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Antifungal activity of 
cinnamaldehyde against 
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disruption of the TCA cycle and 
protein metabolism
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Aspergillus fumigatus is an environmental opportunistic fungal pathogen, which 
can lead to invasive aspergillosis in immunocompromised individuals, and resistant 
to conventional antifungual agents has become a growing concern. This study 
investigated the antifungal activity and the molecular antifungal mechanisms of 
Cinnamaldehyde (CA) against A. fumigatus, specifically its impact on metabolic 
pathways and protein metabolism. In susceptibility tests, CA was found to exhibit 
promising antifungal activity against A. fumigatus in both solid and liquid culture 
(biomass) systems, with the minimum inhibitory concentration (MIC) determined as 
40–80 μg/mL. Quantitative spore viability assays under elevated CA concentrations 
demonstrated that the antifungal efficacy of CA against A. fumigatus is primarily 
attributable to its direct fungicidal mechanism. Interestingly, CA also showed equivalent 
antifungal activity against itraconazole- resistant strains R1 (ITZ, MIC 8 μg/mL) and 
R2 (ITZ, MIC 8 μg/mL), as it did against its parental strain Af293 (ITZ, MIC 1.5 μg/
mL), suggesting its potential value to overcome resistance mechanisms associated 
with conventional antifungal therapies. Further proteomics and metabolomics 
analyses revealed that CA significantly affected the tricarboxylic acid (TCA) cycle 
and protein metabolism, with 167 differentially expressed proteins and 350 altered 
metabolites identified after 180 min of treatment (FC > 2 or <0.5, p < 0.05, VIP > 1). 
Following treatment with CA, the protein expression of the putative translation 
initiation factor eIF4E3 (AFUB_051690), the putative leucyl-tRNA synthetase 
LeuRS (AFUB_093380), prolyl-tRNA synthetase ProRS (AFUB_010170) and the 
putative peptidyl-tRNA hydrolase Pth1 (AFUB_053480) exhibited a significant 
decrease. Moreover, deletion of pth1 resulted in a severe growth defect and 
hypersensitivity to CA, as evidenced by complete growth arrest at 30 and 45 μg/
mL CA. Altogether, the results uncovered a novel antifungal mechanism of CA 
against A. fumigatus and suggest that CA or its derivatives could be developed 
as effective antifungal drugs.
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Introduction

Invasive fungal infections present a formidable global public 
health challenge, with an estimated annual toll of 1.5 to 2 million 
deaths (Gupta et al., 2021). More than 600 fungal species have been 
recognized as being capable of instigating infections in humans. 
Among this diverse array, Aspergillus spp. account for a staggering 
70% of the deaths associated with fungal infections (Earle et al., 2023). 
A. fumigatus, a saprophytic mold with a global distribution, can 
precipitate life-threatening infections in immunocompromised 
individuals (Langfeldt et  al., 2022). Triazole antifungal drugs, 
principally itraconazole and voriconazole, along with amphotericin B, 
constitute the frontline medications for treating invasive aspergillosis 
(IA) (Patterson et al., 2016). However, the increasing prevalence of 
resistance to these antifungals, especially in A. fumigatus, has become 
a matter of mounting concern (Wiederhold and Verweij, 2020; Rivelli 
Zea and Toyotome, 2022). The most extensively studied molecular 
mechanisms underlying azole resistance in A. fumigatus primarily 
include: (i) over-expression of Cyp51A or structural modifications in 
the Cyp51A protein, (ii) up-regulation of efflux pumps, particularly 
those belonging to the ATP-binding cassette (ABC) and major 
facilitator superfamily (MFS) transporter families, and (iii) additional 
mechanisms involving biofilm formation, cellular stress responses, 
and potential alterations in sterol metabolism (Perez-Cantero et al., 
2020). The emergence of drug resistance in A. fumigatus not only 
throws down new gauntlets to traditional treatment modalities but 
also sets forth novel requisites for the research and development of 
novel antifungal agents.

Cinnamaldehyde (CA), which is the principal component of 
cinnamon essential oil obtained from Cinnamomum cassia and 
Cinnamomum verum, is widely utilized as a food additive in industrial 
products and has been designated as safe (GRAS) by the United States 
Food and Drug Administration (FDA) (Hajinejad et al., 2020; Usai 
and Di Sotto, 2023). Numerous studies have shown that CA possesses 
extensive antibacterial, yeast, and filamentous mold activities (Doyle 
and Stephens, 2019). Besides, CA also has multiple pharmacological 
activities, such as anticancer/antitumour (Peng et  al., 2024), 
antioxidant, anti - inflammatory, neuroprotective, and cardioprotective 
effects (Hariri and Ghiasvand, 2016; Luan et al., 2022; Guo et al., 2024).

The molecular mechanisms through which CA inhibits the 
growth of fungi are highly intricate, principally encompassing the 
inhibition of ATPase activity, the suppression of cell wall or biofilm 
formation, as well as the alteration of the structure and integrity of cell 
membranes (Shreaz et  al., 2016). In Fusarium sambucinum, CA 
inhibits ergosterol biosynthesis to disrupt cell membrane integrity, 
exhibiting strong antifungal activity (Wei et  al., 2020). In 
Zygosaccharomyces rouxii, CA induces apoptosis via a metacaspase- 
dependent mitochondrial pathway (Wang et  al., 2022), while 
Aspergillus niger studies show malate dehydrogenase is its target 
protein (Wang et  al., 2024). Notably, CA treatment in 
immunosuppressed mice with invasive pulmonary candidiasis 
enhances fungal clearance and reduces (1,3)-β-D-glucan levels 
compared to fluconazole (Deng et al., 2021).

The proteomic and metabolomic technologies enable 
comprehensive analysis of fungi responses to drug treatment, 
overcoming the limitations of single-target studies. Specifically, it can 
reveal pathway-level perturbations, compensatory mechanisms, and 
side targets in resistant strains (Gonzalez-Covarrubias et al., 2022; 

Sulaiman and Lam, 2022). To further investigate the molecular 
mechanisms underlying the antifungal activity of CA, this study 
selected A. fumigatus as the target organism and implemented 
proteomics and metabolomics analysis under the treatment of 
CA. The results demonstrated that the growth inhibition of 
A. fumigatus by CA is intimately associated with the suppression of 
the TCA cycle and protein metabolism as novel targets beyond 
ergosterol biosynthesis.

Materials and methods

Strains and media

The parental strain of A. fumigatus employed in this study was 
A1160 and Af293 (FGSC). Another strain, A1160C, which was labeled 
as WT in the text, was constructed by reintroducing the pyrG gene 
into A1160 (Jiang et al., 2014). Itraconazole-resistant strains R1 and 
R2 were mutated from Af293. For A. fumigatus cultivation, YAG 
(containing 2% glucose, trace elements, 0.5% yeast extract and 2% 
agar) and YUU (YAG+5 mM uridine, 10 mM uracil) were used. For 
colony growth tests, A. fumigatus strains were grown on YAG or YUU 
supplemented with the indicated reagent.

CA susceptibility test and biomass analysis

To evaluate CA’s antifungal activity, YAG plates containing 0, 30, 
45, or 60 μg/mL CA were inoculated with 3 × 104 A. fumigatus WT 
spores (A1160 background). After incubation at 37 °C for 2.5 d, 
colonies were photographed and their diameters measured. 
Experiments were performed in triplicate for each CA concentration, 
with growth inhibition assessed by calculating mean colony 
diameters (±SD).

To assess the antifungal activity of CA against A. fumigatus strain 
Af293 and its drug-resistant variants R1 and R2, 3 × 104, 3 × 103, and 
3 × 102 spores were plated on YAG agar containing CA at concentrations 
of 0, 30 and 45 μg/mL, respectively. After 48-h incubation at 37 °C, 
colony formation was evaluated to determine growth inhibition.

Biomass quantification was conducted by introducing 5 × 107 
A. fumigatus WT spores into 100 mL YAG liquid medium containing 30, 
40, or 60 μg/mL CA. Biomass was harvested after 20 h of cultivation 
using sterile gauze filtration and oven-dried at 80 °C to a constant weight. 
Each sample was assayed in triplicate to ensure statistical reliability.

Fungicidal assay

To elucidate whether CA exhibits fungistatic or fungicidal activity, 
a quantitative viability assay was performed. Initially, 1 × 108 
A. fumigatus WT spores were inoculated into YAG liquid medium. 
The experimental groups were treated with 200 and 400 μg/mL of CA 
for 3 h, while the control group remained untreated. Post-incubation, 
samples were centrifuged at 8000 rpm for 3 min to pellet the spores 
and remove the CA-containing supernatant. The pelleted spores were 
then washed twice with sterile water to eliminate residual CA, 
followed by serial dilution for spread plating. Specifically, the 
experimental samples were diluted 103-fold, and the control samples 
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were diluted 105-fold to ensure countable colonies. Each treatment 
group was replicated three times, and colony-forming units (CFUs) 
were enumerated to statistically assess the impact of CA on 
fungal viability.

E-test and MIC assay

For E-test susceptibility analysis, A. fumigatus WT spores (4 × 106) 
were uniformly suspended in 20 mL of molten agar medium, 
achieving a final concentration of 2 × 105 spores/mL. Following 
solidification, ITZ E-test strips were aseptically placed at the center of 
each plate. After a 24-h incubation at 37 °C, drug resistance was 
assessed by determining the inhibition zone.

For the minimum inhibitory concentration (MIC) assay, the 
procedure was performed according to the EUCAST DEFINITIVE 
DOCUMENT E. DEF 9.3. In brief, double-strength RPMI 2% G 
medium buffered with MOPS was prepared. Serial dilutions of 
cinnamaldehyde (CA) were prepared to achieve final concentrations 
of 80, 40, 20, 10 and 0 μg/mL in the test wells, with 1 × RPMI glucose 
medium serving as the negative control. Each well was inoculated with 
2 × 105 A. fumigatus WT spores/mL and incubated at 37 °C for 48 h. 
The MIC was defined as the lowest CA concentration that completely 
inhibited visible fungal growth after the incubation.

Ergosterol extraction and quantification

The ergosterol extraction protocol was performed as previously 
described (Song et al., 2016). Briefly, 5 × 107 WT spores were cultured 
in 100 mL YAG liquid medium supplemented with or without 45 μg/
mL CA at 37 °C with shaking (220 rpm) for 24 h. The harvested 
mycelia were washed with distilled water, lyophilized, and ground to 
a powder. For each sample, 100 mg of mycelial powder was saponified 
with 3 mL of 25% KOH alcoholic solution (methanol: ethanol, 3:2, 
v/v) at 85 °C for 1 h. The mixture was then extracted with 3 mL of 
n-pentane. The upper organic phase was collected, evaporated to 
dryness, and redissolved in 2 mL methanol. The solution was filtered 
(0.45 μm) before HPLC analysis using a C18 column with 100% 
methanol mobile phase (flow rate 1 mL/min) and detection at 282 nm.

Construction of gene deletion mutant and 
complementation strain

To knock out pth1 in A. fumigatus, the method of homologous 
recombination was adopted in this study. Firstly, the fragments of 
approximately 1.5 kb upstream and downstream of the pth1 gene were 
amplified by primer pairs pth1 P1/3 and pth1 P4/6, respectively. 
Subsequently, the screening marker hph fragment was amplified using 
the primer pair hygF/R. Finally, the three fragments were 
homologously recombined into the vector pBARGPE1 at the ClaI 
cloning site using pEASY®-Basic Seamless Cloning and Assembly Kit 
(TransGen Biotech, Beijing). The fused fragment, amplified by the 
primer pair pth1 P2/5, was introduced into the protoplasts of A1160, 
yielding the pth1 transformants. Subsequently, verification of these 
transformants was carried out using the primer pair pth1 S1/2, which 
culminated in the successful acquisition of the pth1 deletion mutant.

For genetic complementation, the pth1 gene fragment, including 
its upstream and downstream flanking regions, was amplified using 
primers pth1com F and pth1com R. The PCR product was then 
cloned into the SpeI site of the pZero-uu vector, which carries the 
NcpyrG selectable marker. The recombinant plasmid was subsequently 
transformed into protoplasts of the Δpth1 knockout strain via 
polyethylene glycol (PEG)-mediated transformation. Transformants 
were selected on medium lacking uridine/uracil. The oligonucleotides 
used in this study are displayed in Supplementary Table 1.

Metabonomic analysis

Metabonomic experiments were performed by Shanghai Applied 
Protein Technology Co., Ltd. Briefly, the conidia of A. fumigatus of the 
WT strains were inoculated into YAG liquid medium and incubated 
on a rotary shaker at 220 rpm and 37 °C for 20 h. Six biological 
replicates were exposed to 75 μg/mL CA for 0, 90 and 180 min, 
respectively. The samples were then filtered through gauze, rinsed with 
deionized water, and promptly frozen in liquid nitrogen. For 
metabolite extraction, the samples were homogenized into a powdered 
form using liquid nitrogen. For each sample, 80 mg was added to 1 mL 
of a cold extraction solvent mixture of methanol/acetonitrile/H₂O 
(2:2:1, v/v/v), followed by thorough vortexing and incubation on ice 
for 20 min. Subsequently, the samples were centrifuged at 13,000 g for 
20 min at 4 °C. The supernatant was collected and passed through a 
96-well protein precipitation plate. The elution was collected and dried 
in a vacuum centrifuge at 4 °C. For LC–MS analysis, samples were 
redissolved in 100 μL of 1:1 (v/v) acetonitrile/water and analyzed 
using a Sciex TripleTOF 6,600 quadrupole time-of-flight mass 
spectrometer coupled to hydrophilic interaction chromatography 
(HILIC) via electrospray ionization (ESI). Chromatographic 
separation was performed on an ACQUITY UPLC BEH Amide 
column (2.1 mm × 100 mm, 1.7 μm; Waters, Ireland) using Solvent A 
(25 mM ammonium acetate and 25 mM ammonium hydroxide in 
water) and Solvent B (acetonitrile). The gradient profile was as follows: 
85% B for 1 min, linearly reduced to 65% over 11 min, further reduced 
to 40% in 0.1 min and held for 4 min, then increased back to 85% in 
0.1 min, followed by a 5-min re-equilibration period. Flow rate: 
0.4 mL/min; column temperature: 25 °C; injection volume: 2 μL. The 
mass spectrometer was operated in both positive and negative 
ionization modes. Raw MS data (wiff.scan files) were converted to 
MzXML format using ProteoWizard MSConvert prior to import into 
the open-source XCMS software. For peak picking: centWave 
m/z = 25 ppm, peakwidth = c (10, 60), prefilter = c (10, 100). For peak 
grouping: bw = 5, mzwid = 0.025, minfrac = 0.5. Differentially 
expressed metabolites (DEMs) were identified using FC > 2 or <0.5, 
p < 0.05 and VIP > 1 as cutoffs.

Proteomic analysis

Proteomic experiments were conducted by Shanghai Applied 
Protein Technology Co., Ltd. The strain cultivation and CA treatment 
procedures were identical to those of the aforementioned 
metabolomics treatment methods. A total of three biological replicates 
were performed for the proteomics analysis. Proteins were extracted 
using SDT buffer (4% SDS, 100 mM Tris–HCl, 1 mM DTT, pH 7.6) 
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and quantified using the BCA Protein Assay Kit (Bio-Rad, USA). 
20 μg of protein per sample were separated by SDS-PAGE, and protein 
bands were visualized with Coomassie Blue R-250 staining. SDS-PAGE 
analysis confirmed no evidence of protein degradation, and the 
protein yield was deemed sufficient for subsequent experiments, thus 
enabling the progression to formal assays. Subsequently, proteins were 
digested with trypsin. LC–MS analysis was carried out on a timsTOF 
Pro mass spectrometer (Bruker) coupled to a Nanoelute (Bruker 
Daltonics). Digested A. fumigatus peptides were loaded onto a 
reversed-phase trap column (Thermo Scientific Acclaim PepMap100, 
100 μm × 2 cm, nanoViper C18) connected to a reversed-phase C18 
analytical column (Thermo Scientific Easy Column, 10 cm × 75 μm, 
3 μm C18 resin). The peptides were equilibrated in Buffer A (0.1% 
formic acid) and separated using a linear gradient of Buffer B (84% 
acetonitrile, 0.1% formic acid) at a flow rate of 300 nL/min, controlled 
by IntelliFlow technology. The MS raw data of each sample were 
analyzed using MaxQuant 1.6.14 software against the A. fumigatus 
UniProt database for identification and quantification. FDR was set to 
1% at both peptide and protein levels. Differentially expressed proteins 
(DEPs) were identified using FC > 2 or <0.5 and p < 0.05 as cutoffs.

RNA extraction and qPCR analysis

Fungal cultures were initiated by inoculating 5 × 107 WT spores 
into YAG medium incubating for 18 h at 37 °C, 220 rpm. Experimental 
groups were treated with 75 μg/mL CA for either 15, 30 or 60 min, 
with three biological replicates per treatment condition. Mycelia were 
harvested by filtration through sterile gauze, washed three times with 
deionized water, blotted dry, and flash-frozen in liquid nitrogen. For 
RNA extraction, frozen mycelia were ground in liquid nitrogen, and 
100 mg of mycelial powder was added to 1 mL TRIzol reagent. After 
vortexing and incubation for 5 min at room temperature, 200 μL 
chloroform was added, followed by vigorous vortexing for 30 s and an 
additional 5 min incubation. The mixture was centrifuged at 
13,000 rpm for 10 min at 4 °C, and 400 μL of the aqueous phase was 
carefully transferred to a new RNase-free tube. RNA was precipitated 
by adding an equal volume of isopropanol, incubating for 5 min, and 
centrifuging at 13,000 rpm for 5 min. The resulting RNA pellet was 
washed with 75% ethanol, air-dried, and finally dissolved in 300 μL 
DEPC-treated water. RNA integrity was confirmed by agarose gel 
electrophoresis. For cDNA synthesis, 0.8 μg of total RNA was reverse 
transcribed, and the resulting cDNA was diluted fivefold for 
subsequent qPCR analysis.

Results

CA exhibits strong inhibitory activity 
against A. fumigatus

Previous studies have demonstrated that CA possesses potent 
antifungal activity (Shreaz et al., 2016; OuYang et al., 2019; Long et al., 
2024). In this study, we have tested its antifungal activity on the wild-
type strain of A. fumigatus. Our antifungal assays demonstrated that 
cinnamaldehyde (CA) exhibits concentration-dependent anti-fungal 
activity against A. fumigatus. In the solid YAG medium supplemented 
with 30, 40, and 60 μg/mL CA, the mycelial growth of A. fumigatus 

was progressively inhibited. At 30 μg/mL, partial inhibition (23% 
reduction in colony diameter vs. control) was observed, while 45 μg/
mL caused significant suppression (68% reduction). When the 
concentration was increased to 60 μg/mL, the growth of mycelium 
was completely inhibited (Figure  1A). Minimum inhibitory 
concentration (MIC) assays confirmed that the MIC of CA against the 
WT strain fell within the range of 40–80 μg/mL. Similarly, in the 
liquid medium, the biomass of A. fumigatus decreased in a dose-
dependent manner with increasing concentration of CA (Figure 1B), 
which further confirmed the antifungal potential of CA. To validate 
whether CA exerts fungistatic or fungicidal effects, A. fumigatus 
spores were exposed to escalating concentrations of CA (200 and 
400 μg/mL), followed by quantitative colony-forming unit (CFU) 
enumeration. Statistical analysis revealed a dose-dependent reduction 
in CFUs, relative to the untreated control (Figure  1C), strongly 
indicate that CA exhibits fungicidal activity against A. fumigatus. 
These data indicate that CA shows good antifungal activity against 
A. fumigatus.

CA exhibited antifungal activity against 
itraconazole-resistant strains

Previous study has demonstrated that the antifungal effect of CA on 
F. sambucinum is achieved through the inhibition of ergosterol 
biosynthesis (Wei et al., 2020). To further investigate whether CA inhibits 
ergosterol biosynthesis in A. fumigatus, the intracellular ergosterol levels 
were analyzed in the presence or absence of CA. The results showed no 
significant difference in ergosterol levels between the CA-treated and 
untreated groups (Supplementary Figure S1). Since azole resistance in 

FIGURE 1

CA shows strong inhibitory capabilities against A. fumigatus. 
(A) represents the growth phenotypes of the wild-type strain on YAG 
solid medium containing 30, 40, and 60 μg/mL CA. Spores were 
inoculated at a quantity of 3 × 104; (B) shows the biomass 
quantification of A. fumigatus in liquid YAG medium treated with 30, 
45, and 60 μg/mL CA for 24 h. (C) shows the survival rates of spores 
treated with 200 and 400 μg/mL CA for 3 h. **, ***, and **** indicate 
statistical significance at p < 0.01, p < 0.001, and p < 0.0001, 
respectively.
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fungi, particularly resistance to ergosterol synthesis inhibition, poses a 
significant challenge, we  aimed to test whether CA exhibits similar 
antifungal effects against azole-resistant strains of A. fumigatus. To 
evaluate this, we  first tested the susceptibility of two itraconazole-
resistant strains (R1 and R2) derived from A. fumigatus strain Af293 to 
itraconazole (ITZ). The MICs of R1 and R2 were 8 μg/mL each, which 
were significantly higher than the MIC of Af293 (1.5 μg/mL) (Figure 2A). 
Interestingly, the susceptibility of the two itraconazole-resistant strains 
(R1 and R2) to CA was similar to that of Af293 (Figure  2B). This 
indicating that CA might not rely on Cyp51A mediated ergosterol 
biosynthesis inhibition but also has an alternative mechanism of action 
with the same inhibitory effect on azole-resistant strains.

Proteomic and metabolomic analyses 
investigate the molecular mechanisms of 
CA inhibits A. fumigatus

Although some of previous studies have explored the inhibition 
of fungi by CA, identifying further specific molecular mechanisms 
will undoubtedly support the development of therapeutic strategies to 
combat invasive fungal infections (OuYang et al., 2019; Wei et al., 
2020; Wang et  al., 2024). Here, we  employed proteomic and 
metabolomic analyses to investigate the molecular effects of CA on 
A. fumigatus. The quality control was validated by metabolomic PCA 
analysis or protein ratio distribution analysis 
(Supplementary Data Sheet 1 and 2). Proteomic analysis revealed that 
53 and 167 differentially expressed proteins (FC > 2 or <0.5, p < 0.05) 
were identified following treatment with CA for 90 min and 180 min, 
respectively (Figure  3A; Supplementary Table 2). Metabolomic 
analysis revealed that 145 metabolites showed significant alterations 
(fold change >2 or <0.5, p < 0.05, VIP > 1) after 90 min of CA 

treatment. Upon extending the treatment duration to 180 min, the 
number of differential metabolites increased to 350 (Figure  3B; 
Supplementary Table 3).

CA disrupt the TCA cycle

The TCA cycle is a fundamental metabolic pathway represented 
in most organisms, playing a crucial role in the oxidation of nutrients 
and the process of energy production. Malate dehydrogenase (MDH) 
is an essential enzyme in the TCA cycle that catalyzes the conversion 
of malate to oxaloacetate. CA has been shown to inhibit the activity of 
malate dehydrogenase in the TCA cycle of A. niger (Wang et al., 2024). 
Our metabolomic analysis demonstrated that CA treatment induced 
significant perturbations in tricarboxylic acid (TCA) cycle 
intermediates of A. fumigatus. Specifically, results showed a significant 
accumulation of malate and acetyl-CoA, while observed a significant 
decrease in alpha-ketoisovaleric acid following CA treatment, 
respectively (Figure 4). These metabolic alterations indicate that CA 
inhibits the growth of A. fumigatus by interfering with the tricarboxylic 
acid (TCA) cycle.

CA disrupt protein metabolism

Protein group analysis demonstrated that CA treatment led to a 
significant down-regulation of proteins associated with protein 
metabolism. Specifically, under the condition of 180-min CA 
treatment, the putative translation initiation factor eIF4E3 
(AFUB_051690), leucyl-tRNA synthetase LeuRS (AFUB_093380), 
prolyl-tRNA synthetase ProRS (AFUB_0101700), and peptidyl-tRNA 
hydrolase Pth1 (AFUB_053480) were down-regulated by 2.25, 2.32, 

FIGURE 2

Antifungal activity of CA against itraconazole-resistant strains. (A) E-test of Af293, R1 and R2 to ITZ strip. (B) CA against itraconazole-resistant strains.
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3.13, and 8.33-fold, respectively (Figure 5A). Further, we validated the 
expression of eIF4E3, leuRS, proRS, and pth1 at the mRNA level. 
RT-qPCR analysis revealed that the expression levels of eIF4E3, leuRS, 
and proRS decreased to varying degrees after 15, 30 or 60 min of CA 
treatment (Figure 5B). However, the transcription of pth1 exhibited 
only a slight decrease following 30 min of CA treatment; conversely, 
it showed an increase after 60 min of treatment (Figure 5B). Moreover, 
metabolomic analysis revealed a significant increase in the intracellular 
accumulation of various short peptides following CA treatment 
(Figure 5C), supporting the disruption of protein metabolism by CA.

The putative peptidyl-tRNA hydrolase Pth1 
is essential for the growth and CA 
resistance of A. fumigatus

Pth1 plays a crucial role in disengaging the nascent polypeptide 
chain from the tRNA molecule during the process of protein 

synthesis, which is conserved in both prokaryotes and eukaryotes 
(Mundra and Kabra, 2024). Although proteomic analysis revealed 
a significant reduction in Pth1 protein expression following CA 
treatment (Figure  5A), transcriptional validation of pth1 via 
RT-qPCR showed only a minor decrease in mRNA levels after 
30 min of CA treatment (Figure  5B). Furthermore, pth1 
transcription was increased after 60 min of CA treatment. To 
further investigate the function of Pth1 in A. fumigatus during its 
response to CA, we  conducted gene knockout analyses of 
pth1using the A. fumigatus A1160 strain. Diagnostic PCR analysis 
showed that pth1 was completely replaced by the hygromycin 
resistance gene hyg, indicating successful knockout of the pth1 
gene (Supplementary Figure S2). The empirical findings divulged 
that upon the knockout of pth1 significantly reduced the growth 
(Figure  6A), and increased its susceptibility to CA at the 
concentration of 30 μg/mL CA (Figure 6B). To validate that the 
growth defect phenotype of Δpth1 was indeed caused by pth1 
deletion, the pth1 gene was complemented in the Δpth1 strain. The 
complemented strain exhibited growth patterns comparable to the 
WT, thus confirming that the growth defect in Δpth1 is attributed 
to loss of the pth1 gene (Figures 6A,B). These results suggest that 
pth1 is essential for the growth and CA resistance of A. fumigatus, 
and provide valuable insights for further investigations into the 
molecular mechanism underlying its antifungal effects.

Discussion

Inhibiting protein synthesis is a well-established target of many 
antibiotics, including aminoglycosides, tetracyclines, macrolides, and 
chloramphenicols. Aminoacyl tRNA synthetases play essential roles 
in the protein synthesis process. They have high specificity and can 
accurately recognize specific amino acids and tRNA molecules to form 
aminoacyl-tRNA. This process ensures the correct pairing of amino 
acids and tRNA, providing accurate substrates for protein synthesis 
(Kwon et al., 2019). Therefore, aminoacyl tRNA synthetases are an 
important class of antibacterial targets. At present, three aminoacyl 
tRNA synthetase inhibitors, mupirocin, tavaborole and halofuginone, 
have entered clinical practice, which inhibit the functions of isoleucyl-
tRNA synthetase (IleRS), leucyl-tRNA synthetase (LeuRS), and ProRS, 
respectively. Among them, mupirocin and tavaborole can be applied 
to humans while halofuginone can only be  used for veterinary 

FIGURE 4

The relative content of Acetyl coenzyme A, malate and alpha-ketoisovaleric acid. “ns” represents no significant difference (p value >0.05 or VIP < 1), “*” 
represents p < 0.05 and “***” represents p < 0.001.

FIGURE 3

The quantities of differentially expressed proteins (A) and metabolites 
(B) upon treatment with CA for 90 and 180 min.
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FIGURE 5

Disruption of protein metabolism by CA. (A) Changes in proteins related to protein metabolism in proteomics following CA treatment at 90 and 
180 min. (B) Validation of mRNA expression levels of protein metabolism-related genes via RT-qPCR after CA treatment at 15, 30, and 60 min. “ns” 
represents no significant difference, “*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 0.001, “****” represents p < 0.0001. (C) The 
content of intracellular short peptides after treatment with CA for 90 and 180 min (FC > 2 or <0.5, p < 0.05, VIP > 1).
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FIGURE 6

Pth1 is essential for the growth of A. fumigatus. (A) Growth curve of the pth1 mutant strain on YUU medium. (B) Antifungal sensitivity assay of the pth1 
mutant to CA. Complete absence of growth is seen in the mutated strain, with 30 and 45 μg/mL CA.

purposes (Bouz and Zitko, 2021). Under conditions of translational 
stress caused by stalled protein synthesis, misfolded protein 
accumulation, or nutrient deprivation, Pth1 maintains cellular 
homeostasis through its dual function of catalyzing peptidyl moiety 
release from stalled peptidyl-tRNA complexes and preserving the free 
tRNA pool, making it not only essential for cell survival but also a 
promising therapeutic target for combating bacterial infections 
(Mundra and Kabra, 2024).

This study demonstrated that CA disrupts protein metabolism 
as reflected in three aspects. Firstly, CA significantly suppressed the 
expression of eIF4E3, LeuRS and ProRS (Figure 5A), key enzymes 
involved in protein translation and aminoacyl-tRNA synthesis. 
Secondly, CA treatment led to substantial intracellular accumulation 
of dipeptides and tripeptides (Figure 5C). Thirdly, pth1 deletion 
mutants showed enhanced susceptibility to CA treatment (Figure 6). 
However, although proteomic analysis revealed a dramatic 
reduction in Pth1 protein expression following CA treatment for 
180 min (Figure 5A), RT-qPCR-based transcriptional validation of 
pth1 showed only a minor decrease in mRNA levels at 30 min 
(Figure  5B). In contrast, after 60 min of CA treatment, the 
expression of pth1 increased with statistical significance (Figure 5B). 
We propose that there may be  three reasons accounting for the 
discrepancy between the proteomic findings and the RT-qPCR 
verification results regarding Pth1: (1) proteins and mRNA differ in 
their patterns of expression and also vary in stability; (2) the 
expression of the Pth1 protein may be regulated at the translational 
level; (3) there exist methodological differences or experimental 
errors between proteomics approaches and RT-qPCR.

Mitochondria are essential for the cell growth and survival of 
the majority of fungi. Hence, mitochondria play a significant role 
in the drug tolerance and virulence of human fungal infection 
(Shingu-Vazquez and Traven, 2011; Li and Calderone, 2017). TCA 
cycle metabolites were primarily regarded as byproducts of cellular 
metabolism that are essential for the biosynthesis of nucleotides, 
lipids, and proteins (Martinez-Reyes and Chandel, 2020). 

Therefore, the TCA cycle represents a potential target for the 
development of antifungal drugs. Study reported that in Fusarium 
solani, potato glycoside alkaloids have antifungal action via 
modulating the TCA cycle pathway (Zhang et al., 2024). A study 
conducted in Rhizoctonia solani found that eugenol affected on 
oxidative phosphorylation and the TCA cycle (Zhao et al., 2021). 
Isoxanthohumol, extracted from Humulus lupulus Linn has been 
observed to exhibit inhibitory activity against Botrytis cinerea. The 
underlying mechanism involves the suppression of the enzymatic 
activities of succinate dehydrogenase (SDH) and malate 
dehydrogenase (MDH), which consequentially results in the 
perturbation of the TCA cycle (Yan et al., 2021).

The current study revealed that CA treatment significantly 
enhanced the intracellular accumulation of both malate and acetyl-CoA 
in A. fumigatus (Figure 4). We hypothesize that CA may inhibit key 
TCA cycle enzymes, particularly malate dehydrogenase (Mdh1) and 
aconitase (Aco1), given that malate and acetyl-CoA serve as substrates 
for these respective enzymes. Interestingly, despite these findings, 
proteomics data revealed no significant changes in the expression levels 
of the putative malate dehydrogenase Mdh1 (AFUA_6G05210, 
AFUA_7G05740) and aconitase Aco1 [CDV57_09588 
(AFUB_056420)] (Supplementary Table S4), indicating that CA might 
primarily inhibit the enzymatic activities of these enzymes rather than 
altering their expression. However, the effects of CA on malate 
dehydrogenase and aconitase require further experimental validation.

Overall, our study demonstrated that CA disrupts both protein 
metabolism and TCA cycle in A. fumigatus, indicating that it has 
multiple targets of action. Indeed, relevant studies in other fungi have 
shown that CA has other antifungal mechanisms, such as inhibiting 
the activity of ATPase and suppressing the synthesis of ergosterol (Wei 
et  al., 2020; Chen et  al., 2023). Since CA is a safe food flavoring 
additive and approved by the FDA (Friedman, 2017), it holds 
significant promise for clinical application. However, its poor 
hydrophilicity, volatility, and decomposition limit its antibacterial 
activity to a certain extent (Doyle and Stephens, 2019).

https://doi.org/10.3389/fmicb.2025.1613987
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Li et al.� 10.3389/fmicb.2025.1613987

Frontiers in Microbiology 09 frontiersin.org

Indeed, this study has several limitations. The current study was 
performed in vitro; subsequent research should evaluate the efficacy 
of CA in animal models of aspergillosis to validate its therapeutic 
potential. Though metabolomic data indicated a disruption in the 
TCA cycle, direct enzymatic activity (malate dehydrogenase and 
aconitase) are strongly recommended to detect under CA 
treatment. The development of CA derivatives with enhanced 
stability and bioavailability in future studies could address these 
challenges, paving the way for novel antifungal treatments. 
Identifying synergistic combinations (e.g., CA with azoles or 
echinocandins), characterizing their mutual potentiation 
mechanisms, and evaluating their efficacy in mouse models of 
invasive aspergillosis are of interest.
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SUPPLEMENTARY FIGURE S1

Relative content of ergosterol content with or without 45 μg/mLCA 
treatment. “ns” represents no significance.

SUPPLEMENTARY FIGURE S2

Diagnostic PCR for ∆pth1 knockout strain. (A) Schematic diagram of pth1 gene 
knockout. (B) The left homologous arm was amplified using primer pair 
pth1P1/hyg-de-R, while the right homologous arm was detected with pth1 
P6/hyg-de-F primers. No amplification was observed with internal gene 
primers pth1S1/S2 in ∆pth1, whereas fragments of the expected size were 
produced in the WT strain. These results conclusively demonstrate the 
complete deletion of the pth1 gene sequence.
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