact with

diverse microbial communities, potentially causing unpredicted

ecological effects. Therefore, prior to field implementation,

ecological safety assessments in simulated or natural systems

are essential to validate laboratory findings and evaluate

potential risks.

Moreover, AlgicideDB provides algicidal activity scoring

and HAB-related question-answering capabilities. The algicide-

likeness scoring function offers an efficient preliminary screening

tool for prioritizing potential algicides within large chemical

libraries due to its straightforward and rapid calculation. Its

ability to rank compounds irrespective of strict adherence to

general pesticide-likeness rules is a key advantage, particularly

when compared to simply filtering based on descriptor ranges.

While the current QEA model shows promise, its performance

is inherently limited by the quality and coverage of the

data within AlgicideDB. By integrating larger datasets and

employing advanced machine learning techniques, future research

could enhance model performance and generalizability, thereby

accelerating the discovery and optimization of novel algicides.

Meanwhile, the integration of RAG-based language models

demonstrates potential in HAB-related question-answering and

decision-making support. While our initial evaluation using

automatically generated question-answer pairs from the knowledge

base provided preliminary insights, future research will prioritize

user-centered evaluations involving environmental managers and

researchers, as their real-world queries will more authentically

measure the system’s effectiveness. To improve the system’s ability

to handle complex, multi-faceted queries, subsequent research will

explore the integration of a knowledge graph. Representing entities

(e.g., specific algal species, algicides, environmental conditions)

and their relationships explicitly could enable more accurate

and nuanced information retrieval and synthesis. As the field

of HAB research evolves, dynamic updates to the knowledge

base will be necessary to maintain reliability and enhance real-

world applicability.

In conclusion, AlgicideDB provides a foundation for advancing

algicide development and HAB management. By systematically

curating and analyzing data on algicide sources, chemical

structures, target algae, and ecological impacts, this platform

facilitates the design of more effective and environmentally

sustainable solutions. With the rapid growth of algicide-related

literature, future developments could focus on implementing

automated data extraction tools powered by large language

models with human verification to efficiently capture research

advances while maintaining data integrity. Additionally,

establishing regular update protocols will continuously

enrich the database and enhance its practical utility. These

optimizations will position AlgicideDB as a valuable long-term

resource for algicide research and HAB management, ultimately

contributing to aquatic ecosystem protection and sustainable water

resource management.
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