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Microbial dark matter in soda lakes has been increasingly illuminated, however, 
much remains unknown about microbial biogeography at the global scale and 
underlying mechanisms. To study microbial biogeography and dispersal patterns, 
we analyzed 51 soda lake metagenomes collected from key global regions, including 
37 from the Kulunda Steppe in South Siberia, Mongolia, and the Cariboo Plateau 
in Canada, as well as 14 newly sequenced samples from the East African Rift 
Valley. We  found that there were 575 widespread taxa such as the dominant 
archaeal Haloarchaeota and actinobacterial Nitriliruptor persistently inhabiting 
global soda lakes. We  further identified 1,217 region-specific taxa, with Africa 
containing the highest proportion of geographical endemism (66.72%). Such 
effects of dispersal limitation on microbial assembly of global soda lakes were 
supported by the significant distance-decay relationships for taxonomic and 
functional composition, and genomic similarity. For example, microbial genomic 
divergence was closely associated with their geographical distance, showing that 
both inter- and intraspecies genome similarities decayed with distance. This concurs 
with the uneven dispersal history among continental microbiomes, indicated by 
the at least one order of magnitude lower transition rates between Africa and 
other continents than between Asia and North America. Our results revealed 
that the global biogeography of soda lake microbial communities across three 
continents and their distinct transition history between continents. These findings 
highlight the critical role of microbial evolutionary history associated with dispersal 
limitation in shaping their geographical distribution in extreme environments.
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1 Introduction

Soda lakes, also known as alkaline lakes, are characterized by high pH (9.0–12.0) and large 
amounts of soda, typically sodium carbonate (Grant et al., 1990; Jones et al., 1998). They are 
widely distributed across the globe, including China, North America, Russia, and the East 
African Rift Valley (Sultanpuram and Mothe, 2019). As one of the most productive ecosystems, 
soda lakes have high productivity rates of 4,000–6,000 g O2 m−2 per day when compared to 
other aquatic ecosystems (800–2000 g for rivers and lakes) (Schagerl and Burian, 2016), owing 
to the dominance of microphytes fueled by high carbonate in the ecosystem (Grant and Jones, 
2016). Such geochemistry supports the growth of a large number of microorganisms, which 
play an important role in the elemental cycling of the ecosystem (Antony Paul et al., 2013). 
Microbial taxonomic and functional composition of soda lakes has been greatly revealed 
through traditional cultivation and high-throughput sequencing. For example, the insightful 
understanding of physiological characteristics and their hyperalkaline adaptation mechanisms 
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benefit from strain isolation in the lab (Sorokin et al., 2022), and a 
high-resolution genetic inventory and metabolic capacity of 
prokaryotic communities are illustrated by high-throughput omics 
techniques (Vavourakis et  al., 2016; Zorz et  al., 2019; Zhao et  al., 
2020). However, the biogeography of soda lake microorganisms at a 
global scale and their evolutionary history remain understudied.

The similarities in microbial profiles among soda lakes across 
geographic regions are increasingly observed. For example, diverse 
lineages within Bacteria and Archaea, such as phototrophs and sulfur 
oxidizers, are commonly detected in soda lakes across Africa, North 
America and Eurasia (Antony Paul et al., 2013), and core microbiomes 
are identified in soda lakes distributed in Asia and Canada across 
8,000 km (Zorz et al., 2019). The microbial compositional similarity 
patterns in regional studies raise an important question about the 
evolution of microbiomes in global soda lakes. That is whether a core 
microbiome is shared among soda lakes worldwide, or whether the 
microbes in regional lakes evolved independently under the influence 
of geochemical factors. Alkaline lakes are proposed to have existed 
throughout the geological record of Earth (Jones et al., 1998; Haas 
et al., 2024), likely predating the late Archean continents 2.72 billion 
years ago according to nitrogen isotope evidence (Stüeken et al., 2015). 
Therefore, ancient history provides an opportunity to answer these 
questions about the evolutionary origin of soda lake microbial lineages.

Here, we compiled 51 metagenomic sediment and water samples 
from soda lakes across three continents to comprehensively evaluate 
microbial diversity and their global biogeographical patterns. 
We  related the variation in microbial taxonomic and functional 
composition, as well as inter- and intra-genomic similarities, to the 
increasing geographical distance of soda lakes. We further modeled 
the inter-continent transition for microbial communities based on the 
phylogeny inferred from 1,330 species-level genomes. We aimed to 
answer three questions: (i) Is there a core microbiome shared by soda 
lakes across three continents? (ii) How does dispersal limitation shape 
microbiomes in terms of taxonomic and functional composition and 
genome divergence? (iii) How does their evolutionary history (i.e., the 
cross-continent transition) contribute to the biogeography? Our 
results revealed the global biogeography of soda lake microbial 
communities across three continents, and that their distinct transition 
history between continents plays an important role in shaping 
microbial diversity and its biogeographical patterns.

2 Materials and method

2.1 Sampling and sequencing

Surface water and sediment samples were collected from seven 
alkaline lakes in East Africa during February 2020, with pH values 
ranging from 9 to 10.1 (Supplementary Table S1). Details about the 
description of the lakes and the collection of samples were 
provided previously (Ren et  al., 2024). The total DNA of each 
sample was extracted using the PowerSoil DNA Isolation Kit 
(QIAGEN, Germany) under sterile conditions. For the sediment, 
about 0.4 g of dried soil was used for DNA extraction, whereas the 
microorganisms in water samples were enriched using filtering 
membranes (0.22 μm, Millipore Sigma, USA). The DNA was then 
subject to metagenomic sequencing according to the 
manufacturing protocol as follows. Genomic DNA was first 

fragmented into segments ranging from 250 bp to 350 bp using 
ultrasonication. The libraries were prepared using the NEB Next 
Ultra DNA Library Prep Kit and sequenced on the Illumina 
NovaSeq  6,000 platform using a 2*150 bp paired-end 
sequencing strategy.

2.2 Global soda lake metagenome

To comprehensively evaluate global soda lake microbial diversity 
and metabolic potential, 37 metagenomic samples from global soda 
lakes were collected from NCBI SRA and IMG databases (Figure 1 and 
Supplementary Table S1), including six water and nine sediment 
samples from soda lakes in the Kulunda Steppe, South-Western 
Siberia (Vavourakis et al., 2016; Vavourakis et al., 2018; Vavourakis 
et  al., 2019), four water samples from soda lakes in the Cariboo 
Plateau region of British Columbia, Canada (Zorz et al., 2019), and 
nine water and nine sediment samples from soda lakes in the 
southwest of Inner Mongolia Autonomous Region, China (Zhao et al., 
2020). The details about the accession number and physiochemical 
parameters for these samples were shown in the Supplementary  
Table S1.

2.3 Taxonomic profiling of prokaryotes

Taxonomic profiling of the prokaryotic community was performed 
based on the conserved ribosomal protein rpS3 genes through a 
modified pipeline described previously (Diamond et al., 2019). Briefly, 
all prokaryotic rpS3 genes were first identified from metagenomic 
assembly with hmmsearch v3.2.1 (Eddy, 2011) using a custom Hidden 
Markov Model (HMM) database (Diamond et al., 2019) and clustered 
at 99% similarity with USEARCH v11.0.667 (Edgar, 2010), with each 
rpS3 cluster representing a species. To quantify their relative abundance 
across samples, the longest contigs containing rpS3 were selected as the 
representative sequence for each species. Clean reads were aligned 
against these representative sequences using Bowtie2 v2.3.5.1 (Langmead 
and Salzberg, 2012), and the mapped reads with ≥ 99% identity were 
filtered and counted using the ‘depth’ module of Samtools v1.15.1 (Li 
et al., 2009). The final abundance of a species in a sample was calculated 
as the total mapped bases normalized by the length of the representative 
sequence and the total number of sequencing bases in the sample.

Species taxonomy was determined using the sequence alignment 
approach followed by phylogeny inference. Firstly, the query rpS3 
genes were aligned against a custom rpS3 reference database using 
BlastP with e-value ≤ 1e-3 and identity ≥ 50%, where the rpS3 database 
was retrieved from the RefSeq prokaryotic genome database (~27,000 
genomes, downloading date: 2019–07). The taxonomy of the top hit in 
the database was assigned to the query rpS3 species. Secondly, to 
validate and correct the alignment-based results, the rpS3 gene tree 
was constructed as described previously (Ren et al., 2019; Ren and 
Wang, 2022). The representative as well as the reference rpS3 genes 
were aligned using MAFFT v7.427 (Katoh et al., 2005), and trimmed 
using trimAl v1.4.1 with the ‘-automated1’ option (Capella-Gutiérrez 
et al., 2009). An approximately maximum-likelihood tree was built by 
FastTree v2.1.11 (Price et al., 2010). The taxonomies of species that had 
no hits in the reference database and branched deeply in microbial 
lineages in the rpS3 tree were designated as the ‘Unassigned’ group.
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2.4 Function profiling of prokaryotic 
communities across soda lakes

To obtain the normalized abundance of functional genes 
across samples with uneven sequencing depth, 10 million clean 
reads were randomly retrieved from each sample using the 

‘sample’ module of Seqtk 1.4-r122 (Li, 2013). These reads were 
then functionally annotated using SUPER-FOCUS v1.7 (Silva 
et al., 2015), which efficiently aligns short sequences against the 
protein-coding genes clustered at 98% identity in the SEED 
database using MMseqs2 v14-7e284 as a search engine (Steinegger 
and Söding, 2017). The SEED subsystem classifies the functional 

FIGURE 1

The geographic distribution of soda lakes and microbial composition. (a) The geographic location of soda lake metagenomes used in the study, 
including the new samples collected from East Africa. Soda lakes from four geographic regions, namely Africa, China, Canada and Russia, were 
highlighted with distinct colors. The detailed accession numbers for these metagenomes were shown in Supplementary Table S1. (b) The average total 
coverage percentage of microbial species at the phylum level across four regions. (c) The abundance distribution of microbial species at the phylum 
level across water and sediment samples from four regions. The calculation of microbial species abundance was shown in the Methods section, and 
the relative abundance was calculated as transcripts per million (TPM), a normalized unit widely used in metagenome read recruitment approaches. 
The group ‘Other’ in (b,c) includes the phyla with fewer than five species.
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genes into three levels of biological pathways with similar 
functions (Overbeek et  al., 2005). The functional annotation 
results were used to evaluate the functional composition of 
communities across soda lakes (see the ‘Statistical analysis’ 
section below).

2.5 Metagenome assembly and binning

All soda lake metagenomic reads were processed using the 
custom pipeline as described previously (Ren and Wang, 2022). 
Briefly, the read quality was checked using FastQC v0.11.8 
(Andrews, 2010), then trimmed using Trimmomatic v0.39 (Bolger 
et al., 2014), discarding reads with an average Phred score lower 
than 25 using a 4-bp-wide sliding window and reads shorter than 
50 bp. Clean reads were assembled individually using MEGAHIT 
v1.2.8 (Li et  al., 2015), with the parameter ‘--presets meta-large 
--min-contig-len 1000’. The metagenome-assembled genomes 
(MAGs) were reconstructed by DAS Tool v1.1.1 (Sieber et al., 2018), 
which determines optimized MAGs through a strategy of 
dereplicating, aggregating and scoring the preliminary MAGs from 
multiple binning algorithms, including MaxBin2 v2.2.6 (Wu et al., 
2016), MetaBat1 v0.24.1 (Kang et al., 2015), MetaBat2 v2.12.1 (Kang 
et  al., 2019) and CONCOCT v1.1.0 (Alneberg et  al., 2014). The 
MAG’s completeness and contamination were evaluated using 
CheckM v1.0.13 (Parks et al., 2015). A total of redundant 2,227 
genomes with the completeness ≥ 70% and the contamination ≤ 
10% were subject to downstream analyses (Supplementary Table S3). 
Taxonomic assignment for these MAGs was performed by the 
“classify_wf ” module of GTDB-Tk v2.0.0 (Chaumeil et al., 2019) 
using the r207 version of the Genome Taxonomy Database 
database (GTDB).

The genomes for the representative species were further identified as 
described previously (Diamond et al., 2019; Ren et al., 2024). In total, 
1,330 representative genomes were determined from global soda lakes 
based the rpS3-containing contig sequences shared between the 
redundant MAGs and the rpS3-based representative species 
(Supplementary Table S3). Note that not all species genomes were 
recovered using metagenome binning methods partly due to the great 
microbial diversity in environmental samples and limitation of 
computational methods (Quince et al., 2017). Detailed statistics about 
the clean reads and assembly for each sample were shown in 
Supplementary Table S1, along with the MAGs in Supplementary Table S3.

2.6 Function annotation of the 
representative MAGs

The protein-coding genes of each genome were predicted by 
Prodigal v2.6.3 (Hyatt et al., 2010) and annotated against the Kyoto 
Encyclopedia of Genes and Genomes database (KEGG, release 92) 
and the eggNOG database v5.0 (Huerta-Cepas et al., 2018). For each 
gene, the KEGG Orthology (KOs) assignment was achieved using 
KOFamScan v1.3.0 (Aramaki et al., 2019), which performs homology 
searches against a database of hidden Markov models with 
precomputed score thresholds for each KOs. The annotation against 
eggNOG was performed using eggNOG mapper v2.1.6 (Cantalapiedra 
et  al., 2021), with DIAMOND v2.1.8 (Buchfink et  al., 2015) as a 
search engine.

2.7 Phylogenomic tree construction of the 
representative species

The maximum likelihood phylogeny of the species-level MAGs 
was constructed using the concatenation of the conserved marker 
genes as described previously (Ren et al., 2019). Specifically, the HMM 
profiles for the conserved marker genes used in CheckM v1.0.13 were 
extracted, and then searched against each MAG using hmmsearch 
v3.2.1 (Eddy, 2011) with sequence e-value of ‘1e-35’. The HMM 
coverage lower than 0.35 was discarded. If the same region of the 
sequence was hit by more than one HMM, the hit having the lowest 
e-value was kept. For each gene family, the amino acid sequences of 
gene members were extracted from each genome, independently 
aligned using MAFFT v7.427 (Katoh et al., 2005), and trimmed by 
trimAl v1.4.1 (Capella-Gutiérrez et al., 2009) with the ‘automated1’ 
option. The alignments were then concatenated together, on which the 
maximum likelihood phylogenomic tree was built using IQTREE 
v1.6.11 (Nguyen et al., 2015) with the optimal substitution model for 
each gene family determined by ModelFinder (Kalyaanamoorthy 
et al., 2017) among the four models: WAG, LG, JTT and JTTCDMut. 
The phylogenetic tree was constructed with the edge-linked partition 
model and 1,000 replicates using an ultrafast bootstrap approximation. 
Unless stated explicitly, the default parameters were used in all 
programs mentioned above.

2.8 The inference of evolutionary transition 
using BayesTraits

We estimated microbial transition rates across continents using 
the ancestral state reconstructions through the Markov chain Monte 
Carlo (MCMC) approach implemented in BayesTraits v4.0.0 (Pagel 
et al., 2004). The BayesTraits analyses were performed on the full 
phylogenetic tree using the MultiState module, which is applied to 
traits with two or more discrete states, such as three continents where 
soda lakes are distributed in the study. As suggested in the program 
manual, the tree was scaled to have a mean branch length of 0.1 to 
avoid very small rates in results.

Firstly, we performed model tests by constraining the forward and 
reverse transition rates among continents to be equal (i.e., qAB = qBA, 
from continent A to continent B and vice versa), or separately 
constraining each of the rates to be zero (qAB = 0 or qBA = 0). These 
constrained models were compared to select the best-fit model based 
on the log-Bayes factors in MCMC analyses, with a difference of 10 
log marginal likelihood units as very strong evidence for a model over 
another. The marginal likelihood of MCMC analyses was estimated by 
the stepping stone sampler method using 100 stones and 1,000 
iterations per stone (Xie et al., 2010). Additionally, we also compared 
several prior distributions for transition rates, including uniform, 
exponential, gamma and their hyper-prior versions, and found that 
the gamma hyper-prior distribution was the most optimal and 
therefore used in further analyses. All preliminary analyses were 
conducted with the following settings: 10,100,000 iterations, 100,000 
iterations as burn-in and sampling every 1,000 iterations. The final 
MCMC analyses were repeated three times to check the congruence 
of independent runs.

The phylogenetic construction and transition inference for soda 
lake microbiomes considers all species-level genomes and their 
occurrence patterns, which were not biased by uneven number of 
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samples from different continents. For example, the phylogenetic tree 
was built based on the species-level genomes, which were clustered 
from all microbial genomes reconstructed from soda lakes all over the 
world, rather than a single continent. Before modeling the transition 
rates using BayesTrait, the state of each species could be  a single 
continent, or more than ones based on based on the relative abundance 
around three continents.

2.9 Statistical analyses

Two types of microbial taxonomic profiling datasets were explored 
in the study: the 3,526 rpS3-based species table and the 1,330 species-
level representative genome table. The rpS3-based species abundance 
table was used to calculate the relative abundance of microbial species, 
community composition and identification of core/flexible species. 
The functional profiling table generated by SuperFocus (see above) 
was used to evaluate functional composition across global soda lakes. 
Taxonomic and functional composition of microbial communities 
were evaluated using nonmetric multidimensional scaling (NMDS) 
using Bray-Curtis and Euclidean distance, respectively, as 
implemented in the ‘metaMDS’ function in the VEGAN package 
v2.6–4. The distance-decay relationships between Bray–Curtis 
dissimilarity of microbial community and geographic distance were 
fitted using the linear regression model.

Genomic similarity was evaluated by the genome-wide average 
nucleotide identity (ANI) at both the species and strain levels, which 
was calculated using fastANI v1.34 (Jain et  al., 2018). To access 
genomic similarity across geographic regions, the pairwise genome-
wide ANI of the 1,330 representative genomes were used for the 
species-level similarity, and the genome pairs with genome-wide 
ANI ≥ 95% were used for the strain-level similarity.

The core and flexible species and genes were further evaluated by 
their occurrences in soda lake samples across each of the four 
geographical regions. For the species, the 3,526 rpS3-based species 
table was used to evaluate their occurrence patterns. For the genes, the 
KO-based functional annotation results of 2,227 redundant genomes 
were used. First, a set of 1,015 singleton KOs (present in only one 
MAG) was discarded to avoid potential bias associated with genome 
assembly and functional annotation. Therefore, there were 8,645 KOs 
present in at least two genomes, representing functional composition 
of global soda lake microbial communities.

To measure the geographic distribution of a species across global 
soda lakes, an index of species range size was calculated as one minus 
the standard deviation of the abundance percentage of the species 
across geographical regions. The relationships between species range 
size and their genome size were fitted using a linear regression model. 
All statistical analyses were performed using R language v4.2.2.

3 Results and discussion

3.1 A vast uncultured microbial diversity 
across global soda lakes

We collected 51 metagenomes of soda lakes, including 14 newly 
sequenced ones from the East African Rift Valley in this study, and the 
remaining 37 from Canada, China, and Russia (Figure  1a and 

Supplementary Table S1). These samples were characterized by high 
pH values ranging from 9.1 to 11.0, and salinity concentrations 
ranging from 5.5‰ to 8,532‰. We performed taxonomic profiling of 
prokaryotic community based on the clustering of the conserved 
ribosomal protein S3 gene (rpS3) from metagenomic assemblies (See 
the details in Methods), considering the fact that the majority of 
microorganisms with low abundance are poorly represented by the 
metagenomic-assembled genomes (Diamond et al., 2019). In total, 
there were 3,066 bacterial and 438 archaeal species defined by the 
assembled rpS3 genes from soda lakes across the four geographic 
regions. We detected 74 phylum-level lineages across soda lakes, with 
more than half phyla (n = 40, ~54.0%) represented by no more than 
five species, according to the Genome Taxonomy Database (GTDB) 
classification framework (Parks et al., 2021). Among these phyla, the 
top four with the highest species number included Bacteroidota 
(n = 445), Gammaproteobacteria (408), Actinobacteroita (388) and 
Firmicutes (352) within the Bacteria, and Halobacteriota (217), 
Nanoarchaeota (118), Thermoplasmatota (55) and Nanohaloarchaeota 
(24) within the Archaea (Supplementary Figure S1a).

In agreement with species numbers, the relative abundance of 
these bacterial and archaeal phyla dominated microbial community 
of global soda lakes (Figures 1b,c). For example, the top three most 
abundant phyla, including Halobacteriota (24.3%), 
Gammaproteobacteria (16.1%) and Actinobacteriota (13.8%), 
accounted for more than half of the total abundance according to the 
metagenomic read recruitment approach. Moreover, these phyla 
showed variation in their abundance across geographical regions 
(Figure 1b). For example, the microbial planktonic community of East 
African soda lakes was dominated by Actinobacteriota with its average 
abundance of 58.9% (SD, 25.8%). In the soda lakes of China and 
Russia, the most abundant phylum was Halobacteriota, with average 
abundances of 55.1% (SD, 41.3%) and 42.6% (SD, 38.1%), respectively. 
The identification of these dominant bacterial phyla here well explains 
the fact that more than 60% of culturable strains isolated from soda 
lakes belong to the phyla Gammaproteobacteria and Firmicutes 
(Supplementary Figure S1b, Supplementary Table S2). In addition, the 
large number of microbial species identified through metagenomic 
survey demonstrates a high proportion of uncultured species in soda 
lakes, consistent with the previous argument about the uncultured 
microbes across biomes (Steen et al., 2019). The observed difference 
in the number of species between metagenomic survey and 
experimental culturing also provides a candidate species list and 
potential cultivation strategies for strain isolation in soda lakes (Lewis 
et al., 2021).

3.2 The core taxa and functional genes 
across global soda lakes

A core microbiome was shared among soda lakes across four 
geographical regions, indicative of their strong dispersal abilities. 
Specifically, there were 575 species (16.30% of the total species) 
present in at least one sample of each region, with the dominant 
archaeal Haloarchaeota and actinobacterial Nitriliruptor as examples 
(Figure  2a). These widespread species showed a wide range of 
taxonomic distribution, with four phyla dominating the community, 
including Alphaproteobacteria (n = 100), Bacteriodota (96), 
Gammaproteobacteria (95), Actinobacteriota (80). In contrast, more 
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than twice as many species, namely 1,217 (34.50%), were present in 
only one of the four regions. Among these regional-specific or 
endemic species, more than two-thirds (n = 812, 66.72%) were 
detected from the African region (Figure 2b), indicating the great 
unexplored microbial diversity in the soda lake ecosystem on the 
second-largest continent of the Earth. Our findings extend the results 
of a previous study focusing on the comparison of soda lakes in 
Canada and Russia (Zorz et al., 2019), and demonstrate that the core 
microbiome of soda lakes has likely assembled at a global scale. The 
occurrence of the core microbiome is likely associated with the 
efficient dispersal for microbial communities (Hanson et al., 2012), 
and implies a scenario of their common and ancient evolutionary 
origin for the soda lake communities, rather than independent origins.

The distribution of microbial functional genes showed contrast 
patterns across four geographical regions compared to the species 
distribution outlined earlier. For example, most functional genes 
(6,344 KOs, 73.40% of the total gene families) were shared across all 
four regions, whereas only a minor number of genes (372, 4.30%) were 
present in one region, referred to as the region-specific genes 
(Figures 2c,d). The predominance of the shared genes confirmed the 
relatively stable functional composition across soda lakes at a global 
scale shown as below. For regional-specific genes, microbes in soda 
lakes from Russia accounted for half of the total (44.62%), and these 

genes were mainly involved in the KEGG functional categories of 
“Metabolism” (123) and “Environmental Information Processing” 
(45). These region-specific genes are likely used to cope with the 
specific substrate resources or stress present in one of these 
geographical regions.

3.3 Taxonomic, functional and genomic 
biogeography of soda lake microbiome

Despite core taxa and genes, we found that dispersal limitation 
consistently shapes the biogeography of soda lake microbial 
communities in terms of taxonomic and functional composition, as 
well as genome divergence. The taxonomic biogeography was 
supported by two lines of evidence (Figure 3). Firstly, the non-metric 
multidimensional scaling analysis (NMDS) revealed that microbial 
communities were clustered by geographic regions regardless of their 
habitats (NMDS stress = 0.13; PERMANOVA R2 = 0.17, p = 0.001, 999 
permutations, Figure 3a), indicating a higher similarity of within-
region microbial community than between regions. Secondly, the 
similarity of microbial community composition decayed with the 
geographical distance between soda lakes (Figure. 3c, P < 2.2e-16, 
R2

adj = 0.23), suggesting a distance-decay relationship (DDR), a 

FIGURE 2

The occurrence distribution of microbial species and genes in soda lakes. (a) The count of microbial species occurring in different geographic regions. 
The phyla were highlighted with distinct colors, consistent with the color scheme in Figure 1b. (b) The geographic distribution of the endemic species, 
i.e., those restricted in one region. (c) The count of KO-represented functional genes occurring in different regions. The functional categories of these 
genes followed the first level pathway system of the KEGG and were highlighted with distinct colors. (d) The geographic distribution of endemic KOs.
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fundamental pattern in ecology (Zhou and Ning, 2017). These results 
demonstrate that microbial communities in these extreme 
environments also follow the macroecology patterns.

Microbial functional composition of soda lakes showed consistent 
distance-decay relationships at a global scale. Specifically, functional 
composition was represented by functional genes curated in SEED 
annotation system (Overbeek et  al., 2005). The global soda lake 
functional composition was structured into distinct clusters, in line 
with their geographical regions (NMDS stress = 0.09; PERMANOVA 
R2 = 0.22, p = 0.001, Figure  3b). In addition, there was functional 
difference in microbial communities between water and sediments, 
consistent with their distinct taxonomic composition. Similarly, 
we  also observed a decay of microbial function similarity with 
increasing geographical distance, indicating functional biogeography 
of soda microbial communities (Figures 3d, P = 2.06e-3, R2

adj = 0.01). 
Furthermore, we found that the decreasing rate of functional DDR 
(slope = 0.01) was less than taxonomic DDR across soda lakes 
(slope = 0.30, Figures  3c,d), indicating functional composition 
similarity decay slower than taxonomic at similar geographical 
distances. These results demonstrated a relatively higher spatial 
turnover rate of taxonomic composition and a stable functional 
composition for global soda lake communities. In contrast, a recent 
study of marine bacterial functional biogeography shows a higher 
turnover rate of functional profiles than taxonomic profiles in 

Southern and Atlantic Ocean (Dlugosch et al., 2022). These distinct 
biogeography patterns may be  attributed to the differences in 
microbial dispersal ability, spatial scales and sampling efforts between 
these studies (Meyer et al., 2018).

The divergence of soda lake microbial genomes at the species and 
strain levels was closely associated with their geographical distance. 
There were 2,227 non-redundant metagenome-assembled genomes 
(MAGs) initially reconstructed from lakes across four regions, with 
381  in Africa, 629  in Asia, 989  in Russia, and 228  in Canada 
(Supplementary Table S3). Then 1,330 species-level genomes were 
determined based on the occurrence of contigs containing the 
representative rpS3 cluster for each species (See the Methods). Overall, 
we found that microbial genomic similarity, represented by genomic 
ANI, decreases with geographic distance (Figure 4). Specifically, for 
each of the four regions, soda lake microbial genomes consistently 
showed a significantly higher within-region similarity than between-
region based on the species-level genomes (n = 1,330, 
p = 3.9e-6 ~ 4.9e-63, Wilcoxon test, Figure 4a) and the strain-level 
genomes (n = 2,227, p = 3.7e-3 ~ 1.5e-55, Wilcoxon test, Figure 4b). 
These improved within-region genome similarities indicate relatively 
lower genomic divergence in soda lakes within region than between 
regions. The genomic similarity patterns associated with geological 
regions could be likely explained by the effect of dispersal limitation 
on microbial community assembly, population and their gene flow. 

FIGURE 3

Taxonomic and functional biogeography in global soda lakes. (a,b) Nonmetric multidimensional scaling (NMDS) ordination plot of soda lake microbial 
taxonomic and functional composition across four geographic regions. (c,d) The distance-decay relationship (DDR) between geographical distance 
and microbial community similarity and functional composition similarity, respectively. Microbial community similarity was represented by Bray-Curtis 
distance of the rpS3-represented abundance table, and the similarity in functional composition was represented by Euclidean distance of the SEED-
based function across all samples (see the Methods). The DDRs were fitted using linear regression model, and the adjusted coefficients of regression 
models were shown at the subpanels, where both X and Y axes were log10-transformed.

https://doi.org/10.3389/fmicb.2025.1614302
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ren and Wang 10.3389/fmicb.2025.1614302

Frontiers in Microbiology 08 frontiersin.org

When comparing the genomic similarity between any two of the four 
regions, we found that there was significant difference among these 
region pairs, with the shortest paired regions (i.e., China-Russia) 
having the highest genomic similarity (Figure 4c), especially based on 
the strain-level genomes (BH-adjusted p = 1.4e-5 ~ 8.4e-9, Wilcoxon 
test, Figure 4d).

Such observed decay in functional composition and genomes 
shows microbial divergence associated with dispersal limitation 
over continental-scale distances, implying the importance of 
evolutionary history and/or environmental selection in shaping 
soda lake microbial communities. The similar geography-related 
divergence has been found in microbial lineages or communities, 
such as a widespread freshwater Polynucleobacter population 

consisting of 113 strains across a geographic range over 3,000 km 
(Hoetzinger et al., 2021) and the river and lake microbiome across 
a 2,500-km transect in China (Cheng et al., 2024). Considering the 
large population size and high dispersal ability, microorganisms are 
reported to have higher habitat transition rates than anticipated, 
such as crossing the salt barrier between marine and freshwater 
(Paver et  al., 2018). It has been shown recently that bacteria 
dispersal across continents is facilitated by dust particles, e.g., the 
terrestrial and dust-associated bacteria over Atlantic and Pacific 
(Lang-Yona et al., 2022), and hitchhike with migratory waterfowl 
(Conklin et al., 2022). Although the dispersal pathways for soda 
lake microbiomes around the world cannot be determined based on 
cultivation-independent sequencing technologies, here we provide 

FIGURE 4

Microbial genomic similarities of soda lakes across geographic regions. (a) The comparison of between-region and within-region genomic similarities 
at the species level. Genomic similarity was measured as the genome-wide average nucleotide identity (ANI). For each of the four regions, the 
difference in between-region and within-region similarity was tested using the Wilcoxon test. (b) The distribution of the between-region genomic 
similarities at the species level. (c) The comparison of the between-region and within-region genomic similarities at the strain level, namely, specifically 
including genome pairs with ANI values greater than 95%. (d) The distribution of the between-region genomic similarity at the strain level. The region 
pairs in the subpanels (b,d) were arranged by their geographical distance, with the longest ‘Africa-Canada’ on the leftmost and the shortest ‘China-
Russia’ on the rightmost. Noted that there were no strain-level genome pairs in the “Africa-Canada” pair owing to the low number of strain-level 
genomes reconstructed from Canada soda lakes in the study.
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the evidence for the geography-related divergence at a global 
scale based on the decay of functional composition and 
genome similarity.

3.4 Wide-spread microbes showed larger 
genome size than the endemism

The phylogenomic tree of the 1,330 species showed that the 
majority of soda lake microbes were distributed across more than one 
geographical region, whereas few geographical endemism was 
scattered in several lineages (Figure 5a). Their phylogenetic relatedness 
of microbial lineages across geographically distant soda lakes further 
supported the scenario above, that soda lake microbial communities 
likely have a common and ancient evolutionary origin, rather than 
independently evolve multiple times in geographically isolated 
regions. For geographical endemism, several lineages, such as 
Acidimicrobiales and Actinomycetales within the phylum 
Actinobacteriota, and one lineage within Gammaproteobacteria were 
dominantly present in East African soda lakes, whereas the lineages 
of Haloarchaeota were predominantly detected in Russia and China 
(Figures 1c, 5a).

To better characterize the species dispersal ability and their 
associations with genomic features, we  calculated an index of 
species range size to indicate the species distribution across 
geographical regions. The index considers the number of 
geographical regions where a species occurs and the variation in 
its relative abundance across regions. In our case, the index 
changes from 0.5 to 1.0, with the minimum value meaning a 
species exclusively restricted in one geographical region, and the 
maximum meaning its evenly distribution across multiple regions. 
We found that species range size was significantly and positively 
correlated with their genome size (p  = 6.40e-12, R2

adj  = 0.03, 
Supplementary Figure S2). The positive correlation between 
species range size and genome size was consistently observed 
across the major phyla, such as Haloarchaeota (p  = 1.15e-3, 
R2

adj  = 0.12) and Actinobacteria (p  = 8.87e-8, R2
adj  = 0.23, 

Figures 5b,c). The close relationships of bacterial range size and 
genome size have been found at a wide range of scales. For 
example, the microbes inhabiting a greater range of environments 
have larger and potentially more versatile genomes than those with 
restricted distributions through a study of the spatial distribution 
of soil microbes in about 600 soil samples within a park (Barberán 
et al., 2014). When expanding at a much larger spatial scales, there 
is a linkage between latitudinal range size distribution and 
microbial genome size of biofilm bacterial communities in about 
200 streams across a 1,000 km latitudinal gradient (Lear et  al., 
2017). Bacterial range size may be impacted by their capacity to 
cope with or tolerate environmental change, as microbes with 
larger genomes expectedly exhibit greater metabolic versatility to 
environmental change (Bentkowski et al., 2015). These positive 
relationships here imply that either microbial genome reduction 
may have occurred in these endemic species, or genome expansion 
was closely associated with geographical dispersal owing to 
regional adaptation. Although there was unfortunately no 
additional evidence for supporting any of the directions or both, 
soda lake microbial communities have a complex evolutionary 
history accompanied with their dispersal across continents.

3.5 Uneven transition of soda lake 
microbiome across continents

Considering that the occurrence of phylogenetically-related 
lineages in global soda lakes, we  asked how often the cross-
continent transitions have occurred during their evolutionary 
history. The estimation of microbial transition history might 
be  insightful to explain the observed microbial diversity and 
biogeography across continents (Louca, 2022). For example, the 
soda lake microbial communities on one continent would exhibit 
similar taxonomic and functional composition to those on the other 
if transition rates between two continents were relatively high over 
evolutionary time. With the phylogeny of 1,330 species-level 
genomes, we  inferred the global patterns and rates of habitat 
transition for soda lake microbial communities across continents 
with ancestral state reconstruction using Markov chain Monte 
Carlo methods (Pagel et al., 2004).

The model results revealed that soda lake communities exhibited 
the highest rates of transition between Asia and North America, 
followed by Asia and Africa, and then North America and Africa 
(Figure 6). The same transition patterns were observed when modeling 
the reverse direction (Asia-to-North America and the reverse, see the 
Methods). Particularly, the transition rates between Asia and North 
America were at least one or two orders of magnitude higher than 
between the other two pairs of continents, despite the much longer 
geographical distance between Asia and North America compared to 
Africa. The uneven transition patterns were consistent with earlier 
observations that the highest proportion of geographical endemism 
in the African region (Figure 2b), and the higher genomic divergence 
between Africa and other regions (Figure 4c). Besides, we further 
noted that substantial variation in the rates of continent-level 
transition and their reverse direction, such as nearly five times 
transition rates from North America to Asia higher than the reverse 
direction. These asymmetry in transition rates could be contributed 
by multiple factors, including the difficulty of dispersing geological 
barrier from both directions, and/or extinction of some microbial 
lineages over evolutionary time.

The paleogeography patterns of the continents likely explain such 
lower transition rates between Africa and other two continents. Given 
the distance among contemporary continents, geographical factors 
alone fail to explain the inferred transition patterns. However, these 
patterns are likely associated with the paleogeography patterns of 
these continents over deep time, considering the ancient history of 
soda lakes (Stüeken et al., 2015). For example, the continents of Asia 
and North America are parts of the Laurasia supercontinent, which is 
connected to the Siberia (northern Asia) for nearly 1.2 billion years 
(Ernst et  al., 2016). The long-lived connection likely provides an 
opportunity for the higher transition rates between soda lakes of Asia 
and North America. In contrast, the Africa continent breaks away 
from the Gondwana supercontinent, which is separated from the 
Laurasia at the 200 Mya ago (Mitchell et al., 2021). Note that owing to 
the limited fossil record for microbial species, we cannot date these 
evolutionary events across the phylogeny and further place them 
within a geologic time scale. However, the paleography of these 
continents provides possible transition pathways and barriers for 
microbial dispersal over long distance, shaping the diversity and 
evolutionary history of soda lake microbial communities 
across continents.
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FIGURE 5

Microbial genome size increased with their geographic range. (a) The maximum-likelihood phylogeny of the representative species genomes from 
global lakes. For each species, genome size, geographic range and abundance distribution across four regions were annotated from outer to inner 
circles, respectively. The species geographic range was calculated as one minus the standard deviation of the percentage of the species abundance 
across geographical regions. The method for building tree sees the Method section. (b) The linear relationships between genome size and species 
range size across major phyla. The adjusted coefficients and significance results of regression models were shown at the subpanels. (c) The illustration 
of genome size and species range association using the phylum Actinobacteriota. The family Nitriliruptoraceae within Actinobacteriota were 
highlighted in the tree.
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4 Conclusion

By integrating 14 newly sequenced metagenomes from the East 
African soda lakes with 37 globally available samples, we revealed 
substantial uncultured microbial diversity in these extreme 
environments and identified multiple phylogenetically related lineages 
exhibiting broad geographic distributions. These widespread microbes 
are characterized by larger genome size than geographical endemism, 
suggesting a complex evolutionary history accompanied with their 
dispersal and colonization across continents. The distribution of 
widespread species and their phylogenetic relatedness support an 
evolutionary scenario of an ancient common origin for global soda 
lake microbial communities.

Soda lakes could be used as ideal ecosystems for studying microbial 
biogeography. For example, the extreme conditions such as high pH 
and/or salinity create a filter for microbial survival, and soda lakes are 
globally distributed but occur in isolated, inland basins. Our study of 
global soda lake metagenomes here shows that dispersal limitation 
plays an important role in shaping functional composition and 
microbial speciation in these extreme environments. This hypothesis 
is supported by the general biogeographic patterns for microbial 
taxonomic and functional composition, as well as genomic divergence. 
These biogeographic patterns are consistent with the geographic 
isolation of archaeal and bacterial populations in non-extreme 
environments (Whitaker et al., 2003; Hoetzinger et al., 2021). To the 
best of our knowledge, this is the first report on the decay of functional 
composition and genome similarity in soda lakes at a global scale. 
These biogeographical patterns are likely associated with the uneven 
frequency of the cross-continent transitions during their evolutionary 
history. These results improve the understanding of microbial 
biogeography at a global scale, and provide novel insights into the 
mechanisms underlying the geographical distribution when 
considering microbial transition evolutionary history.
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