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the ileal health of tibetan sheep
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Jiacheng Gan, Shengzhen Hou and Linsheng Gui*

College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, China

Introduction: Resveratrol (RES) and β-hydroxy-β-methylbutyric acid (HMB) have

been shown to improve growth performance in Tibetan sheep by regulating the

gut microbiota. This study explored the effects of RES and HMB supplementation

on the microbial composition and metabolite levels in the ileum of Tibetan

sheep receiving diets with different protein levels.

Methods: In a 2 × 2 factorial arrangement, consisting of dietary protein

levels (12% and 14%) and feed additive levels (no addition; and RES 1.50 g/d

and HMB 1.25 g/d addition). A total of 120 healthy two-month-old male

Tibetan lambs (16.87 ± 0.31) were randomly divided into 4 groups (n =

6): 12% protein level group (L), the 12% protein level supplemented with

RES and HMB group (L-RES-HMB); the 14% protein level group (H); and

the 14% protein level supplemented with RES and HMB group (H-RES-

HMB).

Results: The results demonstrated that the activities of digestive enzymes

(β-amylase, trypsin, lipase, and cellulase), the levels of antibodies (IgA

and IgM), and the contents of short-chain fatty acid (SCFA) (butyric

acid) were significantly increased in the H-RES-HMB group (P < 0.05).

Additionally, RES and HMB supplementation affected the morphology

of ileum tissue, improving the villus height, crypt depth, and mucosal

thickness (P < 0.05). Microbial analysis revealed that compared with the

L-RES-HMB group, the H-RES-HMB group had a higher abundance of

Planctomycetota, Solibacillus, and Paenibacillus (P < 0.05). Metabolomics

analysis revealed a total of 229 significantly different metabolites, of

which Irinotecan, Erdosteine thioacid, 4,4’-diaminodiphenylmethane,

and Morphine N-oxide emerged as the key up-regulated metabolites.

These differential metabolites were mainly enriched in pathways

such as protein digestion and absorption, metabolic pathways, and

mineral absorption.

Discussion: Overall, when the dietary protein content was 14%, digestive

enzyme activities, immune responses, and SCFAs levels in the ileum were

improved, and the mucosal morphology of the ileum was enhanced.

When the 14% protein diet was supplemented with RES and HMB, the

concentration of butyric acid was increased.This increase was due to the

regulation of the ileum microbiota (Firmicutes and Clostridium_sensu_stricto_1)
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and metabolites (xanthine and uric acid), which promoted the activities of

digestive enzymes and immune responses and improved mucosal morphology

in the ileum.
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resveratrol, β-hydroxy-β-methylbutyric acid, metabolomics, microbiota, Tibetan sheep

Introduction

In China, the Tibetan sheep is one of the most important rough-
wool sheep breeds in the Tibetan Plateau region, with irreplaceable
roles in the local ecology, economy and culture (Sha et al., 2022; Ma
et al., 2023). As a key part of the digestive system in ruminants, the
ileum is not only responsible for nutrient absorption, but also plays
an important immune barrier function through immune cells and
tight junction structures in the mucosal layer (Zhao et al., 2019).
Studies have shown that the development and function of the ileum
are influenced by a combination of dietary composition, microbial
community and environmental factors (Wang Q. et al., 2021).

Resveratrol (RES), a natural stilbene and non-flavonoid
polyphenol, holds significant medicinal value (Pasquariello et al.,
2020). Research has shown that RES can protect the integrity
of tight junctions in human Caco-2 colonic epithelial cells
and enhance the function of the intestinal epithelial barrier.
Additionally, RES is characterized by antioxidant, antibacterial,
and anti-inflammatory properties and is known to influence
metabolic regulation (Mayangsari and Suzuki, 2018b). Dietary RES
supplementation can mitigate the adverse impacts of heat stress
on intestinal morphology in broilers and promote the antioxidant
capacity of the intestinal mucosa, thereby improving the growth
of broilers under heat stress (Wang C. et al., 2021). Studies also
demonstrate that RES can increase the digestibility of dry matter,
neutral detergent fiber, acid detergent fiber, organic matter, and
nitrogen in the diet (Chen et al., 2015). Studies in livestock indicate
that specific dosages of RES modulate gastrointestinal microbiota:
supplementation with 4 mg/kg body weight (BW) RES has been
reported to rapidly increase the population of desulfurizing bacteria
and reduce methanogenic archaea in Holstein calves (Zhang R.
et al., 2019), while dietary inclusion of 0.25 g/d RES enhances
the rumen abundance of Fibrobacter succinogenes, Ruminococcus
albus, and Butyrivibrio fibrisolvens in sheep and inhibits the
growth of protozoa and methanogens, thus regulating rumen
microbiota composition (Ma et al., 2015). In rats, RES preserves
intestinal barrier integrity and alleviates intestinal damage by
inhibiting apoptosis of intestinal epithelial cells (Zhao et al., 2018).
Currently, RES is utilized as a nutritional supplement because of its
widespread benefits in preventing and managing various diseases
(Meng et al., 2023).

β-hydroxy-β-methylbutyric acid (HMB), which is a metabolite
originating from the essential amino acid leucine, has an anabolic
effect. Studies have revealed that dietary HMB can improve the
quality of poultry meat by promoting net protein synthesis and
reducing skeletal muscle degradation (Kop Bozbay et al., 2024).
Moreover, HMB can strengthen the immune system and prevent
diseases in goat (Ząbek et al., 2016). HMB has been found to

significantly reverse gut dysbiosis in mice on a high-fat diet,
improving the diversity of the gut microbiota and the relative
abundances of Bacteroides and fungi. Its effects are mediated by the
reprograming of the gut microbiota and its metabolism, especially
the production of propionic acid by Bacteroides (Duan et al., 2019).

Although studies have been conducted to investigate the effects
of RES and HMB on ruminants individually, there is a lack of
research on the synergistic effects of different protein levels with
these two additives. The present study aimed to fill this gap by
investigating the effects of adding RES and HMB to diets with
different protein levels on digestive enzyme activities, immune
indices, mucosal morphology and SCFAs content in the ileum of
Tibetan sheep. This not only helps to gain a deeper understanding
of the mechanism of action of RES and HMB in the ileum of
ruminants, but also provides a scientific basis for optimizing the
feeding management of Tibetan sheep.

Materials and methods

The animal study was approved by animal care and
experimental protocols were approved (QUA-2020-0710) by
the Institutional Animal Care and Use Committee of the
Qinghai University.

Test animals and sample collection

The experiment took place at Kukunuoer Food Co., Ltd. in
Haiyan County, Haibei Tibetan Autonomous Prefecture, Qinghai
Province. 120 healthy 2-month-old male Tibetan lambs with an
initial weight of 16.87 ± 0.31 kg were chosen for this research.
A 2 × 2 design was adopted, and the lambs were randomly
allocated to four parallel experimental groups, with 30 sheep in
each group. The lambs were fed two different diets with different
levels of crude protein (CP) (low: 12% and high: 14%) and feed
additives (no addition and addition of 1.5 g/d RES and 1.25 g/d
HMB). The experimental treatment groups were: 12% protein
only (L), 12% protein with RES and HMB supplementation (L-
RES-HMB), 14% protein only (H), and 14% protein with HMB
and RES supplementation (H-RES-HMB). RES with a purity
of > 99% was obtained from Xi’an Grass Plant Technology Co.,
Ltd. (Xi’an, China), whereas HMB of equivalent purity (> 99%)
was procured from TSI Group Co., Ltd. (Shanghai, China). In the
preparation of experimental feed, both RES and HMB were first
incorporated into the premix before being directly combined with
the concentrate components.
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TABLE 1 Composition and nutrient levels of basal diet.

Items L-CP H-CP

Ingredient (%)

Corn 58.30 51.50

Soybean meal 1.00 2.00

Rapeseed meal 7.00 12.80

Cottonseed meal 2.00 2.00

Palm meal 25.00 25.00

NaCl 1.00 1.00

Limestone 1.00 1.00

Baking soda 0.10 0.10

Premix1 4.60 4.60

Total 100.00 100.00

Nutrient levels2

Digestible energy
(MJ · kg−1)

12.84 12.71

Crude protein (%) 12.13 14.27

Ether extract (%) 3.44 3.29

Crude fiber (%) 11.05 11.64

Neutral detergent fiber (%) 26.04 26.70

Acid detergent fiber (%) 19.11 19.97

Ca (%) 0.80 0.84

P (%) 0.35 0.40

1Premixes provide Cu 18 mg, Fe 66 mg, Zn 30 mg, Mn 48 mg, Se 0.36 mg, I 0.6 mg, Co
0.24 mg, VA 24,000 IU, VD 4 800 IU, and VE 48 IU per kg of feed. 2Digestible energy is
calculated and the rest is measured. (3) L-CP: The group with a crude protein level of 12%;
H-CP: The group with a crude protein level of 14%.

The composition and nutritional contents of the basal diet
are presented in Table 1. The diet comprised concentrated feed,
concentrated feed supplement, and roughage (oat hay and oat silage
in a 1:1 ratio). The nutrient levels of feed ingredients were measured
(Supplementary Table S1). A 7:3 concentrate-to-roughage mixing
mode was adopted, and fresh feed was provided twice a day at
07:00 and 13:00. The fattening program was continued for 100 days
(including 10 days for the pre-test and 90 days for the test period).
At the end of the experiment, six Tibetan sheep with similar
physical characteristics were selected from each group for slaughter
in order to conduct subsequent analyses.

Sample collection and processing

Upon the completion of the experiment, all experimental sheep
underwent a 12 h fasting period and a 2 h water deprivation
before being slaughtered. The ileal contents were gathered into
sterile and enzyme-free cryogenic tubes, promptly placed in
dry ice, and then stored at −80◦C for the subsequent DNA
extraction, metabolite extraction, and 16S rDNA sequencing.
Their gastrointestinal tracts were flushed with sterile PBS water,
and the middle part of the ileum was excised and put into
a sterile cryopreservation tube. The tissue was quickly frozen
in liquid nitrogen and stored at −80◦C for later analysis.

Moreover, another 3 cm segment of ileal tissue was taken out and
placed in a 4% paraformaldehyde fixative prior to sectioning for
histological examination.

Determination of ileal digestive enzyme
activity

After thawing on ice, approximately 10 mL ileal contents
were transferred to 15 mL centrifuge tubes and centrifuged at
3,000 rpm for 20 min at 4◦C. The supernatant was collected, and
the activities of ileal digestive enzymes including cellulase
(YJ60100-96), trypsin (YJ60070-96), lipase (YJ60090-96),
α-amylase (YJ60110-96), and chymotrypsin (YJ60080-
96) were measured by an enzyme-linked immunosorbent
assay (ELISA) from Enzyme Immuno Industry Co., Ltd. in
Jiangsu, China. The specific experimental steps were carried
out by the previous method described (Gan et al., 2024).
A microplate reader (Rayto, RT-6100, Shenzhen Rayto Life and
Analytical Sciences Co., Ltd., China) was employed for imaging
at 450 nm.

Determination of ileal immune indexes

After thawing, about 1 g of ileal tissue was homogenized in
1 mL PBS buffer solution and then centrifuged at 3,000 × g,
4◦C for 20 min. The immune indexes of supernate, such
as immunoglobulin A (IgA, YJ60010-96), immunoglobulin M
(IgM, YJ60030-96), immunoglobulin G (IgG, YJ60020-96), tumor
necrosis factor-α (TNF-α, YJ60040-96), and interleukin-1β (IL-
1β, YJ60050-96) were measured using the ELISA (Rayto, RT-6100,
Shenzhen Rayto Life and Analytical Sciences Co., Ltd., China) by
the previous method described (Ji et al., 2024a).

Examination of mucosal morphology in
the ileum

The fixed ileal tissues (4% paraformaldehyde solution, 48 h)
were embed in paraffin for sectioning. The prepared tissue sections
were placed under microscope (OLYMPUS, DP26, Tokyo, Japan),
and then 5 fields of vision with good trends for each section were
selected randomly to measure villus width, villus height, crypt
depth, muscular layer thickness, and mucosal thickness with the
MShot Image Analysis System. Three sets of data were recorded in
each field, and villus height/crypt depth (V/C) ratio was computed.

Determination of the SCFAs content in
the ileum

For the separation of SCFAs, an Agilent DB-FFAP capillary
column (30 m × 250 µm × 0.25 µm) gas chromatography
system was used. The concentrations of SCFAs were determined
using a gas chromatography-mass spectrometry system (7890B
GC System, Agilent, Billerica, MA, United States). Helium
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served as the carrier gas with a flow rate set at 1.2 mL/min.
The injection process adopted the split mode, with a split
ratio of 5:1 and an injection volume of 1 µL. The oven
temperature was initially maintained at 50◦C for 1 min, then
increased to 220◦C at a rate of 18◦C per min and held at this
temperature for 5 min. Each sample underwent analysis under the
multiple reaction monitoring mode. Moreover, the temperatures
of the injector inlet and transfer line were 250 and 230◦C,
respectively (Bianchi et al., 2011). The chromatographic peak
area and retention time were extracted via MSD ChemStation
software (G1701AA, Agilent Technologies, Inc., Santa Clara, CA,
United States). Prepare standard solutions at concentrations of
0.005, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 5, 8, 10, and 20
µg/mL. Obtain the chromatographic peak intensity data of the
quantitative signals for each concentration. Plot the standard
curves for different substances, with the ratio of external to
internal standard concentrations as the x-axis and the ratio of
external to internal standard peak areas as the y-axis. A standard
curve was drawn to calculate the content of SCFAs in the ileum
(Lotti et al., 2017).

16S rDNA sequencing analysis

The DNA of the ileal contents was extracted using the HiPure
Fecal DNA Extraction Kit (Magen, Guangzhou, China) according
to the kit instructions. The 16S rDNA V3-V4 region was amplified
with primers 341F (5′-CCTACGGGGNGGCWGCAG-3′) and
806R (5′-GGACTACHVGGGGTATCTAAT-3′). The amplification
conditions were 95◦C for 5 min, followed by 30 cycles of
95◦C for 1 min, 60◦C for 1 min, 72◦C for 1 min, and finally
72◦C for 7 min. The Illumina DNA Prep Kit (Illumina, San
Diego, CA, United States) was used to prepare the sequencing
library. The raw data were uploaded to the NCBI Sequence Read
Archive (SRA) database.

Low-quality reads were filtered using the FASTP software
(version 0.18.0) (Chen et al., 2018). Then, the paired-end reads
were assembled into tags by the FLASH software (version 1.2.11)
(Magoc and Salzberg, 2011). Subsequently, the tags were filtered to
obtain Clean tags (Bokulich et al., 2013). Based on the Clean tags,
the UPARSE algorithm of the USEARCH software (version 9.2.64)
was adopted for OTU clustering (Edgar, 2010). The UCHIME
algorithm was utilized to remove the chimeric tags detected during
the clustering alignment process, forming Effective tags (Edgar
et al., 2011). Finally, the OTU abundance statistics were completed
based on the Effective tags. The Alpha diversity analysis was carried
out using QIIME (version 1.9.1) to evaluate the species richness and
evenness within the samples (Caporaso et al., 2010). Subsequently,
the Vegan 2.5.3 package in R language was used to calculate the
beta distance to quantify the differences in species composition
between samples (Oksanen et al., 2019). To more intuitively assess
the differences between groups, the Bray-Curtis distance matrix was
visualized and statistically tested using the “ggplot2” 2.2.1 package
in R (Wickham, 2011). In addition, the LEfSe version 1.0 was used
to mine the species biomarkers with significant differences among
different groups, and to deeply analyze the biological characteristics
between groups (Segata et al., 2011). Finally, the PICRUSt version
2.1.4 was applied to conduct functional prediction based on the
16S/ITS sequences (Douglas et al., 2019).

Metabolomics analysis

The ileal samples were gradually thawed at 4◦C. Then about
100 mg of the sample was added to 1 mL of pre-cooled methanol:
acetonitrile (Merck,1499230-935): water solution (2:2:1, v/v). The
resulting mixture was vortexed, Two low-temperature sonication
treatments were performed for 30 min each (Sonics VCX130
Ultrasonic Cell Disruptor, Sonics, United States); the supernatant
was subsequently left at -20◦C for 60 min and then centrifuge
at 13,000 × g for 15 min at 4◦C in a low-temperature high-
speed centrifuge (Eppendorf 5430R). The supernatant was vacuum-
dried (SOLIDMIX VST Vacuum Dryer, EKATO, Germany). For
MS analysis, 100 µL of an acetonitrile aqueous solution (with a
ratio of acetonitrile to water of 1:1, v/v) was added to redissolve
the vacuum-dried extract. This was vortexed and centrifuged at
14,000 × g and 4◦C for 15 min. The supernatant was taken for
sample injection analysis.

After metabolite extraction, liquid chromatography coupled
with tandem MS (LC-MS/MS) was carried out. Samples
were separated using an Agilent 1290 Infinity LC ultra-
high-performance liquid chromatography system (Agilent
Technologies) with a HILIC column (ACQUITY UPLC BEH
Amide 1.7 µm, 2.1 mm× 100 mm column, Waters, United States).
The column temperature was set at 25◦C, the flow rate was
0.5 mL/min, and the injection volume was 2 µL. The auto-sampler
was maintained at 4◦C. Samples were analyzed in a random order,
and QC samples were inserted to monitor the system stability.

Principal component analysis (PCA) was performed using the
gmodels package in R (v2.18.1). OPLS-DA analysis using the R
language ropls package (Thevenot, 2016). Differential metabolites
(DMs) were screened based on the degree of change in metabolite
levels, as represented by the Variable Importance in the Projection
(VIP) value and P-value. The larger the VIP value is, the more
important the metabolite is in the discrimination of differences
between groups and the greater its contribution to the model.
Mapping of identified metabolites to Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway database.1

Correlation analysis between ileal
microbes and metabolites

Correlation analyses of digestive enzyme activities, immune
indicators, tissue morphology and fermentation parameters with
ileal microbial communities or metabolites were performed using
the OmicShare tool,2 respectively, and Spearman correlation
coefficients were used to analyze the relationship between DMs
screened by metabolic pathways and microbial communities,
with significance thresholds set at P < 0.05 and corrected
by FDR (FDR < 0.1), and retained significant correlations
with |r| > 0.3 for subsequent network construction. Finally,
correlations and network diagrams between factors were
generated using the R language Psych package and the R
language Vegan package.

1 http://www.genome.ad.jp/kegg/

2 https://www.omicshare.com
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FIGURE 1

Effects of resveratrol and β-hydroxy-β-methylbutyric acid under different protein levels on the digestive enzyme activity (A) and immune status (B)
of ileal contents. L: diet with 12% protein level. L-RES-HMB: diet with 12% protein level supplemented with 1.50 g/d RES and 1.25 g/d HMB. H: diet
with 14% protein level. H-RES-HMB: Diet with 14% protein level supplemented with 1.50 g/d RES and 1.25 g/d HMB. IgA: Immunoglobulin A. IgM:
Immunoglobulin M. IgG: Immunoglobulin G. TNF-α: tumor necrosis factor-α. IL-1β: Interleukin-1β. Different letters on the shoulder mark indicate
significant difference (P < 0.05), the same letter or no letter indicates that the difference is not significant (P ≥ 0.05).

Statistical analysis

Data were organized with Microsoft Excel 2021. Data
related to digestive enzyme indices, immunological indices,
tissue morphology, fermentation parameters, and histology were
analyzed by SPSS version 22.0 (IBM Corp., Chicago, Illinois,
United States) software in a general linear model with multiple
comparisons using Duncan’s method. The results were presented
in the form of mean and standard error. The experimental P < 0.05
indicates significant difference.

Results

Analysis of ileal digestive enzyme activity

Figure 1A depicted the effects of the different experimental
treatments on ileal enzymes Notably, α-amylase, trypsin, and lipase
levels were significantly lower in the high-protein groups (H and
H-RES-HMB) than in the corresponding low-protein groups (L
and L-RES-HMB) (P < 0.05), indicating that the CP level affects
digestive enzyme activity. Meanwhile, the groups receiving RES
and HMB supplementation (L-RES-HMB and H-RES-HMB) had
significantly higher α-amylase, trypsin, chymotrypsin, lipase, and
cellulase activity than the corresponding non-supplemented groups
(L and H, respectively) (P < 0.05). The CP level and RES and
HMB supplementation exerted a significant interaction effect on
α-amylase, trypsin, lipase, and cellulase activity (P < 0.05).

Analysis of ileal immune indexes

The CP level and RES and HMB supplementation had a
significant interaction effect on TNF-α levels (P < 0.05). The

groups receiving RES and HMB supplementation (L-RES-HMB
and H-RES-HMB) had significantly higher contents of IgA and
IgM than the groups receiving no dietary supplementation (L
and H) (P < 0.05). Conversely, the levels of TNF-α and IL-
1β were significantly lower in the L-RES-HMB and H-RES-HMB
groups than in the non-supplemented groups (P < 0.05). This
indicates that RES and HMB supplementation has a positive
effect on the immune status of the ileum in Tibetan sheep
(Figure 1B).

Analysis of mucosal morphology in the
ileum

Images showing the histopathological staining of the ileal
mucosa are presented in Figure 2. As shown in Table 2, the CP
level and RES and HMB supplementation exerted a significant
interaction effect on the villus height, crypt depth, and mucosal

FIGURE 2

Effects of resveratrol and β-hydroxy-β-methylbutyric acid under
different protein levels on the ileum morphology. Representative
histological images of ileum slides stained with hematoxylin-eosin
(200×).
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TABLE 2 Effects of RES and HMB on ileal intestinal morphology in Tibetan sheep under different protein levels.

Villus height
(µm)

Villus
width (µm)

Crypt
depth (µm)

Mucosal
thickness

(µm)

Muscle layer
thickness

(µm)

V/C

Groups L 440.00± 36.00b 146.00± 5.00 449.50± 61.50a 889.50± 97.50bc 195.50± 80.50 0.99± 0.05bc

L-RES-HMB 433.00± 15.00b 150.00± 7.00 360.50± 52.50b 793.50± 67.50c 216.50± 1.50 1.23± 0.14a

H 445.00± 49.51b 152.5± 6.50 485.33± 20.79a 930.33± 45.28b 243.67± 68.39 0.92± 0.13c

H-RES-HMB 606.51± 12.50a 152.67± 7.64 517.50± 26.50a 1124.00± 39.00a 191.00± 5.00 1.17± 0.04ab

CP Level LCP 436.50± 24.96b 148.00± 5.87 405.00± 70.65b 841.50± 91.60b 206.00± 52.20 1.11± 0.16

HCP 525.75± 94.17a 152.58± 6.34 501.42± 27.64a 1027.17± 112.61a 217.33± 52.09 1.05± 0.16

Additive level N-RES-HMB 442.50± 38.81b 149.25± 6.29 467.42± 45.51 909.92± 71.57 219.58± 71.83 0.95± 0.09b

RES-HMB 519.75± 95.83a 151.33± 6.71 439.00± 93.69 958.75± 187.62 203.75± 14.35 1.20± 0.10a

P-value CP Level 0.001 0.264 0.005 0.001 0.72 0.328

Addictive level 0.003 0.6 0.294 0.238 0.618 0.003

CP level x
additive level

0.002 0.629 0.043 0.005 0.262 0.911

L, The dietary group with only 12% crude protein level; H, The dietary group with only 14% crude protein level; CP, Crude protein; LCP, The group with low crude protein level (12% CP);
HCP, The group with high crude protein level (14% CP). L-RES-HMB, The dietary group with 12% crude protein level supplemented with 1.5 g/d of RES and 1.25 g/d of HMB; H-RES-HMB,
The dietary group with 14% crude protein level supplemented with 1.5 g/d of RES and 1.25 g/d of HMB. N-RES-HMB: The dietary group without supplementation of RES and HMB.
RES-HMB: The dietary group supplemented with 1.5 g/d of RES and 1.25 g/d of HMB. V/C: villus height/crypt depth ratio. Data in the same column with different letters indicate significant
differences (P < 0.05), and data with the same letter or without a letter indicate no significant differences (P ≥ 0.05). The same below.

thickness in the ileum (P < 0.05). The villus height and V/C
ratio were significantly higher in the groups receiving RES and
HMB supplementation than in the non-supplemented groups
(P < 0.05).

Analysis of the SCFAs content in the
ileum

There was no significant interaction effect between the
CP level and RES and HMB supplementation (P > 0.05)
(Table 3). Compared with the groups without RES and HMB
supplementation (L and H), the groups receiving RES and
HMB supplementation (L-RES-HMB and H-RES-HMB) showed

significantly increased butyric acid levels (P < 0.05). Among
these groups, the H-RES-HMB group showed the highest butyric
acid concentration.

Diversity of ileal microbiota

The Venn diagram (Figure 3A) indicated that the number
of operational taxonomic units (OTUs) in the H-RES-HMB
group (27.27%) was higher than that in the L-RES-HMB group
(14.07%), and the number of OTUs shared between the two
groups was 232. Principal coordinate analysis (PCoA) revealed
good clustering in the β-diversity of the ileal microbiota in the
L-RES-HMB and H-RES-HMB groups (Figure 3B). Analysis of
similarities (ANOSIM) based on Bray–Curtis distances yielded

TABLE 3 Effect of RES and HMB on short chain fatty acids in the ileum of Tibetan sheep under different protein levels (%).

Acetic acid Propionic
acid

Isobutyric
acid

Butyric
acid

Isovaleric
acid

Valeric acid Hexanoic
acid

Groups L 82.84± 0.76 5.94± 0.34 2.23± 0.52 5.45± 0.26b 2.06± 0.42 0.35± 0.27 0.13± 0.20

L-RES-HMB 82.73± 0.44 6.17± 0.46 1.64± 0.43 6.65± 0.31a 1.76± 0.74 0.27± 0.20 0.77± 0.54

H 82.77± 0.43 6.88± 0.38 1.96± 0.27 5.21± 0.36b 1.88± 0.64 0.13± 0.03 1.17± 0.20

H-RES-HMB 82.06± 0.45 6.41± 0.61 1.43± 0.55 7.08± 0.25a 2.02± 0.26 0.17± 0.04 0.82± 0.13

CP level LCP 82.79± 0.56 6.05± 0.39 1.94± 0.53 6.05± 0.71 1.91± 0.33 0.31± 0.22 0.95± 0.41

HCP 82.42± 0.55 6.65± 0.52 1.69± 0.48 6.15± 1.06 1.95± 0.19 0.15± 0.04 0.99± 0.24

Additive level N-RES-HMB 82.81± 0.55 6.41± 0.61 2.09± 0.40 5.33± 0.31b 1.97± 0.29 0.24± 0.21 1.15± 0.18

RES-HMB 82.40± 0.54 6.29± 0.50 1.54± 0.46 6.87± 0.35a 1.89± 0.24 0.22± 0.14 0.80± 0.35

P-value CP level 0.268 0.058 0.379 0.597 0.803 0.164 0.822

Addictive level 0.220 0.679 0.067 <0.001 0.589 0.830 0.087

CP level x
Additive level

0.363 0.223 0.915 0.088 0.180 0.536 0.980
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FIGURE 3

Effects of resveratrol and β-hydroxy-β-methylbutyric acid under different protein levels on the ileal microbiology. (A) OTU Venn diagram of the
overlap of ileum microbiota. (B) Principal coordinate analysis (PCoA) of bacterial communities. (C) Anosim analysis in the ileum contents of Tibetan
sheep. (D) Relative abundance of microbial community proportion at the phylum and genus levels. (E) Different bacterial phylum and genus
between groups, green for L-RES-HMB group, red for H-RES-HMB group. *P < 0.05, **P < 0.01. (F) Linear discriminant analysis effect size (LEfSe).
(G) KEGG function prediction.

values of R = 0.0759 and P = 0.166, while ANOSIM based on
weighted UniFrac distances yielded values of R = 0.0185 and
P = 0.362 (Figure 3C). Analysis of variance showed that intergroup
differences were large and greater than intragroup differences.
When examining the community structure (Table 4), no significant
differences in Sobs, Shannon, Simpson, Chao1, and Ace indices
were observed among the ileal bacteria of the four groups.

Microbial composition of the ileal
microbiota

The relative abundances of the top 10 bacteria at the phylum
and genus levels are presented in Figure 3D. At the phylum
level, Firmicutes was the dominant phylum in the ileum, with the
H-RES-HMB group having the highest proportion of these bacteria
(71.1%). However, There was no significant difference in the
relative abundance of Firmicutes between the H-RES-HMB group
and the L-RES-HMB group. Similarly, there was also no obvious
difference in the relative abundance of Euryarchaeota between the
two groups. Additionally, the abundance of Planctomycetota in
the H-RES-HMB group was significantly higher than that in the
L-RES-HMB group (P < 0.05).

TABLE 4 Alpha diversity in the ileum of Tibetan sheep between
L-RES-HMB and H-RES-HMB groups.

Items Groups P-value

L-RES-
HMB

H-RES-
HMB

Sobs 307.67± 43.18 351.33± 44.63 0.116

Shannon 2.47± 0.77 3.13± 0.35 0.085

Simpson 0.62± 0.20 0.78± 0.03 0.134

Chao 1 388.03± 54.69 438.15± 51.85 0.124

Ace 408.30± 52.84 446.31± 43.72 0.204

At the genus level, Lysinibacillus accounted for the highest
proportion of bacteria in both the L-RES-HMB and H-RES-
HMB groups, with a relative abundance of more than 34%.
Lysinibacillus and Escherichia-Shigella emerged as the dominant
genera in the two treatment groups. Compared with the
L-RES-HMB group, the H-RES-HMB group contained a higher
abundance of Solibacillus, Clostridium_sensu_stricto_1, Bacillus,
and Paenibacillus. Specifically, the abundances of Solibacillus and
Paenibacillus were significantly higher (P < 0.05) (Figure 3E).
LEfSe analysis identified three genera enriched in two treatments
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FIGURE 4

Effects of resveratrol and β-hydroxy-β-methylbutyric acid under different protein levels on the ileal metabolite. (A) Positive ion OPLS-DA score plots.
(B) Negative ion OPLS-DA score plots. (C) Permutation test plots of positive ions. (D) Permutation test plots of negative ions. (E) Volcano plots of
differential metabolites. (F) Analysis of KEGG pathway. The size of the bubbles indicates the number of differential metabolites enriched in the
pathway, while the color of bubbles indicates the significance of enrichment in the pathway. The larger the value, the more significant the
enrichment. up: significantly upregulated metabolites. nodiff: no significantly different metabolites. down: significantly downregulated metabolites.

(Figure 3F). The H-RES-HMB group was significantly enriched
with Solibacillus, Paenibacillus, and Psychrobacillus.

Differences in the functions of ileal
microorganisms in Tibetan sheep

The results demonstrated that, in the four groups, the
functions of microorganisms were mainly enriched in carbohydrate
metabolism, amino acid metabolism, and pathways related to the
metabolism of cofactors and vitamins (Figure 3G).

Metabolic variation analysis

The OPLS-DA score plot exhibited good fit (R2X and R2Y) and
predictability (Q2), and there was an obvious separation between
different groups. In the positive ion mode, the R2X value, R2Y
value, and Q2 value of the L-RES-HMB and H-RES-HMB groups
were 0.679, 0.844, and 0.550, respectively (Figure 4A). In the
negative ion mode, the R2X value, R2Y value, and Q2 value of
the L-RES-HMB and H-RES-HMB groups were 0.750, 0.785, and
0.533, respectively (Figure 4B). The OPLS-DA model was subjected
to a displacement test. In the positive ion mode, the R2, R2X, and
Q2 intercept values of the L-RES-HMB and H-RES-HMB groups
were found to be 0.67, 0.00, and -0.19, respectively (Figure 4C);
on the negative ion mode, these values were 0.62, 0.00, and -0.33,
respectively (Figure 4D).

The analysis of DMs revealed that compared with the L-RES-
HMB group, there were 229 metabolites with significant differences

in abundance levels in the H-RES-HMB group (221 DMs were
significantly downregulated and 18 DMs were significantly
upregulated). The key up-regulated metabolites included
Irinotecan, Erdosteine thioacid, 4,4′-diaminodiphenylmethane,
and Morphine n-oxide (Figure 4E).

In order to identify the primary metabolic pathways and
signal transduction pathways related to these DMs, KEGG pathway
enrichment analysis was performed (Figure 4F). In total, the DMs
between the L-RES-HMB and H-RES-HMB groups were enriched
in 91 pathways. Among these pathways, 11 showed significant
changes. In particular, significant differences in Protein digestion
and absorption, Metabolic pathways, and Mineral absorption
(P < 0.05) were observed. These pathways involved DMs
such as L-valine, DL-tyrosine, DL-threonine, L-alanine, alpha-
tocopherol, and D-xylulose. In addition, several other DMs, such
as Hypoxanthine, Uric acid, and Xanthine—involved in the Purine
metabolism pathway—were also identified.

Correlation analysis

To examine the correlations among mucosal morphology
in the ileum, digestive enzymes, immune activity, SCFAs, ileal
microbiota, and metabolites, Spearman’s and Mantel’s correlation
analyses were conducted. The Spearman correlation network
revealed that the abundances of Solibacillus and Paenibacillus were
positively correlated with villus height and negatively correlated
with trypsin, lipase, α-amylase, and TNF-α levels in the ileum
(Figure 5A). Meanwhile, the contents of L-alanine, xanthine,
and alpha-tocopherol were positively correlated with lipase and
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FIGURE 5

Correlation analysis. (A) Spearman correlation heat map of ileal bacteria and digestive enzyme activity, immune activity, ileal mucosal morphology
and short-chain fatty acid concentration. (B) Spearman correlation heat map between ileal metabolome and digestive enzyme activity, immune
activity, ileal mucosal morphology and short-chain fatty acid concentration. (C) Spearman correlation heat map of ileal bacteria and metabolome.

trypsin activity. Additionally, xanthine, L-alanine, L-valine, alpha-
tocopherol, and uric acid levels were positively correlated with
IL-1β, α-amylase, and TNF-α levels and negatively correlated
with villus height (Figure 5B). The abundances of Firmicutes
and Bacillus were positively correlated with DL-threonine levels.
Moreover, the abundance of Planctomycetota was positively
correlated with L-valine and alpha-tocopherol levels, while that
of Solibacillus and Paenibacillus was negatively correlated with
alpha-tocopherol levels (Figure 5C).

Discussion

Understanding the impact of RES and HMB on the ileum in
Tibetan sheep is a valuable area of research. As a food supplement,
RES can improve fish health by increasing digestive enzyme
activity (Afzali-Kordmahalleh and Meshkini, 2023). It has also
been demonstrated that dietary supplementation with RES can
significantly elevate the activities of pepsin, α-amylase, and lipase
in the duodenum and valvular intestine of Siberian sturgeon,
suggesting that RES improves the digestive capacity of animals
by strengthening digestive enzyme activity and subsequently
increasing the feeding rate (Yang et al., 2022). Moreover, previous
research has shown that adding RES and HMB to the diet can
enhance the activities of trypsin, chymotrypsin, and lipase in the
rumen of Tibetan sheep (Zhu et al., 2024). Consistent with these
findings, the present study revealed that the L-RES-HMB and
H-RES-HMB groups exhibited significantly higher activities of
α-amylase, trypsin, lipase, and cellulase, thereby illustrating the
positive effect of RES and HMB supplementation on digestive
enzyme activity in the ileum of Tibetan sheep.

Immunoglobulins are large glycoproteins that mediate adaptive
immune responses by recognizing pathogens, preventing pathogen
invasion, promoting pathogen neutralization, and achieving
pathogen clearance and destruction. Therefore, immunoglobulins
play an important role in immune regulation and pathogen defense
in animals (Keyt et al., 2020). The mucosal B cells differentiate
into plasma cells to produce IgA and IgM, which resist inhaled
(Frede et al., 2022), ingested, and sexually transmitted pathogens
and antigens that come into contact with the mucosal surface
(Kaetzel, 2005). Mechanistically, RES indirectly promotes IgA
secretion by inhibiting intestinal inflammation and improving
mucosal barrier microenvironment, while HMB enhances B cell
class switch recombination from IgM to IgA by stimulating IL-
6 and BAFF secretion from bone marrow stromal cells—In vitro
studies show HMB increases B cell IgA secretion by 22% (Gan et al.,
2024; Kornasio et al., 2009). Notably, RES also elevates serum IgG
levels in weaned piglets (Chen et al., 2021), aligning with the present
study’s findings.

Pro-inflammatory cytokines TNF-α and IL-1β are central
regulators of inflammation (Esposito and Cuzzocrea, 2009),
and RES—a plant-derived polyphenol—exhibits anti-inflammatory
activity through defined molecular pathways (Novakovic et al.,
2022). RES activates silent information regulator 1 (SIRT1),
promoting deacetylation of NF-κB subunit p65 and inhibiting
its nuclear translocation to reduce TNF-α/IL-1β transcription.
For example, in TNF-α-stimulated fibroblasts, RES reduces p65
acetylation, NF-κB reporter activity, and pro-inflammatory mRNA
(Malaguarnera, 2019; Zhu et al., 2011). HMB complements this by
activating AMPK to inhibit IκB kinase phosphorylation, blocking
IκBα degradation and suppressing NF-κB pathway activation. In
ovine myoblast injury models, HMB decreases p-IKKα/β, p-IκBα,
and nuclear NF-κB p65, reducing IL-6/TNF-α secretion (Arazi
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et al., 2018; Zheng et al., 2022). Additionally, RES reduces M1
macrophage polarization via NF-κB inhibition and PI3K/Akt
activation, shown by decreased iNOS/TNF-α in obese mouse
muscle and IL-1β in rat corneal transplants (Shabani et al., 2020;
Xu et al., 2023), while HMB curbs TNF-α indirectly by inhibiting
dendritic cell maturation and Th1 cytokine secretion (Arazi et al.,
2018). Their antioxidant activities—RES scavenging free radicals
and inhibiting NADPH oxidase, HMB maintaining glutathione
homeostasis—synergistically suppress NF-κB-dependent oxidative
stress cascades (Gan et al., 2024; Arazi et al., 2018). Consistent with
prior studies (Bereswill et al., 2010; Ozcicek et al., 2016; Gan et al.,
2024), this study found RES and HMB supplementation reduced
ileal TNF-α/IL-1β levels independent of dietary protein. RES has
shown therapeutic effects against weaning stress, heat stress, and
bacterial infections (Franco et al., 2013; Cheng et al., 2019a; Cheng
et al., 2019b; Gan et al., 2019), while enhancing animal growth
and product quality (Meng et al., 2023). Our results highlight
specific impacts on ileal immune markers (IgA, IgM, TNF-α, IL-
1β), with the RES-HMB-high-protein diet demonstrating optimal
effects in maintaining intestinal health and immune regulation—
a coherence supported by molecular, cellular, and animal model
evidence (Malaguarnera, 2019; Arazi et al., 2018).

The ileal mucosa is crucial for digestion and absorption. A good
mucosal morphology can increase the absorption area of the ileum
and improve the rate of nutrient utilization (Jia et al., 2022). The
present study found that dietary RES and HMB supplementation
could be a novel strategy for improving the mucosal morphology
in the ileum of Tibetan sheep. RES shows various biological
activities, such as antioxidant and anti-inflammatory effects, and
may improve the mucosal morphology of the ileum by reducing
intestinal inflammation and protecting mucosal cells (Nunes et al.,
2018). Adding 400 mg/kg RES to the diet was found to increase
the jejunal villus height and the ratio of villus height to crypt
depth in heat-stressed broilers (Chen et al., 2021). It was found that
RES may prevent barrier defects and inflammation by inhibiting
neutrophil infiltration in mice with colitis, and RES has also been
proven to inhibit TNF-α-induced inflammatory signaling and IL-
8 production in Caco-2 human intestinal cells (Mayangsari and
Suzuki, 2018a). Meanwhile, as a nutritional supplement in humans,
HMB also exerts a positive effect on the intestinal mucosa while
promoting muscle growth (Slater and Jenkins, 2000). In pigs treated
with lipopolysaccharide, HMB supplementation can significantly
increase the jejunal villus height and the ratio of ileal villus height
to crypt depth, while reducing ileal crypt depth. In addition,
HMB further ameliorates intestinal function in weaned piglets via
augmenting the activities of intestinal mucosal disaccharidase and
crucial tricarboxylic acid cycle enzymes (Zheng et al., 2020). The
present study found that adding RES and HMB to the diet of
Tibetan sheep significantly increases the V/C ratio. In addition, the
villus height and mucosal thickness were found to be significantly
higher in the H-RES-HMB group than in the L-RES-HMB group,
indicating that the ileum had stronger digestion and absorption
capabilities in the H-RES-HMB group. In line with these findings,
RES-HMB supplement increased jejunal permeability and the V/C
of the jejunum in sheep (Ji et al., 2024b). However, the specific effect
of RES-HMB on mucosal morphology in the ileum still warrants
further exploration.

SCFAs are the primary end products derived from the
fermentation of indigestible carbohydrates by the intestinal

microbiota (Ríos-Covián et al., 2016). The significant increase
in butyric acid levels after RES and HMB supplementation was
a key finding of the present study. Butyric acid plays a crucial
role in maintaining the integrity of intestinal epithelial cells (Jung
et al., 2015; Morrison and Preston, 2016), regulating intestinal
immune responses (Peng et al., 2009), promoting colon peristalsis,
and reducing inflammation (Zhang et al., 2010). Butyrate inhibits
TNF-α, IL-6, and myeloperoxidase by preventing nuclear factor
kappa β activation in Kupffer cells (Huang et al., 2010). Among
the SCFAs produced in the colon, butyrate appears to be the most
important regulator of tight junction proteins. Furthermore, it has
been demonstrated to strengthen intestinal barrier function by
elevating the expression of claudin-1 and zonula occludens-1 and
the redistribution of occluding (Manco et al., 2010). Interestingly,
RES and butyric acid can be converted into resveratrol butyrate
via n-ethyl-N′-(3-dimethylaminopropyl)carbodiimide and 4-
dimethylaminopyridine, and the esterification of RES increases
its biological activity (Shih et al., 2021). The evidence clearly
demonstrates that as a functional food ingredient, additive,
or health-promoting supplement, RES may act as an anti-
fat accumulation agent (Tain et al., 2020). In conclusion,
RES and HMB supplementation has a complex impact on
intestinal microbes, and further research is required to elucidate
the specific mechanism through which RES-HMB affects the
intestinal microbiota. Collectively, the above phenotypic results
demonstrated that adding RES and HMB to the diet has a positive
effect on the ileal health of Tibetan sheep. Subsequent omics
analysis was performed to explore the ileal characteristics of
Tibetan sheep in the L-RES-HMB and H-RES-HMB groups
in detail.

In the microbial community of the animal ileum, the phylum of
Firmicutes is an important structural component (He et al., 2018).
It not only plays a key role in the construction of the community but
also participates in the degradation of intestinal fibers, thus playing
an important function in maintaining the balance of the intestinal
microecology and nutritional metabolism (Marques et al., 2017).
Most of the microorganisms that produce butyrate and are related
to the human gut belong to the phylum Firmicutes (Brame et al.,
2021). The bacteria in this phylum decompose dietary fiber and
produce SCFAs such as acetic acid, propionic acid, and butyric acid.
These SCFAs not only provide energy for intestinal cells, but also
have important functions such as regulating the immune system
and maintaining intestinal barrier function (Huang et al., 2018).
In patients with inflammatory bowel disease (IBD), the abundance
of Faecalibacterium prausnitzii, a bacterium belonging to the
phylum Firmicutes, is very low. A reduction in the proportion of
these bacteria is related to impaired intestinal mucosal protection
(Bangsgaard Bendtsen et al., 2012). Faecalibacterium prausnitzii is
a relatively abundant species within the family Ruminococcaceae
and can synthesize butyrate via butyryl-CoA and acetate-CoA
transferases. In Firmicutes, the acetyl-CoA pathway serves as the
main route for butyrate synthesis (Louis and Flint, 2009).

The abundances of Solibacillus and Paenibacillus were found
to be positively correlated with villus height in the present study.
This indicated that these microbial communities may play an
active role in maintaining specific structures or functions of the
ileum. The number of intestinal villi determines the intestinal
surface area, and these structures are connected to the circulatory
system, improving the intestinal absorption capacity (Gehart and
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Clevers, 2019). In the study by Yu et al. (2019), which examined
the effects of different CP levels, the villus height of the 20%
protein diet group was found to be higher than that of the 14
and 17% protein diet groups. In addition, villus height is related
to factors such as mucosal barrier function (Yamauchi, 2002).
Interestingly, the relationship of Solibacillus and Paenibacillus
with villus height has not been reported in previous studies and
needs further investigation. However, Research confirmed that
non-specific immunity is enhanced in fish receiving Paenibacillus
polymyxa supplementation (Gupta et al., 2016). Moreover, there
was reports depict the favorable impacts of bacilli like Bacillus
coagulans, Bacillus licheniformis, and Paenibacillus polymyxa on
the growth, immunity, and disease resistance of aquatic animals
(Amoah et al., 2021). We believe that the significant increase in the
abundance of Solibacillus and Paenibacillus in the ileum of Tibetan
sheep may be related to the reduction in TNF-α levels, suggesting
that these bacterial genera may exert a regulatory effect on specific
components of the immune system.

Xanthine is a product of purine metabolism, and its presence
can reflect the activity of purine metabolism in microbes. In this
study, the content of Xanthine in the high-protein group was lower
than that in the low-protein group, likely due to the increase in
protein levels. Uric acid is an end product of purine metabolism
(Granell et al., 2004), and its levels can increase due to changes
in purine metabolism (Wu et al., 2020). Xanthine oxidoreductase
(XOR) mainly catalyzes the conversion of hypoxanthine to
xanthine and then uric acid (Battelli et al., 2018). Some studies
show that RES supplementation can reduce serum uric acid levels
in patients with dyslipidemia, with lower xanthine oxidase (XO,
a key enzyme involved in uric acid production) activity under
high RES doses (600 mg/d). Thus, there exists a dose–response
relationship between the reduction in uric acid and XO activity.
RES can attenuate renal inflammation and reduce blood uric acid
levels in mouse models of high-fat diet-induced insulin resistance.
One study using a rabbit intestinal loop infection model found that
during in vivo enteropathogenic Escherichia coli infection, uric acid
crystals are formed in the intestinal lumen (Crane and Mongiardo,
2014). These uric acid crystals have a pro-inflammatory effect
independent of hydrogen peroxide production and can trigger IL-
1β-mediated inflammation by activating the NOD-like receptor
protein 3 (NLRP3) inflammasome (Yin et al., 2019). Elevated
serum uric acid levels in diabetic rats are associated with the
increased activity of α-amylase (Sanni et al., 2019). Xanthine and
uric acid accumulation may result from the dysfunction of purine
metabolism, which in turn affects the physiological function of the
intestine. Additionally, studies have demonstrated that the number
of butyrate-producing bacteria and the production of SCFAs are
both positively correlated with the ability to reduce uric acid levels
and inhibit inflammation in animals (Li et al., 2023). However,
the specific mechanism still requires further investigation. In
conclusion, both dietary protein levels and the addition of RES
and HMB not only alter the microbial community structure
of the ileum but also impact different metabolic pathways and
metabolites. Nevertheless, the relationship between the microbiota
and metabolites needs to be studied in further detail.

Interestingly, in the present study, Firmicutes and Bacillus
showed high abundances in the high-protein group and were
positively correlated with DL-threonine levels. The abundance of

Planctomycetota was positively correlated with L-valine and alpha-
tocopherol levels. As an essential amino acid, L-valine plays a
crucial role in protein synthesis and metabolism (Zhang J. et al.,
2019). Meanwhile, alpha-tocopherol has powerful physiological
functions, such as antioxidation (Ley et al., 2005). The positive
correlation between Planctomycetota and these metabolites implies
that this group of bacteria is involved in their metabolism
or regulation. Interestingly, we found that Solibacillus and
Paenibacillus were negatively correlated with alpha-tocopherol.
This may be because the metabolic activities of these microbes
compete with the metabolism or utilization of alpha-tocopherol.
Additionally, the antioxidant effect of alpha-tocopherol may also
inhibit the growth of Solibacillus and Paenibacillus the metabolites
produced by microorganisms may also affect nutrient metabolism
(Nicholson et al., 2012).

In conclusion, the protein level of the feed is also important
for intestinal immune regulation (Pearce et al., 2024). Different
intestinal microbes and metabolites may activate or inhibit the
intestinal immune system in the host. In this study, compared with
the L-RES-HMB treatment, the H-RES-HMB treatment exerted
a stronger complementary effect on the ileum of Tibetan sheep.
In the future, we plan to further explore the effects of different
protein sources and formulations on the intestinal microbiota and
metabolites in sheep in order to improve the intestinal health and
production performance of animals by adjusting feed protein levels.

Conclusion

The results of this study indicate that a 14% protein
diet can significantly increase the concentration of butyric
acid in the ileum of Tibetan sheep, thus improving ileal
morphological development and function. The addition of
RES and HMB leads to a further improvement in the health of
the ileum. This improvement can be attributed to the combined
action of protein level and RES and HMB supplementation,
which positively influence the ileal microbial community
composition (Firmicutes and Clostridium_sensu_stricto_1)
and metabolite levels (xanthine and uric acid), thereby
enhancing butyric acid levels. This increase leads to improved
digestive enzyme activity, immune responses, and mucosal
morphology, ultimately promoting the health of the ileum
in Tibetan sheep.
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