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surface sediment microbial 
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Deep lakes play a critical role in global elemental cycling and serve as habitats for 
diverse microbial communities. However, studies on the effects of lake stratification on 
microbial composition and functional potential in surface sediments remain limited. 
Here, we investigated microbial community structure and functional composition 
using metagenomics of 38 surface sediments across a depth gradient of 0–90 m 
in Lugu Lake, China. Our results showed that Shannon diversity peaked at the 
thermocline for microbial communities, while a U-shaped pattern for functional 
genes. Microbial communities and functional genes in the surface sediments showed 
higher spatial heterogeneity at the shallow layer, whereas those at deeper layers 
tended toward more homogenized. Although water depth was the most important 
driver in explaining 29.9 and 26.5% of variance in microbial and functional gene 
composition, stochastic processes primarily governed the community assemblages, 
particularly dispersal limitation with the contribution of 43.7%. We further found 
the surface layer was enriched in genes mainly involved in aerobic metabolism 
and methanogenesis. In contrast, genes related to reduction reactions, including 
dissimilatory nitrate and sulfate reduction were more abundant in the thermocline 
and deep layer, reflecting lower redox potential in a deeper layer. Overall, our 
results provide evidence for microbial community stratification and functional 
partitioning in deep lakes.
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Introduction

Deep lakes are critical ecosystems for global biogeochemical cycling, harboring diverse 
microbial communities that exhibit remarkable adaptability to stratified environmental 
conditions (Cabello-Yeves et al., 2019). Vertical gradients in temperature, oxygen, and nutrient 
availability profoundly influence microbial diversity and community assembly processes in 
the surface sediments across water layers (Wu et al., 2019; Zhao et al., 2019). Surface layers, 
characterized by dynamic hydrological cycling and higher oxygen levels, support microbes 
with high dispersal capacity (Lv et al., 2024). In contrast, deeper layers, with reduced oxygen 
and lower temperatures, impose strong environmental filtering, limiting microbial diversity 
but fostering specialized microbial assemblages adapted to extreme conditions (Cabello-Yeves 
et al., 2023). Recognizing microbial community composition and functional potential in 
surface sediment of deep lakes is essential for revealing their roles in biogeochemical cycles 
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and their responses to environmental changes in the context of 
accelerating climate change and increasing anthropogenic influence 
(Falkowski et al., 2008).

Metabolic potential of microorganisms in the sediments also 
varies across water layers with distinct environmental conditions 
(Ayala-Muñoz et al., 2022; Haro-Moreno et al., 2018; Imhoff, 2016). 
Changes in redox status can drive metabolic transitions as depth 
increases (Bush et al., 2017; Louca et al., 2016; Peura et al., 2015). In 
the surface layer with abundant oxygen (Chang et al., 2022), microbes 
in the water columns rely on aerobic respiration and photosynthesis, 
with genes associated with carbon fixation, glycolysis, citrate cycling 
and organic nitrogen metabolism being more abundant (Peura et al., 
2018; Yin et  al., 2019). In contrast, anaerobic respiration and 
fermentation predominate in oxygen-depleted deep waters, utilizing 
alternative electron acceptors such as nitrate, sulfate, and carbon 
dioxide (Lipsewers et al., 2016; Song et al., 2022). Functional genes 
related to these reductive processes are expected to be more prevalent 
in the deeper layer, contributing significantly to the metabolic 
characteristics of the ecosystem (Voss et al., 2013). Although these 
microbial processes in water columns are well-studied, their variability 
and interactions with microbial groups in sediment along the depth 
gradient require further investigation, particularly in subtropical 
deep lakes.

Here, we collected 38 surface sediments along a depth gradient of 
0–90 m in Lugu Lake, a deep plateau freshwater lake. Using 
metagenomic sequencing, we analyzed the structure and functional 
profiles of microbial communities and explored the influence of 
environmental factors including water depth, physical and chemical 
characteristics. This study aims to address the following three 
questions: (1) How do surface sediment microbial communities and 
functional genes vary along depth gradient in the deep lake? (2) What 
is the relative importance of stochastic and deterministic processes 
constraining microbial assembly in different layers? (3) Which 
functional genes in the surface sediment are enriched along the depth 
of the overlaying water column? (4) How are functional genes coupled 
with microbial taxa across layers? Our results elucidated the diversity 
patterns, assembly mechanisms, and metabolic characteristics of 
microbial communities in Lugu Lake across the depth gradient, 
providing evidence for stratification of microbial communities and 
their functional potential in deep lakes.

Materials and methods

Field sampling

We collected 38 surface sediments and water samples from 0 to 90 
meters in August 2010, in Lugu Lake (27°41′–27°45′N, 100°45′–
100°50′E), situated in Yunnan Province, China 
(Supplementary Figure S1) (Zhao et al., 2023). Lugu Lake is one of the 
deepest freshwater plateau lakes in the region, with a maximum depth 
of 93.5 meters and the water surface area of 50.5 km2 (Wu et al., 2020). 
In addition, the lake is situated at an elevation of 2,685 meters, with a 
catchment area of around 171.4 km2 (Zhao et al., 2023). Unlike many 
lakes in the surrounding area, Lugu Lake remains ice-free throughout 
the year, due to its warm temperate climate and semi-enclosed nature 
(Su et al., 2022). During the winter season, the lake exhibits a vertically 
uniform temperature profile, whereas other seasons feature thermal 

stratification (Liu et al., 2019). These conditions make Lugu Lake an 
ideal model for studying microbial community structure and 
functional enrichment in deep lakes, especially under high-
altitude influences.

The detailed procedures for sample collection are described in a 
previous study (Wang et al., 2012). In brief, three sediment cores with 
a diameter of 6 cm were retrieved using a gravity core at each site 
along a water-depth gradient of 0–90 m. The surface sediments were 
then pooled together. All samples were freeze-dried using a vacuum 
freeze-dryer and stored at −20°C. Surface water samples were 
collected from the top 0.5 m of the water column corresponding to the 
surface sediments collection. Bottom water samples were collected 
from the sediment–water interface.

Characterization of environmental factors

We collected and measured a variety of physicochemical 
parameters of surface, bottom water and surface sediment to 
investigate the environmental factors influencing microbial 
communities and functional genes. For surface water, we measure 
temperature, pH, dissolved oxygen, conductivity, total nitrogen, total 
phosphorus, concentration of HCO3

−, chlorophyll-a, and silicon 
content (Wang et  al., 2012). For bottom water, temperature, pH, 
dissolved oxygen, chlorophyll-a and conductivity were measured 
(Syarif Sukri et al., 2023). For surface sediment, we quantified water 
depth, total phosphorus, total nitrogen, loss on ignition, porosity, 
water content, 19 types of metal ions and particle size. The term “water 
depth” in this study specifically refers to the depth of surface 
sediments. Detailed methodologies for the measuring and calculating 
of these abiotic variables have been described in previous studies 
(Wang et al., 2007). To simplify the complexity of these metal ions, a 
principal component analysis (PCA) was performed. The first two 
principal components (PC1 and PC2) were extracted and incorporated 
as additional environmental parameters for further analysis (Wu et al., 
2019; Zhang et  al., 2024; Zhao et  al., 2019). The details of 
environmental factors could be found in Supplementary Table S1.

DNA extraction and metagenome 
sequencing

Total DNA was extracted from approximately 0.4 g of freeze-dried 
sediment using the PowerSoil DNeasy Kit (QIAGEN, Germany), with 
the DNA quality for all samples was evaluated via UV 
spectrophotometry. Sequencing was performed using a 2 × 150 bp 
paired-end strategy on the Illumina NovaSeq6000 platform. Raw 
reads were subjected to quality control and adapter trimming using 
FastQC and Trimmomatic (Andrews et al., 2010). Reads with average 
Phred scores below 25 or shorter than 50 bp were discarded. These 
reads were assembled into contigs with MEGAHIT v1.2.9 using the 
‘meta-sensitive’ mode, and the protein-coding genes were predicted 
by prodigal v2.6.3 from the contigs longer than 1,000 bp (Li et al., 
2015). To reduce redundancy, the amino acid sequences of these genes 
were clustered at the global level using the Linclust algorithm in 
MMseqs2, with a minimum sequence identity of 0.3 and a fraction of 
aligned sequences of 0.5, respectively (Hyatt et al., 2010). The relative 
abundance of the clustered genes was quantified using Salmon v1.0.0, 
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followed by the normalization of total sequencing reads for each gene 
(Supplementary Table S2). Finally, functional annotation was 
performed by mapping the clustered genes to the eggNOG 5.0 
database with eggnog-mapper v2.1.11, using the DIAMOND v2.1.8 as 
the search engine (Cantalapiedra et al., 2021; Huerta-Cepas et al., 
2019). The genes assigned to the KEGG Orthology (KOs) in the 
annotation results were aggregated and subjected to the downstream 
analyses (Andrews et al., 2010). The statistics of assembly and the 
KO-representing genes across samples were provided in the 
Supplementary Table S3.

Community analyses using the rpS3-based 
approach

Microbial community profiling was performed using a modified 
pipeline of ribosomal protein rpS3 as described previously (Diamond 
et al., 2019; Ren et al., 2024). Firstly, the prokaryotic species among 
the community was represented by the clustering of the conserved 
marker genes rpS3 genes from metagenomic assemblies. The marker 
rpS3 genes were initially identified from assembled contigs using 
hmmsearch v3.2.1 (Eddy, 2011) against a custom HMM database, 
followed by clustering at 99% sequence similarity with USEARCH 
v11.0.667 (Edgar, 2010) to define species-level operational taxonomic 
units. Secondly, the relative abundance of the rpS3-represented species 
was estimated through a metagenomic read mapping strategy. The 
clean reads were aligned to the longest rpS3-containing contigs using 
Bowtie2 v2.3.5 (Li et al., 2023). The hit reads with ≥99% similarity 
were counted using the ‘depth’ module of Samtools v1.15.1 (Li et al., 
2009). The final abundance of each species in a sample was calculated 
as the total mapped bases on the representative sequence divided by 
the representative sequence length and normalized by the total 
sequencing bases in the sample. Thirdly, taxonomic classification was 
achieved using the sequence alignment followed by phylogenetic 
correction. A custom rpS3 reference database was constructed from 
the RefSeq prokaryotic genome collection (~27,000 genomes, July 
2019). Initial taxonomic assignments were generated through BLASTP 
analysis with the e-value threshold 1 × 10−3, minimum 50% sequence 
identity against the reference database. Concurrently, a phylogenetic 
tree was established through multiple sequence alignment of rpS3 
amino acid sequences using MAFFT v7.427 (Katoh et  al., 2005), 
subsequent alignment refinement using trimAl v1.4.1 with automated 
parameters (Capella-Gutiérrez et al., 2009), and construction of an 
approximate maximum-likelihood tree using FastTree v2.1.11 (Price 
et al., 2010). Final taxonomic designations were determined through 
reconciliation of both complementary approaches, with phylogenetic 
evidence superseding BLAST-based assignments in cases of 
discordance or absence of significant database matches.

Statistical analysis

We conducted a series of statistical analyses to investigate the 
distribution of microbial communities and functional genes in the 
surface sediment across water depths. We  quantified the alpha 
diversity of microbial communities and functional genes using 
Shannon diversity indices (Dixon, 2003) based on the rpS3-based 
species abundance table and the KEGG Orthology (KO) abundance 

table at gene level, respectively. To further explore the relationship 
between Shannon diversity of functional genes and water depth, 
we applied both linear and quadratic models, selecting the best model 
based on the lowest Akaike information criterion (AIC) value 
(Supplementary Table S4) (Spellerberg and Fedor, 2003). For spatial 
variability (beta diversity), we assessed community composition and 
functional gene diversity using Bray–Curtis dissimilarity (Gutiérrez-
Cánovas et al., 2013). Water depth distances were quantified using 
Euclidean metrics. To examine the relationship between functional 
gene beta diversity and depth-related distances, we utilized a Gaussian 
generalized linear model to analyze distance decay patterns 
(Supplementary Table S5) (Morlon et  al., 2008). The statistical 
significance of these patterns was evaluated using a Mantel test with 
9,999 permutations. Additionally, we  performed Non-metric 
Multidimensional Scaling (NMDS) based on Bray–Curtis 
dissimilarities to visualize the functional gene composition along the 
depth gradient.

To explore key drivers of microbial community structure and 
functional gene distribution, we first applied variable clustering to 
assess the collinearity among environmental variables, removing 
redundant variables (Spearman’s ρ2 > 0.7) to minimize potential 
confounding effects (Supplementary Figures S2, S3). The relationships 
between other environmental factors and water depth were presented 
in supplementary materials (Supplementary Figure S4). In addition, 
random forest model was employed to determine the optimal number 
of trees (2,000) using cross-validation and then assessed the 
importance of each variable (Liaw, 2002). The importance scores were 
normalized to reflect their relative contribution to the overall model, 
and we iterated this process, eliminating the least influential variables, 
until each remaining variable contributed more than 5% to the model 
(Zhao et al., 2019). Furthermore, we assessed the correlation between 
microbial community structure, functional gene composition, and 
environmental variables using Mantel tests with non-redundant 
variables (Aljohani et  al., 2024). In this analysis, Bray–Curtis 
dissimilarities were used to quantify microbial composition, while 
Euclidean distances were used for environmental variables.

To further explore the ecological processes shaping microbial 
communities, we applied a phylogeny-based null model (iCAMP) 
framework (Ning et al., 2020). This framework utilizes the beta-net 
correlation index and Raup-Crick index to estimate phylogenetic beta 
diversity and taxonomic beta diversity (Ning et al., 2020; Stegen et al., 
2013). We  quantified the relative importance of five ecological 
processes, including heterogeneous selection, homogeneous selection, 
dispersal limitation, homogenizing dispersal, and drift. Their 
differences across water layers were evaluated using the Wilcoxon test 
(Divine et al., 2013).

To identify microbial functional profiles, we  annotated 
metagenomic reads by comparing them with the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database.1 To better understand the 
functional profiles across the three water depth layers, we  first 
identified the functional genes related to carbon, nitrogen, and sulfur 
cycling (Supplementary Table S3). A generalized linear model (GLM) 
with a negative binomial distribution was used to estimate differences 
in gene enrichment between the layers (Robinson et  al., 2010). 

1 http://www.kegg.jp
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Statistical significance was determined using the Benjamini–
Hochberg false discovery rate, with a threshold of p < 0.05. GLM 
modeling was performed using the glmFit function in the edgeR 
package (Chen et al., 2014). Additionally, to assess the importance of 
metabolic pathways in community-level metabolic potential and the 
functional contributions of microbes, we calculated the explained 
variance of each functional pathway (Supplementary Table S6) and 
the contribution of microbial genus to these pathways 
(Supplementary Table S7) (Anantharaman et al., 2016). All p-values 
generated from the Wilcoxon tests were adjusted using the 
Benjamini–Hochberg false discovery rate method (Chung et  al., 
2007). All statistical analyses were conducted using R version V4.3.1, 
with the packages such as vegan V2.6.4, randomForest V4.7.1.1, 
Hmisc V5.2-3, edgeR V3.30.3, dplyr V1.1.3, ggplot2 V3.4.3 and 
ggcor V0.9.8.

Results

The alpha and beta diversity of taxonomy 
and functional genes across layers

The compositions of taxonomy and functional genes in Lugu Lake 
were associated with the depth of the overlaying water column, with 
more similar profiles toward deeper layers (Figures  1a–f; 
Supplementary Figures S5, S6). We further evaluated the Shannon 

diversity index and β-diversity metrics such as Bray–Curtis 
dissimilarity of taxa (Figures 1b,c) and functional genes (Figures 1e,f) 
along depth. Our results showed that microbial Shannon diversity 
exhibited a hump-shaped pattern peaking at the thermocline 
(Figure  1b), while functional gene diversity showed a U-shaped 
pattern along depth (Figure 1e). In addition, our study revealed the 
three functional subgroups involved in C, N, and S cycling showed 
distinct patterns (Figures  2a–c and Supplementary Table S4). 
Specifically, nitrogen cycling genes showed a significant hump-shaped 
trend along depth peaking around 50 m (R2

adj = 0.68, p < 0.001; 
Figure 2b). In contrast, sulfur cycling genes decreased along with 
depth, showing a sharp decline beyond 50 m (R2

adj = 0.56, p < 0.001; 
Figure 2c).

For beta diversity, the spatial variability of both microbes and 
functional genes significantly decreased with the depth of the 
overlaying water column in the deep lake (Figures 1c,f). This indicates 
distinct changes in the composition of microbial communities and 
functional genes across different depths and locations. This is 
supported by the fact that the compositions of microbial communities 
(Mantel r = 0.57, p < 0.001) and functional genes (r = 0.37, p < 0.001) 
showed a significant distance-decay relationship with water depth 
changes (Figures  2d–f; Supplementary Figures S7a,b and 
Supplementary Table S5). The relative abundance of different 
functional genes remained balanced across samples (Figures 1f, 3b,d; 
Supplementary Figure S8), compared with microbial communities 
(Figures 1c, 3c; Supplementary Figure S8).

FIGURE 1

Comparisons of microbial and functional diversity and composition among different water layers. Non-Metric Multidimensional Scaling (NMDS) plots 
of (a) taxonomy and (d) functional genes. Each point represents a sample, which was colored by water depth, from surface layer (SUR, 0–10 m) to 
thermocline (THE, 10–50 m) and then to deep layer (DEE, 50–90 m). The Shannon diversity of (b) taxonomy and (e) functional genes among three 
water layers. Differences in microbial beta diversity consisting of (c) taxonomic and (f) functional genes variation (determined by pair Bray–Curtis 
distance) among three water layers. Different asterisks in the violin plots denote significant differences in corresponding variables between layer 
(determined by a two-sided pairwise Wilcoxon test). *p < 0.05, **p < 0.01, and ***p < 0.001, and ns: non-significant. In boxplots, the lower and upper 
hinges of the box correspond to the first and third quartiles (the 25th and 75th percentiles); the upper and lower whiskers extend from the hinge to the 
largest and smallest values no further than 1.5 times the interquartile range (IQR), respectively; and the central lines represent the median.
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Environmental drivers and ecological 
processes shaping microbial assemblages

We investigated the relative importance of environmental factors 
in shaping the diversity and composition of microbial communities 
and functional genes (Figure 4a; Supplementary Figure S9). Water 
depth had the highest contribution of 17.1% for taxonomic diversity 
and 26.4% for functional gene diversity. Microbial and functional gene 
compositions were mainly driven by similar environmental factors, 
including water depth with 29.9% for microbial composition and 
26.5% for functional gene composition, followed by surface 
temperature and bottom conductivity (Figure  4a; 
Supplementary Figure S10). Depth was the most influential factor 
among all environmental factors, distinguishing samples from 
different depth layers in both taxonomic and functional compositions. 
Specifically, microbial community structures and functional gene 
composition in the surface layer were most strongly linked to sediment 
phosphorus, followed by porosity (Figure 4b). In the thermocline, 
they were significantly associated with depth, followed by bottom 
conductivity (Figure  4b). In the deep layer, dissolved oxygen and 
surface water pH showed the strongest correlations with them 
(Figure 4b).

Although environmental factors significantly influenced microbial 
community structure, stochastic ecological processes dominated 
microbial community assembly in the deep lake as revealed through 
null model analysis (Figures 4c,d; Supplementary Figure S11). The 
relative importance of stochastic processes markedly varied with water 

depth. Specifically, dispersal limitation with an average contribution 
of 43.7% was the most critical factor in shaping microbial assemblages 
in the surface layer, followed by homogeneous selection with 29.5% 
(Figure 4c). In the thermocline and deep layers, dispersal limitation 
remained the primary mechanism influencing microbial community 
assembly with 51.6 and 47.1%, followed by drift with 22.4 and 30.4%, 
respectively (Figure 4c).

Enrichment of layer-specific C, N, and S 
cycling gene

Our results revealed significant enrichment in the composition of 
functional genes involved in carbon, nitrogen, and sulfur cycles across 
different layers (Figures  5a–c; Supplementary Figure S12 and 
Supplementary Table S3). Genes enriched in the surface layer were 
predominantly associated with rapid energy acquisition and organic 
matter degradation. We  found that the genes involved in the 
tricarboxylic acid (TCA) cycle, glycolysis, and methanogenesis were 
enriched in the surface layer (Figure  5a). The abundance of 
methanogenesis-related genes (mcrA, mtrB) was higher in the surface 
layer (Figure 5a). Additionally, genes involved in nitrate assimilation 
(nrtABC) and organic nitrogen metabolism (CPS1) were more 
abundant in the surface layer, suggesting that surface microbes 
preferentially utilize inorganic nitrogen and organic nitrogen sources 
(Figure  5b). Genes related to thiosulfate assimilation were also 
enriched in the surface layer, suggesting that surface microbes 

FIGURE 2

Water-depth diversity patterns and distance-decay relationship for functional genes. We considered the Shannon diversity of the three subgroups of 
functional genes involved in carbon cycling (a), nitrogen cycling (b), and sulfur cycling (c) (Supplementary Table S3). The relationships between 
functional gene diversity and water depth were evaluated by linear and quadratic models. The better model was selected based on the lower value of 
the Akaike information criterion. The lower panels (d–f) show the relationships between water depth changes and Bray–Curtis dissimilarity of the three 
subgroups. Linear regressions of relationships based on a linear model are shown with a solid line. Mantel tests were used to examine correlations 
between differences in functional gene composition and differences in community composition using 9,999 permutations. The Mantel r-values are 
shown, with all p-values being less than 0.001. The term “water depth” in this study specifically refers to depth of surface sediments.
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assimilate sulfur to support higher primary productivity and organic 
sulfur demand (Figure 5c). Genes involved in anaerobic metabolic 
pathways or reduction reactions were more abundant in the deeper 
layers. The thermocline and deep layer were enriched in genes 
associated with nitrification (amoA, hao), denitrification (nirS, nirK), 
and dissimilatory nitrate reduction (nafH, narG) (Figure 5b). Genes 
related to sulfide oxidation (soxACDXY) were enriched in the 
thermocline. Additionally, phthalate degradation genes were more 
abundant in the thermocline. The deep layer was enriched in genes 
associated with dissimilatory sulfate reduction (aprB, sat).

Contribution of microbial taxa to C, N, and 
S cycling genes across the layer

To evaluate the relative importance of metabolic pathways in the 
deep lake and the contribution of microbial taxa to metabolism, 
we quantified the explained variance of each metabolic pathway and 
assessed the relative contributions of various microbial phyla 
(Figure 6a and Supplementary Tables S6, S7). Pathways with higher 
explained variance were considered more critical to community-level 

metabolism. Among the metabolic pathways, nitrification emerged as 
the most critical process with explained variation of 91.07%, followed 
by denitrification with 89.56%, methanogenesis with 81.72%, and 
dissimilatory nitrate reduction with 77.45% (Figure  6a and 
Supplementary Table S6). This demonstrates the important roles of 
carbon, nitrogen, and sulfur cycles in regulating microbial energy 
metabolism in the lake. In the surface layer, metabolic activity was 
predominantly driven by Nitrospira, Gloeomargarita and 
Methanothrix, (Figure  6b and Supplementary Table S7). The 
thermocline exhibited more diverse microbial communities, with 
significant contributions from Nitrospira, Haliea, Methanothrix, 
Pedosphaera and Anaeromyxobacter (Figure  6b and 
Supplementary Table S7). In the deep layer, Aromatoleum, Rubrivivax 
and Candidatus Methylomirabilis were the primary contributors to 
functional cycling (Figure 6b and Supplementary Table S7).

Discussion

Using metagenome sequencing technology, we  identified four 
main findings: (i) The diversity of microbial communities and 

FIGURE 3

The composition of taxonomic groups and functional traits across different water depths. (a) Microbial community and (b) functional gene profiles, 
with samples ordered by water depth. SUR, surface layer; THE, thermocline; DEE, deep layer. Darker colors correspond to higher relative abundances. 
The relative abundance of (c) microbial genus and (d) functional pathways in samples from different water depths. Only the top 15 microbial genera 
with high relative abundances are annotated in the figure.
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FIGURE 4

Environmental factors and ecological processes shaping microbial community structure and functional genes. (a) Relative contribution of 
environmental factors to taxonomic and functional diversity. Random forest analysis identified and quantified significant predictors of Shannon 

(Continued)
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functional genes exhibited distinct depth patterns, with microbial 
Shannon diversity exhibiting a hump-shaped pattern and functional 
gene diversity showing a U-shaped pattern; (ii) Despite water depth 
significantly driving microbial and functional gene composition, 
stochastic ecological processes such as dispersal limitation dominated 
community assembly in the deep lake; (iii) Functional gene enrichment 
analysis revealed that the surface layer was primarily linked to aerobic 
respiration and methanogenesis, while the thermocline and deep 
layers were enriched in genes associated with anaerobic metabolism; 
(iv) The metabolism at the surface layer was contributed by taxa that 
thrive on light and oxygen for rapid energy acquisition and 
decomposition, while deeper layers shifted to anaerobic metabolism.

Taxonomic and functional diversity across 
layers

The thermocline effectively separated the mixed or surface waters 
from the colder bottom layers (Chang et  al., 2022). Oxygen levels 
fluctuate in the thermocline region of Lugu Lake, and there are steep 
gradients of temperature and redox potential (Ren and Wang, 2022; 
Tran et al., 2021). Frequent sediment resuspension events potentially 
altering redox gradients in the surface sediments (Dadi et al., 2017; 
Nevers et  al., 2020). This unique environment creates diverse 
microhabitats, providing opportunities for different microbial 
communities to thrive (Xing et  al., 2019). In the deep layer, the 
challenging conditions of sediments such as low temperatures, hypoxia, 
and nutrient scarcity restricted microbial growth, potentially leading to 
a decrease in microbial Shannon diversity (Cabello-Yeves et al., 2019). 
In the thermocline region, steep oxygen gradients made nitrogen cycling 
genes diverse and active (Chang et al., 2022). The dynamic environment 
of this layer facilitated the coexistence and functional differentiation of 
nitrogen-cycling microbes, leading to peak functional gene diversity 
(Martens-Habbena et al., 2009). In the deep and oxygen-deprived layer, 
sulfur cycling shifted toward sulfate reduction, a process typically 
dominated by specific taxa like sulfate-reducing bacteria (Chang et al., 
2022; Zhang et al., 2024). The harsh conditions imposed strong selective 
pressure, allowing well-adapted microbes carrying specific functional 
genes (e.g., dsrAB, aprB, sat) to persist, thus limiting sulfur cycling 
functional gene diversity (Müller et al., 2015; Wasmund et al., 2017).

Microbial communities of sediments in the surface layer exhibited 
higher spatial heterogeneity, while those in the deeper layers tended 
to be more homogenized. This trend aligned with previous research 
showing that the total beta diversity of microbial communities in the 
sediments showed significant decreasing trends toward deeper water 
in deep lake sediments (Wu et al., 2020). The homogenization in deep 

layers can be attributed to the unique physicochemical characteristics 
of deep lakes, such as depth-specific environmental gradients and 
limited nutrient availability, which restricts species exchange and 
diffusion between microbial communities in the water columns at 
different depths (Lear et al., 2014). Microbial communities in the 
surface layers are more influenced by nutrient exchange, fostering a 
more varied ecological environment (Wang et al., 2022).

Environmental drivers and ecological 
processes shaping microbial assemblages

The responses of microbial communities and functional genes to 
environmental factors were strongly coupled, contrasting with previous 
studies in soil and ocean where environmental factors strongly 
influenced functional groups but had a weaker effect on community 
composition (Louca et al., 2016). Depth and temperature were identified 
as robust predictors of microbial communities and functional genes of 
the sediments in lake ecosystems (Zhang et al., 2024; Zhao et al., 2019). 
As a multifaceted proxy, depth encapsulated variations in temperature, 
dissolved oxygen, light availability, and nutrient levels, influencing 
microbes directly or indirectly (Kitazawa et al., 2018; Nevalainen, 2012; 
Rojas-Jimenez et al., 2021). These environmental gradients modulated 
resource availability, energy-related processes, and stressor prevalence, 
exerting selective pressure on microbial communities and functional 
composition (Gurung et al., 2001; Wu et al., 2020).

Despite the relatively open nature of the surface environment, 
spatial resource heterogeneity imposed significant limitations on 
microbial dispersal (Martiny et al., 2006). Homogeneous selection was 
likely linked to the strong selective pressures exerted by key 
environmental factors such as light availability and dissolved oxygen 
concentration (Gotelli, 2000; Liu et al., 2020; Zhao et al., 2019). The 
thermocline, characterized by the steepest temperature changes within 
the water column, may constrain microbial migration and dispersal 
by altering water density and viscosity (Morrison et al., 2017). This 
pronounced these temperature changes created a strong physical 
stratification, impeding material exchange between upper and lower 
water layers and restricting microbial migration across different 
depths (Peura et al., 2015; Zhang et al., 2024). The deep layer was 
characterized by stable but harsh physicochemical conditions, limiting 
the ability of different microbial species to colonize and establish 
diverse communities (Wang et al., 2013). Furthermore, the importance 
of drift increased significantly with depth (Figure 4d), likely due to the 
scarcity of resources and smaller community sizes in deeper layers 
(Ofiţeru et al., 2010). These factors amplified the impact of random 
population fluctuations on community structure. We  also found 

diversity and composition. The first axis of NMDS was used to represent composition. We selected the explanatory variables with a relative contribution 
rate >5%. Details of variable abbreviations are provided in Supplementary Table S1. (b) Associations between microbial community structure and 
functional gene composition (determined by Bray–Curtis distance) with environmental factors (determined by Euclidean distance) using the partial 
Mantel test. Partial Mantel’s r values are indicated by the edge width, while the statistical significance is denoted by the edge color. Pairwise correlations 
of environmental variables are depicted with a color gradient reflecting Spearman’s correlation coefficient. (c) The relative contribution of each 
ecological process driving microbial community assembly within the layer based on null model analysis (n = 231). (d) Differences in the relative 
importance of ecological processes among three water layers (n = 231). Different lowercase letters in box plots indicate significant differences for the 
ecological processes with soil depth (determined by a two-sided Wilcoxon test, p < 0.05). SUR, surface layer; THE, thermocline layer; DEE, deep layer. 
Central line and whiskers in each box represent the median and 1.5 times the interquartile range, respectively. Boxes indicate the interquartile range 
between 25th and 75th percentiles. Single points are outliers.

FIGURE 4 (Continued)
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homogenizing selection decreased with depth (Figure 4d), reflecting 
the diminishing influence of environmental factors such as light and 
oxygen (Wang et  al., 2013; Zhao et  al., 2021). The effects of 
environmental filtering weakened, and stochastic processes became 
more dominant in shaping community structure as depth increases.

Functional enrichment of C, N, and 
S cycling genes across layers

The enrichment of genes associated with energy acquisition and 
organic matter degradation in the surface layer suggests that 

FIGURE 5

Differences in the abundance of functional genes involved in C, N, and S cycling across three layers. The heatmap shows the enrichment of functional 
genes involved in (a) carbon cycling, (b) nitrogen cycling, and (c) sulfur cycling among three water layers. Statistical significance of the changes in gene 
abundance was assessed by a generalized linear model with a negative binomial distribution using edgeR package. The p-values were obtained from 
two-sided likelihood ratio tests (LRTs) and adjusted for multiple comparisons via the Benjamini–Hochberg procedure. Genes with significant changes 
in abundance (p < 0.05) are indicated with an asterisk. LogFC, log2-fold change. The full names of the genes in this figure are listed in 
Supplementary Table S3. SUR, surface layer; THE, thermocline layer; DEE, deep layer.

https://doi.org/10.3389/fmicb.2025.1614055
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2025.1614055

Frontiers in Microbiology 10 frontiersin.org

FIGURE 6

Contribution of microbial communities to biogeochemical processes across different water layers. (a) The contribution of microbial genus to each 
metabolic pathway through random forest analysis is represented by circles of different sizes. The color gradient reflects the strength of the Spearman 
correlation coefficient, where dark blue indicates a strong positive correlation, and dark red represents a strong negative correlation. Statistical 
significance is denoted by asterisks: ***p < 0.001, **p < 0.01, and *p < 0.05. (b) The Sankey diagram illustrates the difference in the contributions of 
microbial groups to specific biogeochemical processes across three water layers, with the taxonomic classification of microbial groups and their 
associated category of functional pathways. The three columns represent, from left to right, water layers, taxonomic groups, and metabolic pathways, 
respectively. SUR, surface layer; THE, thermocline layer; DEE, deep layer.
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microbial communities in this zone are adapted to the oxygen-rich, 
light-rich conditions where rapid energy cycling is critical for 
supporting primary productivity (Cunliffe et al., 2008; Peura et al., 
2018). Moreover, the high abundance of methanogenesis-related 
genes in the surface layer may be  attributed to the presence of 
localized anaerobic microenvironments, such as particle deposition 
zones, which facilitate methane production processes (Bridgham 
et al., 2013). The preferential utilization of inorganic and organic 
nitrogen sources by surface microbes highlights the competitive 
pressures in this layer, where primary producers like phytoplankton 
dominate and microbial communities must efficiently assimilate 
available nitrogen to sustain their growth (Chrost et  al., 2009). 
Similarly, the enrichment of sulfur-related genes suggests that surface 
microbes also play a role in supporting primary productivity by 
assimilating sulfur, an essential nutrient for microbial growth and 
metabolic processes.

The enrichment of genes involved in anaerobic metabolic 
processes in the deeper layers suggests a shift toward energy pathways 
that do not rely on oxygen, as microbes adapt to low-oxygen 
conditions in these layers. The presence of genes related to nitrification, 
denitrification, and nitrate reduction in the thermocline and deep 
layers indicates that microbes in these layers rely on anaerobic 
nitrogen transformations, such as nitrate and nitrite reduction, to 
adapt to the limited oxygen availability in deeper waters (Robert 
Hamersley et al., 2009). The enrichment of genes related to sulfide 
oxidation in the thermocline was probably due to the elevated sulfide 
concentrations at the redox interface (Chen et al., 2024). Microbes in 
this layer may oxidize sulfide to generate intermediate sulfur 
compounds, to adapt to the oxidative conditions of this transitional 
environment (Zhang et al., 2021). Phthalate degradation genes were 
more abundant in the thermocline. Phthalates and their derivatives, 
common pollutants, may originate from sediment release or external 
inputs (Tuan Tran et al., 2022). The sharp temperature gradient and 
stable chemical stratification of the thermocline created a unique 
ecological niche supporting the degradation of complex organic 
compounds (Kurt, 2019). Microbes in this layer may leverage adaptive 
metabolic capabilities to selectively degrade structurally complex 
organic carbon, contributing significantly to the carbon cycle in this 
stratified environment. The enrichment of genes associated with 
dissimilatory sulfate reduction in deep layer reflected microbial 
reliance on sulfate as a terminal electron acceptor for anaerobic 
respiration (Zhu et al., 2018). This metabolic trait corresponded to the 
anoxic conditions of the deep layer, where sulfate reduction serves as 
a critical energy-yielding process (Watanabe et al., 2013).

Layer-specific contribution of microbial 
taxa to functional genes

The surface layer, characterized by high organic carbon and 
nutrient availability, supports robust microbial activity (Ertefai et al., 
2008). Gloeomargarita, an oxygenic photoautotroph, contributed to 
both photosynthesis and organic carbon degradation (Bacchetta et al., 
2022; Moreira et  al., 2017). Its distribution aligns with previous 
observations in soil (Nelson et al., 2016) and marine systems (Zehr 
and Capone, 2020), suggesting that Gloeomargarita distribution is 
strongly influenced by factors such as light intensity, temperature, and 
nutrient availability. Its predominance highlights the importance of 

oxygenic metabolism and primary production in surface waters, 
where light and oxygen are readily available.

Nitrospira, as a key nitrifying genus, indicates high nitrogen 
turnover in the thermocline, suggesting active nitrification processes 
(Ren and Wang, 2022; Winter et al., 2009). The thermocline with its 
steep temperature gradient and variable oxygen levels, supports both 
aerobic and anaerobic metabolic processes (Gorham and Boyce, 1989). 
Haliea commonly exhibited photoheterotrophic traits, indicating the 
persistence of light-driven energy capture in the thermocline 
(Yamamoto et al., 2020; Yang et al., 2020). These metabolic activities 
likely provide additional energy for microbial processes in the 
thermocline. The deep layer, characterized by low oxygen and nutrient 
availability, exhibited significant anaerobic and heterotrophic metabolic 
activities. Aromatoleum remained dominant in the deep layer, utilizing 
its ability to metabolize organic substrates under anaerobic conditions 
(Becker et al., 2022). Its metabolic strategies likely reflect adaptations 
to limited energy resources, emphasizing the importance of efficient 
resource utilization in deep lake environments (Vagts et al., 2018).

Conclusion

Our study provides metagenomic analyses of microbial 
community structure and functional potential along a water depth 
gradient in Lugu Lake, a deep lake in subtropic zone. We revealed 
significant shifts in microbial diversity and functional gene 
composition across the lake sediment in response to the depth of the 
overlaying water column and its redox state, revealing tight metabolic 
coupling between sediment and water column ecosystems. Microbial 
communities in the shallower layers exhibited higher spatial 
heterogeneity, while those in the deep layers were more homogenized. 
The thermocline, with steep gradients of temperature and redox 
potential, created diverse microhabitats that support different 
microbial lineages to thrive. We  also observed that microbial 
communities involved in alternative electron accepting processes 
were more diverse in the thermocline, likely due to the lower redox 
potential and complex nutrient strategies in this layer.

Functional genes involved in carbon, nitrogen, and sulfur cycling 
showed layer-specific enrichment. Surface waters were dominated by 
taxa that exploit abundant light and oxygen, favoring rapid energy 
acquisition and organic matter decomposition. In contrast, the 
thermocline and deep layers shifted toward anaerobic and specialized 
metabolic pathways, reflecting adaptations to oxygen-limited and 
nutrient-poor conditions. The diverse metabolic strategies observed 
across depth gradients underscore the critical role of microbial 
communities in regulating biogeochemical cycles in deep lakes. These 
findings emphasize that the thermocline significantly affects the 
shaping of microbial community and functional gene distributions. 
Future research could focus on multi-season sampling to capture 
annual variability in microbial dynamics and ecosystem processes.
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