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E�ects of combined exposure to
heavy metals on lower
respiratory flora and its role of
lung injury in rats
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Junpu Yu1, Tian Tian1, Rentong Chen1, Bin Luo1, Li Ma1* and

Rongxuan Zhang1,3*

1School of Public Health, Lanzhou University, Lanzhou, China, 2Department of Medical Administration,

Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China, 3Department of Respiratory and

Critical Care Medicine, The Second Hospital of Lanzhou City, Lanzhou, China

Introduction: Exposure to heavy metals is a growing environmental concern.

Although exposure to individual metals is associated with pulmonary damage,

real-world exposure typically involves multiple metals simultaneously. This

study hypothesizes that combined exposure to nickel, copper, and arsenic

induces lung injury through disruption of the bronchoalveolar lavage fluid (BALF)

microbial ecosystem in rats. The primary objective of this study was to verify

the hypothesis.

Methods: Thirty-two male Sprague–Dawley (SD) rats were randomly assigned

to four groups: one control group and three exposure groups (low, medium,

and high doses). The exposed groups received mixed heavy metal aerosols

containing nickel (Ni), copper (Cu), and arsenic (As) at low (Ni: 210.9 ng/m3,

Cu: 108.4 ng/m3, As: 104.6 ng/m3), medium (5×low), and high (10×low)

concentrations. Exposure occurred via inhalation twice daily for 1 h over 90 days.

Lung function was assessed non-invasively, and histological examinations, 16S

ribosomal DNA (16S rDNA) sequencing, and microbial functional predictions

were performed to evaluate exposure e�ects. We measured heavy metal

concentrations in lung tissues and assessed the associations with microbial

changes. Microbial community structure and function were further analyzed

using LEfSe, PICRUSt2, and ecological network analysis.

Results: Compared exposure to Ni, Cu, and As induced dose-dependent

lung damage, including inflammation, alveolar deformation, and bronchial

thickening, accompanied by significant declines in lung function, including a

21.2% reduction in tidal volume and a 34.5% increase in airway resistance

in the high-dose group (P < 0.05). Microbial diversity and phylogenetic

richness were significantly reduced (Chao1, Richness, ACE, P < 0.05),

with taxonomic shifts characterized by the enrichment of metal-resistant

genera (Pseudomonas, Burkholderia) and depletion of sensitive taxa (Ralstonia,

Achromobacter). Functional prediction suggested impairments in xenobiotic

metabolism and amino acid biosynthesis. Ecological network complexity

declined with increasing exposure dose. Microbiota dysbiosis is strongly

associated with lung function impairments.

Conclusions: Combined exposure to Ni, Cu, and As disrupts respiratory

microbiota and impairs lung function in rats. These findings highlight a critical
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link between environmental heavy metal exposure and respiratory health,

underscoring the need for stricter regulation of metal pollutants and further

research into microbiota-related lung injury mechanisms.

KEYWORDS

heavy metal, exposure, respiratory microbiota, microbial dysbiosis, 16S rDNA

sequencing, host-microbiota interaction

1 Introduction

Chronic respiratory disease refers to a group of conditions that

persistently impair respiratory system function, including chronic

obstructive pulmonary disease (COPD), asthma, and others. These

diseases are characterized by a prolonged course, slow recovery,

and frequent relapse (Lin et al., 2018), representing a major global

health burden. Lung function, a key indicator for assessing chronic

lung disease, is widely used to evaluate the impact of environmental

pollution, particularly to quantify the effects of air pollution on the

respiratory tract (Duprez and Jacobs, 2018; Zheng et al., 2023).

Heavymetals are commonly defined as elements with an atomic

number exceeding 20 and a density>5 g/cm3, including metalloids

like arsenic (As) due to their similar chemical properties and

environmental behavior (Tchounwou et al., 2012; Gautam et al.,

2016; Jacob et al., 2018). In recent years, intensified industrial

activities, fossil fuel combustion, and heavy fertilizer use have led to

rising levels of heavy metals in the environment (Long et al., 2021;

Lavanya et al., 2024). This issue is particularly pronounced in China

and other developing countries (Jacob et al., 2018; Liu et al., 2022).

Inhaled heavy metal particles typically deposited in the bronchioles

and alveoli, causing severe lung damage. Moreover, these pollutants

may enter the blood circulation through pathways such as ingestion

or absorption through the skin, triggering systemic inflammation

that further exacerbates lung damage (Balali-Mood et al., 2021;

Hashem et al., 2021).

Although numerous studies have confirmed the adverse

effects of heavy metal exposure on lung function, they have

predominantly focused on individual metals and mechanisms such

as inflammation, oxidative stress, and apoptosis (Wu et al., 2022),

or on the gastrointestinal microbiota under metal exposure (Li X.

et al., 2019). However, real-world exposure involves complex metal

mixtures, and their combined effects, particularly on the lower

respiratory tract microbiome, a key interface for immune defense

and pollutant interaction, remain poorly understood (Xue et al.,

2020).

Historically, healthy lungs were thought to be sterile

environments (Chambers et al., 2014; Taylor et al., 2015). However,

recent studies have revealed a complex microbial ecosystem

within the airways and lung tissues that serves as a “gatekeeper”

of respiratory health (Morris et al., 2013; Venkataraman et al.,

2015). Imbalances in these microbiota are associated with various

respiratory diseases, including COPD, asthma, and cystic fibrosis

(Huang et al., 2015; Li et al., 2017), with changes in microbial

communities correlating with reduced lung function (Wang et al.,

2019; Zhang et al., 2023). However, research on microbiome

changes induced by heavy metal exposure has primarily focused on

the gut flora, with limited studies exploring the interaction between

respiratory microbiota and heavy metal exposure.

Based on the above, we hypothesize that combined exposure

to nickel, copper, and arsenic induces dose-dependent lung injury

through disruption of the respiratory microbiota. Such exposure

is expected to alter the composition and function of airway

microbial communities, leading to reduced microbial diversity and

the enrichment of pollutant-tolerant taxa. These microbial shifts

may contribute to or mediate the observed decline in lung function,

suggesting a potential link betweenmicrobiota dysbiosis andmetal-

induced pulmonary toxicity.

In this study, we evaluated lung structure and functional

parameters and profiled the respiratory microbiota in rats exposed

to varying concentrations of mixed heavy metal aerosols. The

objective was to investigate the impact of combined heavy metal

exposure on pulmonary injury and to elucidate the potential

role of BALF microbiota dysbiosis in this process. This study

will provide a novel perspective on pollution-induced respiratory

dysfunction and support future efforts toward microbiota-

informed environmental health policies.

2 Materials and methods

2.1 Animal exposure programs

Our research team has long focused on the health impacts of

heavy metal pollution in an industrial region northwest of China.

Based on our atmospheric monitoring data (Table 1), nickel (Ni),

copper (Cu), and arsenic (As) were identified as the predominant

metals in atmospheric PM2.5 from the industrial zone, with average

concentrations of 210.90 ± 18.70 ng/m3 for Ni, 108.35 ± 8.21

ng/m3 for Cu, and 104.60 ± 8.38 ng/m3 for As. These values were

significantly higher than those observed in a nearby non-industrial

area (3.24± 0.34 ng/m3 for Ni, 4.67± 0.31 ng/m3 for Cu, and 7.61

± 0.66 ng/m3 for As) (P < 0.01).

Based on these findings, we designed three exposure groups,

using the concentrations of Ni, Cu, and As detected in the ambient

TABLE 1 The PM2.5 concentration and metal content in ambient air in the

study area.

Composition Industrial
area

Non-industrial
area

P

PM2.5 (µg/m
3) 44.67± 2.92 46.80± 3.08 >0.05

Ni (ng/m3) 210.90± 18.70 3.24± 0.34 <0.01

Cu (ng/m3) 108.35± 8.21 4.67± 0.31 <0.01

As (ng/m3) 104.60± 8.38 7.61± 0.66 <0.01

Data are presented as mean ± standard error (SE). Statistical comparisons between

contaminated and control areas were performed using two-sample t-tests.
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PM2.5 of the industrial region as the reference for the low-dose

group (Table 1). The medium and high doses were set at 5 and 10

times the low-dose level, respectively. To replicate environmental

exposure conditions, an aerosol mixture was prepared using nickel

sulfate hexahydrate (NiSO4·6H2O), copper sulfate pentahydrate

(CuSO4·5H2O), and sodium arsenite (NaAsO2), dissolved in

deionized water and aerosolized with a nebulizer for controlled

inhalation delivery.

Thirty-two SPF-grade SD male rats, aged 6–8 weeks and

weighing between 180–220 g, were purchased from the Laboratory

Animal Center of Lanzhou University. The rats were randomly

assigned to four groups (n= 8 per group): control group (GroupC),

low-dose group (Group L), medium-dose group (Group M), and

high-dose group (GroupH). Group Cwas housed in a conventional

laboratory environment without aerosol atomization exposure,

while Groups L, M, and H were respectively placed in isolated

chambers within a transparent exposure box for aerosol exposure

to solutions of varying concentration gradients (Figure 1). The

transparent exposure boxmeasured 0.5m× 0.3m× 0.35m (length

× width × height), and contained a mesh fence to separate the

box into isolated chambers to prevent rats from aggregating and

burying their mouths and noses into each other’s hairs (similar to

“wearing a mask”), which would affect the effect of the exposure

to the aerosol. The right side of the chamber was connected to a

nebulizer serving as the inlet of the heavy metal aerosol mixture,

while the left side was connected to a particle sampler to monitor

the aerosol concentration in the exposure chamber.

The exposure was conducted twice daily, with each session

lasting 1 h. After each exposure, the rats were returned to their

cages. The exposure protocol spanned 90 days and was performed

in a fume hood connected to handling and collection units. The

ambient temperature was maintained at 18–26◦C, and the relative

humidity at 40%−70%.

2.2 Non-invasive lung function assessment
in rats

Within 24 h of completing exposure, lung function was assessed

non-invasively in all rats using the NAM system (DSI BUXCO,

USA). Eight rats per group were individually placed in the

cavity for 10min to acclimate, after which relevant parameters

were recorded, including respiratory rate (f), tidal volume (Tv),

specific airway resistance (sRaw), airway resistance (Raw), maximal

inspiratory flow rate (PIF), maximal expiratory flow rate (PEF),

functional residual air volume (Frc), and expiratory flow rate at

mid-expiration (EF50).

2.3 Collection of rat bronchoalveolar
lavage fluid and lung tissue

Bronchoalveolar lavage fluid (BALF) was collected from one

lung of each rat, with the contralateral lung harvested for tissue

analysis. Rats were anesthetized with an intraperitoneal injection

of 0.3 ml/100 g chloral hydrate, and the trachea and lungs were

exposed. The epidermis of the animals was sterilized with 75%

ethanol, and sterilized grade surgical instruments were used

throughout. Under sterile conditions, the thoracic cavity was

opened, and one lung was ligated at the bronchus for isolation.

A tracheal cannula was inserted into each rat, and 10ml of

phosphate-buffered saline (PBS) was slowly injected into the lungs,

with a dwell time of 30–60 seconds instillation. The lavage was

repeated 2–3 times, and the recovered BALF was transferred to a

sterile test tube, centrifuged to separate the cells and supernatant,

and the supernatant was stored in a −80◦C refrigerator for

subsequent analysis. Concurrently, lung tissues were washed with

saline and divided into two parts. One portion was fixed in

4% paraformaldehyde solution for hematoxylin and eosin (H&E)

staining, while the other was snap-frozen in liquid nitrogen and

stored at−80◦C for heavy metal analysis.

2.4 Lung histopathology

Fixed rat lung tissues were dehydrated with alcohol and xylene,

embedded in paraffin, and sectioned into 3–5µm thin slices

using a machine. The sections were stained with hematoxylin

and eosin (H&E), coverslipped, and examined microscopically for

histopathological analysis.

FIGURE 1

Schematic representation of aerosol exposure in mice.
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2.5 Determination of heavy metals in rat
lung tissue

Heavy metal concentrations in lung tissue were determined

using inductively coupled plasma mass spectrometry (ICP-MS)

technique. Approximately 20–30mg of lung tissue was digested

in 10ml of concentrated nitric acid using a microwave digestor

for 1 h. After cooling and acid evaporation, the digestate was

diluted, filtered, and analyzed for Ni, Cu, and As concentrations

by ICP-MS.

2.6 16S rDNA sequencing of rat alveolar
lavage fluid

Bacterial genomic DNA was extracted in BALF using the

Mabiote Bacterial DNA Mini Kit, and the concentration and

quality of the extracted genomic DNA were assessed with a

Thermo Scientific Nanodrop One (Thermo Fisher Scientific, MA,

USA). For each group, only BALF samples with qualified bacterial

DNA were selected for 16S rRNA gene sequencing, while those

with insufficient DNA quality or quantity were excluded to

reduce contamination risks and ensure data reliability (Saladié

et al., 2020; Baker et al., 2021). The V3-V4 region of 16S

rDNA was amplified using the Illumina HiSeq platform with

amplification primers 338F (5
′

-ACTCCTACGGGGAGGCAGCA-

3
′

) and 806R (5
′

-GGACTACHVGGGTWTCTAAT- 3
′

). Each

amplification reaction consisted of denaturation at 98◦C for 30

seconds, followed by 30 cycles of amplification (10 seconds

at 98◦C, annealing at 50◦C for 30 seconds, and extension at

72◦C for 1min), concluding with a final extension at 72◦C for

2min. Amplicons were purified PCR amplicons from agarose

gels and sequenced. Raw sequencing data were processed using

QIIME2 (version 2020.11.0), including trimming of low-quality

sequences and quality filtering with Cutadapt. Paired-end reads

were assembled by FLASH 1.2.11. The Raw Tags sequence quality is

filtered by using fastp (an ultra-fast all-in-one FASTQ preprocessor,

version 0.14.1). Performs sliding window quality clipping (-W

4 -M 20) on Raw Tags data to obtain valid splicing fragments

(Clean Tags).

For each sample, we used Deblur to process sequences, identify

amplicon sequence variants (ASVs), and assign ASVs to taxonomic

taxa (Amir et al., 2017).

2.7 Statistical analysis

We conducted dilution curve analysis and calculated multiple

alpha diversity indices, including Chao1, ACE, Shannon_e,

Simpson, Richness, Jost, dominance, Good’s-coverage, and

PD_whole_tree indices. The Kruskal-Wallis rank-sum test was

applied to compare alpha diversity differences across groups.

Beta diversity analysis was employed to assess differences in

species composition and structural organization among various

biomes. A distance matrix was constructed to calculate the

distances between biological communities for principal coordinate

analysis (PCoA). β diversity was visualized using PCoA based on

the ASV abundance table, utilizing the vegan package1 in R. The

Bray-Curtis, weighted-UniFrac, and unweighted-UniFrac distance

algorithms were applied.

Differences in bacterial community composition were assessed

using PCoA at the ASV level, with Bray-Curtis, weighted and

unweighted UniFrac distance metrics. Statistical significance was

assessed by analysis of similarity (ANOSIM). Linear discriminant

analysis of effect size (LEfSe) was applied to identify biomarkers

that could lead to differences between the four groups, with

LDA scores >3.5 as the threshold for distinguishing significantly

different taxa. Concentration of Ni, Cu, and As in rat lung tissue

was quantified, and their associations with lung function and

respiratory microbial communities were investigated. To assess

functional differences in metabolic pathways, microbial functional

genes were predicted using the KEGG database.

All statistical analyses were performed using SPSS (version

26.0) and R (version 4.2.2). The Mantel test2 implemented in

R was used to calculate correlation coefficients between the

environmental factor matrix and community composition matrix,

assessing significant correlations existed and the influence of

environmental factors on community structure. Distance matrix

calculations employed the Manhattan, Euclidean, and Bray-Curtis

distance algorithms.

2.8 Microbial ecological networks analysis

Bacterial molecular ecological networks (MENs) in the BALF

were constructed using the Integrated Network Analysis Pipeline

(iNAP) (Feng et al., 2022), an online tool for ecological

network analysis. Networks were inferred using the Meinschausen-

Buhlmann (MB) neighborhood selection method, implemented

through the SParse InversE Covariance Estimation (SPEIC-EASI)

algorithm (Kurtz et al., 2015). The resulting networks were further

explored and visualized with Gephi (Bastian et al., 2009), an

interactive platform, utilizing the Fruchterman-Reingold layout,

which provides an intuitive representation of network structures.

During network construction, only ASVs detected in >80%

of samples were retained to ensure reliability and minimize noise.

Key topological parameters and node scores were calculated using

Gephi,3 including average degree (number of edges per node,

reflecting connectivity), average path length (shortest distance

between two nodes), network diameter (longest path between

nodes), and clustering coefficient (degree of interconnection among

a node’s neighbors, indicating localized density). Community

structure was identified by optimizingmodularity, which quantified

the strength of division into distinct clusters or modules. Networks

with higher modularity exhibited dense intra-cluster connections

and sparse inter-cluster connections, signifying distinct functional

or ecological groupings.

Keystone taxa were identified based on Gephi-calculated

parameters: degree >7, harmonic closeness centrality >0.28,

and betweenness centrality <0.18 (Banerjee et al., 2019). The

1 https://github.com/vegandevs/vegan

2 https://github.com/Hy4m/linkET

3 https://gephi.org/
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TABLE 2 Change in body weight of rats in each group.

Groups Starting
weight (g)

Final weight
(g)

t P

C 190.5± 14.7 416.4± 22.7 22.36 <0.01

L 195.3± 8.7 391.8± 22.4 26.22 <0.01

M 190.8± 9.4 382.2± 32.3 20.65 <0.01

H 189.7± 7.9 373.6± 38.02 14.41 <0.01

Average weight in each group (n= 8). The T and P values are the values obtained after paired

t-tests of the body weight of each group of mice before and after exposure. Data were shown

as mean± SE.

TABLE 3 Changes in heavy metal content in the lungs of rats in various

groups (mg/kg).

Metals Group C Group L Group M Group H

Ni 0.17± 0.11 1.21± 0.75∗ 1.34± 0.10# 1.55± 0.72∗&

Cu 1.05± 0.06 1.32± 0.54∗ 1.52± 0.53∗ 1.68± 0.57∗

As 2.12± 0.28 2.19± 0.38∗ 3.94± 0.40∗#& 4.55± 0.61∗#&

∗Represents statistically significant differences in the other three groups compared with group

C. &Stands for Group M and H with statistically significant differences compared with Group

L. #Represents a statistically significant difference between Group H and GroupM (P < 0.05).

Data were shown as mean± SE.

degree distribution was wide, with the highest degree (up to 18)

representing <1% of nodes, and approximately 20% of nodes had

degrees >7. Consequently, the degree threshold was adjusted from

10 to 7 to capture relevant taxa.

Microbial functions were predicted using DESeq2 for

differential abundance analysis (McCarthy et al., 2012) and the

Kyoto Encyclopaedia of Genes and Genomes (KEGG) database

for metabolic pathway analysis (Kanehisa et al., 2017). KEGG

enrichment analysis was performed using the clusterProfiler R

package (Wu et al., 2021).

The correlation network map, correlation heat map, KEGG

enrichment analysis and functional prediction volcano map among

microbiota were generated using ChiPlot4 (accessed January 2025).

For clarity, all abbreviations used in this manuscript are provided

in Supplementary Table S1.

3 Results

3.1 General status and weight

Rats in Group L displayed normal behavior. Group M showed

dull fur, reduced mobility, and occasional sneezing. Group H

experienced fur thinning, nasal bleeding, respiratory distress,

lethargy, and decreased food and water intake, worsening over

time. Although all groups of rats gained weight (Table 2), the

control group began to gain more weight than the other groups

after 6 weeks of exposure, which may indicate that heavy metal

exposure slowed down the rate of body weight gain. However,

differences in body weight gain among groups were not statistically

significant (P > 0.05).

4 https://www.chiplot.online/

3.2 Levels of Ni, Cu, and As in rat lung tissue

As shown in Table 3, the concentrations of Ni and As in rat

lung tissues exhibited significant increases with escalating exposure

doses of the mixed aerosol, culminating in the highest levels in the

H group (P < 0.01). In contrast, although the overall comparison

across all groups did not reveal significant differences in Cu levels

(P = 0.352), pairwise comparisons between each experimental

group and the control group unveiled significant elevations in

Cu concentrations in the experimental groups (P < 0.05). These

results underscore that varying doses of Ni and As aerosol exposure

significantly augment the accumulation of these heavy metals in

rat lungs.

3.3 Lung inflammation and lung function
di�erences

In Group C, the respiratory tract and alveolar structures

remained intact with no abnormal changes. Group L rats

exhibited mild inflammation and vasodilation. Group M rats

displayed enlarged alveoli, thickened bronchial walls, epithelial cell

detachment, and moderate inflammation. Group H rats showed

severe lung and bronchial damage, with disorganized alveolar and

bronchial structures and abundant inflammatory cell infiltration.

The number of dust cells increased progressively with higher

exposure doses (Figure 2).

With increasing heavy metal exposure, respiratory frequency

(f), airway resistance (sRaw, Raw), and functional residual capacity

(FRC) tended to increase, whereas tidal volume (Tv), peak

inspiratory flow rate (PIF), peak expiratory flow rate (PEF), and

flow rate at 50% expiration (EF50) decreased (Figure 3).

FRC was positively correlated with lung arsenic (As)

concentration, and f, sRaw, and Raw were positively correlated

with Ni and As concentrations. Tv was negatively correlated

with As concentration, and PIF, PEF, and EF50 were negatively

correlated with Ni and As concentrations. The correlation between

As and lung function was stronger than that with Ni, while copper

(Cu) concentrations showed no significant correlations with lung

function indices (Figure 4).

3.4 Bacterial population structure in
alveolar lavage fluid of rats

The abundance clustering heatmap (Figure 5A) visually

depicts microbial community abundances. Darker regions indicate

higher microbial abundance, while lighter regions signify lower

abundance. In Group C, microbial abundance showed a relatively

uniform distribution, reflecting the maintenance of typical

microbial communities in animals without pollutant exposure.

In Group L, microbial abundances were relatively balanced, with

minor increases in certain ASVs compared to the control group

but minimal overall changes. Group M exhibited greater variability

in microbial abundance, with a marked increase in specific

ASVs, such as ASV_10 and ASV_7. Group H demonstrated a

more concentrated distribution, with significant increases in
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FIGURE 2

Pathological section of lung injury stained with hematoxylin and eosin (HE), observed under a light microscope at 10 × 40 magnification; Control

group (A); Low-dose group (B); Medium-dose group (C); High-dose group (D); Blue arrows point to dust cells and red arrows to inflammatory cells.

specific ASVs like ASV_201 and ASV_6. Overall, the microbial

communities in the M and H groups underwent significant

restructuring, with certain groups showing pronounced increases

in abundance while others decreased ormaintained low abundance.

At the phylum level (Figure 5B), Proteobacteria, Firmicutes, and

Actinobacteriota were identified as the dominant phyla across all

groups. The abundance of Proteobacteria significantly increased

in Groups L and M but decreased significantly in Group H. In

contrast, Firmicutes and Actinobacteriota exhibited the opposite

trend, showing significant decreases in Groups L and M and

significant increases in Group H.

At the genus level, the top 10 genera in terms of relative

abundance in the lower respiratory microbial community were

identified, with the top five genera being Ralstonia, Pseudomonas,

Achromobacter, Burkholderia-Caballeronia-Paraburkholderia,

and Corynebacterium.

Across dose groups, the relative abundance of genera

exhibited distinct patterns. Between Group C and Groups

L and M, a gradual increase in the relative abundance of

Ralstonia and Pseudomonas was observed with increasing exposure

doses. Conversely, the relative abundance of Achromobacter and

Burkholderia-Caballeronia-Paraburkholderia showed a decreasing

trend. Upon further dose escalation, Group H demonstrated

diverse changes in community structure. The relative abundance

of Pseudomonas increased, while Ralstonia decreased. Additionally,

less abundant genera, such as Lactobacillus, Corynebacterium,

and Atopostipes, exhibited increased relative abundance, reflecting

altered community diversity (Figure 5C).

LEfSe analyses based on relative abundance data were

performed to identify bacterial taxa represented by differences

between groups. The LDA bar plot results (Figure 6A) revealed

significant bacterial taxa associated with each group (LDA

threshold ≥ 3.5). In Group C, Bacteroidota, Clostridiales,

Bacteroides, Weissella, and Nosocomiicoccus were significantly

enriched, suggesting a dominance of anaerobic and gut-associated

taxa. Group L showed increased abundance of Proteobacteria,

particularly Sphingomonadales and Sphingomonadaceae. Group M

was defined by Burkholderiales, Burkholderiaceae, and Ralstonia.

In contrast, Group H exhibited a broader range of differential

taxa, including Firmicutes, Bacilli, Lactobacillales, Actinobacteriota,

and genera such as Atopostipes, Aerococcus, Psychrobacter,

and Enteractinococcus.

The cladogram (Figure 6B) illustrates the taxonomic

distribution of significantly different microbial taxa across

groups. The node colors corresponded to the colors in the LDA

bar plot, with each color representing significant taxa for a specific

group. The central part of the cladogram demonstrated differences

among the groups at higher taxonomic levels, such as phylum,

class, and order. For example, in Group C, Bacteroidota,

Clostridiales, and Staphylococcales dominated. However,

Firmicutes (Bacilli and Lactobacillales) and Actinobacteriota

exhibited higher abundance in Group H, while Proteobacteria
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FIGURE 3

Pulmonary function parameters of rats in each exposure group (n = 8 per group). Bar graphs show mean ± standard error (SE) for each index.

Statistical analysis was performed using a one-way ANOVA test; *P < 0.05, **P < 0.01, ***P < 0.001 compared to control (Group C).

(Gammaproteobacteria, Burkholderiales, and Sphingomonadales)

were significantly enriched in Group L and Group M, indicating

notable variations in the proportions of these major taxa

across exposure groups. The peripheral part of the cladogram

highlighted differences at lower taxonomic levels, such as genus

and species.
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FIGURE 4

Relationship between Ni, Cu, and As heavy metal concentrations and pulmonary function parameters in rats.

3.5 Bacterial diversity in alveolar lavage
fluid of rats

Alpha diversity analysis revealed significant differences in

species richness across groups. The Richness, ACE, and Chao1

indices (Figures 7A–C) were significantly higher in Group C

compared to Groups L and M (P < 0.05 for all), indicating

a reduction in microbial richness following metal exposure.

Similarly, the PD_Whole_Tree index, reflecting phylogenetic

diversity, was significantly lower in the exposure groups relative to

Group C (P< 0.05), suggesting that inhaled heavymetals decreased

phylogenetic breadth (Figure 7D).
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FIGURE 5

Clustering of species relative abundance at the ASV level (A). Z-scores represent species abundance deviations from the mean across samples, with

red indicating higher abundance and blue indicating lower abundance. Hierarchical clustering trees show species and sample similarities; Relative

abundance of the rat lower respiratory tract microbiota at the level of phyla (B); relative abundance of rat lower respiratory tract microbiota at the

genus level (C). The top 10 phyla/genera are shown.

In contrast, community evenness and dominance showed

no significant group differences. Although the Dominance

index suggested a higher proportion of dominant species

in Group H and the Jost index indicated slightly greater

evenness in this group, neither reached statistical significance

(P > 0.05; Figures 7E, F).

The Shannon_E and Simpson indices, which account for both

richness and evenness, showed a trend of decreasing diversity

from Group C to Group H. However, these changes were not

statistically significant (Shannon_E: P = 0.32; Simpson: P = 0.33;

Figures 7G, H).

Beta diversity was assessed using Principal Coordinates

Analysis (PCoA) based on Bray–Curtis dissimilarity. At the ASV

level (Figure 7I), the first two principal coordinates explained 77%

of the total variance (PCoA1: 51.5%; PCoA2: 25.5%). ANOSIM

results (R = 0.262, P = 0.017) indicated a moderate but significant

separation among the four groups, with Group C microbiota

clearly distinct from Group H, while Groups L and M showed

partial overlap.

At the genus level (Figure 7J), PCoA1 and PCoA2 explained

55.5% and 38.9% of the variance, respectively, accounting for 94.4%

of total variation. Group separation was more pronounced at this

taxonomic resolution, as supported by a higher ANOSIM R-value

(R = 0.529, P = 0.01), with clear divergence observed between

the control and exposure groups, especially between Group C and

Group H.

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1615130
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ding et al. 10.3389/fmicb.2025.1615130

FIGURE 6

Di�erential analysis of bacterial flora in the lower respiratory tract of rats based on LEfSe analysis. Histogram of linear discriminant analysis (LDA)

scores distribution (A). Taxa with LDA scores >3.5 are considered significantly enriched. Phylogenetic tree illustrating the distribution of significantly

di�erent microbial taxa across groups (B). The letters before the underscores represent, in order: phylum(p_), class(c_), order(o_), family(f_),

genus(g_), and species(s_).

3.6 Correlation of lower respiratory flora
with heavy metals and lung function

As shown in Figure 8, the network diagram represents

microbial genera and environmental/lung function parameters as

gray nodes. Green edges indicate significant correlations with

moderate strength (0.01 < P ≤ 0.05), while orange edges denote

stronger significant correlations (0.001 < P ≤ 0.01). Gray edges

represent statistically non-significant correlations (P > 0.05). The

type of correlation is further indicated by the line style: solid
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FIGURE 7

Alpha diversity index of lower respiratory tract microbiota in four groups of rats (A–H). Significance of di�erences between two groups was

determined using the Wilcoxon rank-sum test, while di�erences among multiple groups were assessed using the Kruskal-Wallis test. *P ≤ 0.05; **P ≤

0.01. PCoA analysis of lower respiratory tract microbiota in rats under the Bray-Curtis distance algorithm (I, J). ASV level (I) and Genus level (J). The

ANOSIM (Analysis of Similarities) test was employed to evaluate the significant di�erences in bacterial β-diversity across multiple groups. C-Group C;

L-Group L; M-Group M; H-Group H.

lines represent significant positive correlations, whereas dashed

lines indicate significant negative correlations. The line thickness

reflects the strength of the correlation (Mantel’s r), with thicker

lines indicating stronger correlations.

Several genera, including Achromobacter, Burkholderia-

Caballeronia-Paraburkholderia, Pseudomonas, Lactobacillus,

and Atopostipes, were notably correlated with heavy metal

concentrations (e.g., Ni and As) and lung function indicators.

Among them, Burkholderia-Caballeronia-Paraburkholderia

exhibited significant positive correlations with EF50 and PEF (P

≤ 0.01), suggesting a potential role in preserving lung function

under metal exposure. Pseudomonas showed a moderate positive

correlation with airway resistance (Raw) (P ≤ 0.05). In contrast,

Atopostipes showed a negative correlation with Ni and As exposure,

although these associations were not statistically significant (P >

0.05), implying a possible sensitivity of this genus to metal stress.

The heatmap further illustrates Pearson correlation coefficients

(r) between lung function parameters and metal concentrations.

Arsenic (As) levels were negatively associated with multiple lung

function indicators, with a significant inverse correlation observed

for PEF (∗∗P < 0.01), suggesting As exposure may impair airflow

capacity. Nickel (Ni) showed strong negative correlations with

EF50 and Raw (∗∗∗P < 0.001), indicating substantial impairment of

lung function at higher Ni concentrations. Conversely, copper (Cu)
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FIGURE 8

Heat map of the correlation network between lower respiratory tract microbiota, heavy metals, and lung function parameters in rats. *P ≤ 0.05; **P ≤

0.01; ***P ≤ 0.001. Edge color denotes significance level: green = P ≤ 0.05; orange = P ≤ 0.01; gray = not significant (P > 0.05). Edge style indicates

correlation direction: solid = positive, dashed = negative. Edge thickness reflects Mantel correlation strength.

exhibited moderate positive correlations with EF50 and PEF (∗P

< 0.05), suggesting a potential stimulatory effect on lung function,

possibly through metabolic activation mechanisms.

The “all species” node, representing the overall microbial

community, was significantly positively correlated with Ni (P ≤

0.01) and As (P ≤ 0.05), suggesting a community-wide response

to these metals. No significant correlation was found between

Cu levels and the overall community structure. Regarding lung

function, the “all species” node showed positive correlations with

breathing frequency (f) and functional residual capacity (Frc) (P

< 0.05), indicating that microbial community composition may

influence specific pulmonary parameters.

3.7 Functional prediction of respiratory
tract communities

Functional gene profiling revealed significant differences

among exposure groups. Kruskal–Wallis tests indicated that

pathways involved in xenobiotic biodegradation and metabolism

varied significantly across groups (P < 0.05), whereas core

metabolic pathways remained largely conserved (P > 0.05).

PICRUSt2 analysis based on KEGG annotations demonstrated

that metabolism dominated KEGG Level 1 functions across all

groups, accounting for approximately 80%−83% of the total

functional capacity. However, a slight reduction in metabolic

activity was observed in Group H, suggesting disruption of key

microbial functions. Genetic information processing (8%−9%)

and cellular processes (∼5%) showed mild but consistent dose-

dependent alterations.

At the KEGG Level 2 tier, although no pathways reached

statistical significance (P > 0.05), minor decreases in amino acid

metabolism and xenobiotic degradation were noted in the high-

dose group. More distinct patterns emerged at KEGG Level 3,

where five pathways—including ketone body synthesis, amino

acid biosynthesis, and fatty acid degradation—showed significant

differences (P < 0.05). The low-dose group (L) displayed elevated

gene abundances in several pathways, possibly reflecting adaptive

compensation, whereas the high-dose group (H) exhibited reduced

functional gene expression, indicative of impaired microbial

metabolic capacity.

KEGG enrichment analysis (Figure 9D) highlighted significant

upregulation in pathways related to biosynthesis of cofactors,

carbon metabolism, and amino acid biosynthesis, with high –log10

(Q-value) scores indicating robust enrichment. Additional

enrichment was observed in glycolysis/gluconeogenesis,

fructose and mannose metabolism, and amino sugar and

nucleotide sugar metabolism, possibly suggesting that heavy

metal exposure may trigger metabolic reprogramming
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FIGURE 9

Functional prediction of lower respiratory tract microbiota based on PICRUSt2 analysis with KEGG annotation. Analysis of the pathway composition

of the lower respiratory tract microbiota in rats (A–C). Level 1 pathway (A); Level 2 pathway (B); and Level 3 pathway (C). KEGG enrichment analysis

of BALF microorganisms in the experimental group and control group (D). KEGG function prediction volcano map of each experimental group

compared with the control group (E-G). Group L vs. Group C (E); Group M vs. Group C (F); and Group H vs. Group C (G). Significantly upregulated

(red) and downregulated (blue); non-significant (gray).

to maintain energy homeostasis and structural integrity.

Enrichment of the phosphotransferase system (PTS) and

bacterial secretion system pathways points to possible

microbial adaptation mechanisms involving nutrient uptake and

intercellular communication.

Figures 9E–G display volcano plots of KEGG Orthology

(KO) terms under different exposure levels. In both low-

dose (Figure 9E) and medium-dose (Figure 9F) groups,

downregulation was observed in pathways associated with

carbohydrate metabolism, signal transduction, and prokaryotic
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FIGURE 10

Ecological networks genera illustrating bacterial interactions in the Group Lo (A) and Group H (B) were constructed based on correlations among

bacterial ASVs. Each connection indicates a strong (Spearman’s r > 0.6) and significant (P < 0.01) correlation. The size of each node is proportional to

the number of connections, and the edge thickness is proportional to the weight of each correlation.

defense systems. Concurrently, upregulation occurred in

signal transduction, quorum sensing, and aminoacyl-tRNA

biosynthesis pathways, probably suggesting early microbial

responses to environmental stress. The medium-dose group

showed more pronounced downregulation in amino acid

degradation pathways such as valine, leucine, and isoleucine

metabolism, as well as in PTS and peptidase-related functions,

while upregulation was observed in amino acid biosynthesis and

peptidoglycan biosynthesis.

High-dose exposure (Figure 9G) resulted in the most

pronounced functional shifts. Notable upregulation was observed

in purine metabolism, ATP-binding cassette (ABC) transporters,

and ribosome biogenesis pathways, which may reflect enhanced

microbial activity associated with protein synthesis and cellular

stress responses. In contrast, pathways related to carbohydrate

metabolism, amino sugar metabolism, and quorum sensing were

significantly downregulated, suggesting potential impairments

in core metabolic and communication functions within the

microbial community.

3.8 Microbial ecological networks analysis
of bacterial interactions in BALF

To further explore the impact of Ni and As heavy metal

concentrations on microbial interactions and relationships,

ecological network analyses were conducted by ranking samples

based on heavy metal levels. The samples were divided into

low-dose (Lo, Figure 10A) and high-dose (Hi, Figure 10B) groups

at the 50% threshold. Nodes in the networks were annotated with

their corresponding phyla.

Network complexity differed significantly between the two

groups. Compared to the Lo group, the Hi group exhibited

a less complex network, characterized by fewer edges (367 vs.

521), fewer nodes (184 vs. 251), a lower average degree (3.989

vs. 4.719), and reduced modularity (0.712 vs. 0.823) (Table 4).

Keystone genera also differed between the groups. In the Hi

group, Atopostipes and Sporosarcina were identified as keystone

taxa, whereas in the Lo group, the keystones included Bacill,

Gammaproteobacteria, Alphaproteobacteria, and Acidimicrobiia.

While direct links between these genera and lung function or

damage are limited, the differences in keystone taxa suggest notable

shifts in microbial interactions between low-dose and high-dose

exposure groups.

Further analysis focused on the largest module in each network,

defined by the highest number of nodes. In the Lo group, Module

2 represented the largest module (25.6% of the network), while

in the Hi group, Module 3 dominated (39.67%). The dominant

genera in these modules varied as well, with the Lo group primarily

comprising genera such as Ralstonia, Lactobacillus, and Prevotella,

while the other group was predominantly composed of genera like

Atopostipes, Enteractinococcus, and Sporosarcina.

The network diagrams reveal that most relationships between

microbial taxa were positive, with only a small fraction displaying

negative correlations. Notably, negative relationships involved

genera such as Lactobacillus and Burkholderia-Caballeronia-

Paraburkholderia in their interactions with other taxa. These

changes in modularity and relationships suggest a reorganization

of microbial network structures under heavy metal exposure,
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TABLE 4 Topological properties of networks for the two groups.

Group Nodes Edges Modularity
(MD)

Clustering
coe�cient (CC)

Average path
length (APL)

Network
diameter (ND)

Average
degree (AD)

Lo 250 641 0.748 0.46 4.984 10 5.128

Hi 184 367 0.712 0.45 5.697 13 3.989

potentially reflecting the effects of environmental stress on

community functionality.

4 Discussion

This study investigated, for the first time, the effects of mixed

aerosol exposure to nickel (Ni), copper (Cu), and arsenic (As)

on rat lungs using high-throughput sequencing technology, and

analyzed the correlation with the respiratory microbiota. Although

the effects of combined heavy metal exposure on lung tissues

are an emerging field in air pollution research, the underlying

mechanisms remain unclear. The findings demonstrated that

sub-chronic combined exposure to mixed aerosols of Ni, Cu,

and As resulted in significant lung damage and reduced lung

function in rats. Additionally, combined exposure to these heavy

metals altered the composition of the respiratory microbiota.

Importantly, a significant association was found between changes

in several respiratory bacterial communities and decreased

lung function. Overall, this study reveals the potential role

of respiratory microbiota in lung function reduction induced

by combined heavy metal exposure and provides new insights

into the mechanisms underlying heavy metal-induced lung

function impairment.

Exposure to heavy metals may lead to reduced lung function

(Wu et al., 2022). After exposure to a mixture of three heavy metals,

rats in the M and H groups exhibited significant inflammatory

cell infiltration, thickening of alveolar walls, and deformation

of alveoli. These pulmonary injuries may impair airway patency

and affect lung ventilation function. Compared to the control

group, the airway resistance indicators (sRaw and Raw) in

the heavy metal exposure groups were significantly elevated. A

reduction in tidal volume can trigger a compensatory increase

in respiratory frequency in rats to maintain adequate ventilation

(Liu, 2022), consistent with our results. With escalating levels of

heavy metal exposure, compensatory pulmonary overexpansion

was observed, as indicated by a significant increase in functional

residual capacity (FRC) in the H group. FRC serves as an

indicator of lung overinflation (Laveneziana and Palange, 2012;

Aalstad et al., 2018); The PEF values in the exposure groups

were all lower than those in the control group, indicating that

combined heavy metal exposure exacerbates airway obstruction.

Peak inspiratory flow (PIF), which is influenced primarily by

respiratory muscle strength and airway patency, was also reduced

in exposed rats. This decline may be attributed to weakened

respiratory muscle function (Liu, 2022). Changes in muscle

strength and endurance should be interpreted dependent on

the density of slow muscle fibers (Fuso et al., 2012). Notably,

microvascular lesions primarily affect slow muscle fibers, thereby

impacting endurance. Our study shows that PIF decreases

with increasing heavy metal concentration, indicating that the

decline in lung function in rats due to heavy metals may

be related not only to increased airway resistance but also

to weakened respiratory muscle strength and complications in

lung microvasculature.

High-throughput sequencing confirmed sufficient data depth.

At the phylum level, Groups L and M showed increased

Proteobacteria and decreased Firmicutes and Actinobacteria,

consistent with findings in PM2.5 and ventilation-exposed animal

models, and patients with respiratory diseases like asthma and

COPD (Hilty et al., 2010; Chen, 2022). In contrast, Group

H had lower Proteobacteria and higher Firmicutes, suggesting

that high heavy metal levels may suppress sensitive taxa while

favoring resistant ones. This pattern aligns with studies reporting

Proteobacteria decline and Firmicutes enrichment under heavy

metal stress (Duan et al., 2024; Jin et al., 2024). Increased Firmicutes

in Group H may reflect ecological adaptation or selective pressure.

Minor phyla remained stable, indicating limited responsiveness.

At the genus level, Ralstonia, Pseudomonas, andAchromobacter

dominated. In Group H, Pseudomonas increased while Ralstonia

declined. Rare genera such as Lactobacillus, Corynebacterium,

and Aerococcus also increased, possibly indicating adaptive or

protective roles under metal stress. Then, the high relative

abundance of Group H for Pseudomonas may reflect selective

environmental pressure. If certain metals or pollutants favor

Pseudomonas growth and inhibit Ralstonia, Pseudomonas’ relative

abundance would rise (Choudhary and Sar, 2016). This could

be due to Pseudomonas’ stronger adaptability and more efficient

metal-resistance mechanisms (Adhikary et al., 2019).

Alpha diversity indices (ACE, Chao1, PD) showed significant

reductions in richness and phylogenetic diversity in exposure

groups, especially under high-dose exposure, in line with previous

research on cadmium and air pollution (Tao et al., 2020; Laiman

et al., 2022). Shannon_E and Simpson indices indicated lower

diversity and evenness, with a dose-dependent decline. However,

changes in dominance were not statistically significant, though

trends pointed to enrichment of resistant genera like Burkholderia

and Pseudomonas (Awais et al., 2024). Beta diversity (PCoA)

showed clear group separation. The high-dose group had the

greatest dispersion, indicating disrupted microbial stability and

increased heterogeneity, likely due to selective pressure favoring

metal-resistant taxa and suppressing sensitive ones. Genus-level

resolution revealed stronger group differences than ASV-level,

highlighting taxonomic restructuring. These results echo NMDS-

based studies on polluted soils showing increased heterogeneity

under heavy metal stress (Wen et al., 2024).
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The LDA analysis (Figure 6A) revealed dose-dependent

community shifts. In Group C, Bacteroidota and Bacilli (e.g.,

Weissella) predominated, consistent with a stable, anaerobe-

dominated community, suggesting a relatively stable microbiota.

Low-dose exposure caused minimal structural changes, while

medium-dose exposure enriched resistant taxa like Proteobacteria.

In the high-dose group, enrichment broadened to include

multiple phyla (Firmicutes, Actinobacteriota) and opportunistic

genera such as Atopostipes, Aerococcus, and Psychrobacter,

suggesting a possible shift toward dysbiosis and colonization

by opportunistic or environmental bacteria. The cladogram

(Figure 6B) further confirmed phylogenetic divergence across

groups, highlighting the distinct microbial signatures induced

by increasing metal burden. These patterns align with previous

findings that heavy metal exposure can reduce microbial diversity,

disrupt metabolic function, and promote inflammatory responses

(Giambò et al., 2021). Consistent with our observations, study

reported that rising Ni, Cu, and As sharply lower α-diversity and

favor metal-tolerant generalists (e.g., Gammaproteobacteria,

Bacillus) as keystone generalists, simplifying microbial

networks under heavy-metal stress (Qi et al., 2022). Together,

these findings suggest that heavy metal exposure-associated

alterations in the lower airway microbiome might contribute to

compromised mucosal immunity and increased susceptibility to

lung injury.

The Mantel Test (Figure 8) provided critical insights into the

relationships between microbial genera, environmental factors,

and lung function parameters, highlighting the complex interplay

between microbiota and heavy metal exposure. Genera such as

Achromobacter, Burkholderia-Caballeronia-Paraburkholderia, and

Pseudomonas were significantly positively correlated with heavy

metal concentrations like Ni and As. Notably, Burkholderia

was linked to better respiratory parameters, possibly due to its

robust oxidative stress defenses and detoxification systems (Eissa,

2024), which have been shown to enhance bacterial survival

and support host adaptability. Pseudomonas was moderately

correlated with Raw, reflecting its adaptive capacity in polluted

environments. Conversely, Atopostipes showed a non-significant

negative correlation with Ni and As, hinting at suppression

under metal stress, aligning with reports of metal-induced

microbial imbalance and inflammation (Popov Aleksandrov

et al., 2021). However, while Pseudomonas may help maintain

ecological stability, its pathogenic potential, particularly in

chronic lung diseases such as COPD, cannot be overlooked

(Jingsheng et al., 2023). Correlation analysis with the three

heavy metals Ni, Cu, and As revealed that Lactobacillus,

Corynebacterium, and Atopostipes were positively correlated with

Ni, while Achromobacter and Pseudomonas were positively

correlated with As (Figure 8). Lactobacillus, known for its

immunomodulatory effects (Huang et al., 2014), may support

lung health through the gut-lung axis (Heeney et al., 2018). In

contrast, Corynebacterium and Actinobacteria—frequently found

in respiratory infections—may indicate potential pathogenicity

under environmental stress (Sze et al., 2015; Li H. et al.,

2019).

Functional prediction using PICRUSt2 (Figures 9A–C)

revealed that core metabolic pathways, including carbohydrate

metabolism, amino acid metabolism, and lipid metabolism,

were largely conserved across all groups (P > 0.05). Heavy

metal exposure can impair the metabolic potential of microbial

communities, thereby disrupting host nutrient absorption,

energy metabolism, and respiratory health (He et al., 2020;

Liu et al., 2024). In our study, compositional differences

in the BALF microbiota across exposure groups suggested

that microbial community structure is sensitive to heavy

metal stress, necessitating further investigation into functional

gene diversity.

The KEGG enrichment analysis (Figure 9D) demonstrates

a significant perturbation in metabolic pathways, particularly

those associated with carbohydrate metabolism, amino acid

biosynthesis, and energy production processes. The most

significantly enriched pathways included biosynthesis of

amino acids, carbon metabolism, and pyruvate metabolism,

aligning with previous studies that indicate microbial

communities respond to heavy metal stress by enhancing

essential metabolic pathways to maintain cellular stability and

energy homeostasis (Prabhakaran et al., 2016; Ayangbenro and

Babalola, 2017). The enrichment of pathways related to bacterial

secretion systems and cationic antimicrobial peptide (cAMP)

resistance suggests that microbial communities are actively

deploying defense mechanisms against environmental stress,

particularly under toxic metal exposure conditions (Patil et al.,

2024).

In the differential expression analysis (Figures 9E–G),

significant differences were observed across experimental

groups. Low-dose exposure predominantly affected genes

involved in signal transduction, prokaryotic defense systems, and

carbohydrate metabolism. At medium doses, genes related to

amino acid biosynthesis, branched-chain amino acid degradation

(valine, leucine, isoleucine), and membrane transport via the

phosphotransferase system (PTS) were enriched. In contrast, high-

dose exposure triggered a pronounced microbial stress response,

with upregulation of purine metabolism, ABC transporters, and

ribosome biogenesis, indicating a shift toward protein synthesis

and cellular repair mechanisms, typical of environmental stress

adaptation. These findings align with previous reports that

metals such as mercury (Hg), arsenic (As), and cadmium (Cd)

can activate detoxification pathways, where metal-glutathione

complexes are expelled through ABC transporters to alleviate

toxicity (Pearson and Cowan, 2021). Study demonstrated that

microbial systems often trade off metabolic efficiency for stress

survival, reallocating resources toward protective pathways under

adverse conditions (Escoll and Buchrieser, 2019). Such adaptive

responses may have broader implications for microbial ecology

and environmental resilience.

Ecological network analysis revealed thatmicrobial interactions

in the high-dose exposure group (Hi) were significantly simplified,

as evidenced by a reduction in network nodes and edges.

This suggests that high concentrations of nickel and arsenic

suppress sensitive microbial taxa, thereby reducing microbial

diversity and weakening overall community connectivity. Such

network simplification is indicative of ecological stress and

aligns with prior findings showing that heavy metal exposure

exerts strong selective pressure, favoring metal-tolerant species
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while inhibiting sensitive groups. Similar patterns have been

observed in other environmental studies, where pollutants such

as polycyclic aromatic hydrocarbons (PAHs) and heavy metals

led to reduced microbial network complexity and stability,

ultimately making ecosystems more vulnerable (Wang et al.,

2024). These changes underscore a shift in community structure,

with cooperative interactions being replaced by competitive

or stress-adaptive dynamics. For instance, the decline of

sensitive genera like Acidobacteria and Verrucomicrobia has

been previously reported under heavy metal stress, contributing

to lower modularity and increased inter-species competition

(Ma et al., 2020). In our study, this trend is further reflected in

the shift of keystone genera from Lactobacillus and Ralstonia

in the low-dose group to stress-adaptive genera such as

Atopostipes and Sporosarcina in the high-dose group. These

findings highlight how heavy metal exposure not only simplifies

microbial networks but also reorganizes keystone taxa, potentially

altering key ecological functions such as nutrient cycling and

immune regulation.

This study also has several limitations that warrant

consideration. First, the lack of single-metal exposure groups

prevents the differentiation of independent effects and interactions

among the heavy metals in mixed exposure. Future studies should

include single-metal exposure groups to clarify these contributions

and provide more comprehensive insights. Second, Sample sizes

(n = 5 for each group) may limit the generalizability of our

conclusions, we plan to increase sample sizes in future experiments

to enhance the robustness and reproducibility of our results. Third,

while 16S rDNA sequencing offered valuable functional predictions

of the lower respiratory microbiota, the absence of direct validation

through metabolomics, transcriptomics, or functional assays limits

the ability to confirm the predicted microbial functions and their

relevance to host physiology. Incorporating high-throughput

techniques and metabolite detection in future studies could

enhance the understanding of microbial functional changes under

heavy metal stress. Additionally, the study relies on endpoint

data without capturing the temporal progression of microbial

dysbiosis and its link to lung injury, highlighting the need for

longitudinal analyses.

5 Implications and future perspectives
of this study

This study reveals that exposure to heavy metals such as

Ni, Cu, and As induces specific disruptions in the respiratory

microbiota of rat BALF, including the enrichment of Pseudomonas

and Burkholderia and depletion of Ralstonia, which may act

as early biomarkers of dysbiosis linked to lung dysfunction.

Unlike previous work focused on gut microbiota or general

respiratory inflammation, our study highlights for the first time

the distinct compositional and predicted functional alterations

of the lower-airway microbiota under co-exposure to multiple

metals. Although based on 16S rRNA data, our findings provide

new insights into potential microbial symbioses and their

association with host injury, offering a basis for hypothesis-

driven mechanistic research. Future studies applying multi-omics

and longitudinal models are essential to establish causality and

delineate microbial contributions to lung injury. These results

also support the integration of microbiota-sensitive endpoints into

air pollution toxicology and regulatory frameworks, emphasizing

the need for strengthened emission controls, metal-specific

PM2.5 monitoring, and early-warning strategies tailored to

vulnerable populations.

6 Conclusion

This study demonstrates that mixed exposure to nickel (Ni),

copper (Cu), and arsenic (As) induces significant, dose-dependent

lung injury and alters the composition and diversity of the

lower respiratory tract microbiota in rats. The exposure led

to microbial dysbiosis, characterized by enrichment of metal-

tolerant genera such as Pseudomonas and Burkholderia, and

depletion of sensitive taxa including Ralstonia and Actinobacteria.

These microbial changes were closely associated with impaired

lung function, suggesting a potential mechanistic link. Ecological

network analysis further revealed simplified microbial interactions

and a shift in keystone taxa under high-dose exposure. Although

the exact mechanisms remain to be clarified, these findings

highlight the impact of heavy metal exposure on respiratory

microecology and support the need for stricter environmental

control, particularly of Ni and As emissions, as well as further

studies to explore microbiota-based strategies for mitigating

lung injury.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found below: https://www.ncbi.nlm.

nih.gov/, PRJNA1253313.

Ethics statement

The animal study was approved by the Ethical Committees

of the School of Public Health, Lanzhou University. The study

was conducted in accordance with the local legislation and

institutional requirements.

Author contributions

PD: Writing – review & editing, Writing – original draft, Data

curation. XW: Funding acquisition, Writing – review & editing,

Writing – original draft. NL: Writing – review & editing, Data

curation, Writing – original draft. SY: Data curation, Writing

– review & editing. YZ: Writing – review & editing, Data

curation. JY: Data curation, Writing – review & editing. TT:

Writing – review & editing. RC: Writing – review & editing. BL:

Writing – review & editing. LM: Writing – review & editing,

Conceptualization, Funding acquisition. RZ: Writing – review &

editing, Conceptualization.

Frontiers inMicrobiology 17 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1615130
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ding et al. 10.3389/fmicb.2025.1615130

Funding

The author(s) declare that financial support was received

for the research and/or publication of this article. This research

was funded by the National Training Program of Innovation

and Entrepreneurship for Undergraduates (202410730173), the

Fundamental Research Funds for the Central Universities of China

(lzujbky-2024-1) and the Scientific Research Project of Health

Industry in Gansu Province (GSWSKY2023-15).

Acknowledgments

The authors thank Professor Aimin Yang (Department of

Medicine and Therapeutics, The Chinese University of Hong

Kong) for English modification.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fmicb.2025.

1615130/full#supplementary-material

References

Aalstad, L. T., Hardie, J. A., Espehaug, B., Thorsen, E., Bakke, P. S., Eagan,
T. M. L., et al. (2018). Lung hyperinflation and functional exercise capacity in
patients with COPD - a three-year longitudinal study. BMC Pulm. Med. 18:187.
doi: 10.1186/s12890-018-0747-9

Adhikary, A., Kumar, R., Pandir, R., Bhardwaj, P., Wusirika, R., and Kumar, S.
(2019). Pseudomonas citronellolis; a multi-metal resistant and potential plant growth
promoter against arsenic (V) stress in chickpea. Plant Physiol. Biochem. 142, 179–192.
doi: 10.1016/j.plaphy.2019.07.006

Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Zech
Xu, Z., et al. (2017). Deblur rapidly resolves single-nucleotide community sequence
patterns.mSystems 2:00191-16. doi: 10.1128/mSystems.00191-16

Awais, M., Xiang, Y., Shah, N., Bilal, H., Yang, D., Hu, H., et al. (2024).
Unraveling the role of contaminants reshaping the microflora in zea mays seeds
from heavy metal-contaminated and pristine environment. Microb. Ecol. 87:133.
doi: 10.1007/s00248-024-02445-5

Ayangbenro, A. S., and Babalola, O. O. (2017). A new strategy for heavy metal
polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public
Health 14:94. doi: 10.3390/ijerph14010094

Baker, J. M., Hinkle, K. J., McDonald, R. A., Brown, C. A., Falkowski, N. R.,
Huffnagle, G. B., et al. (2021). Whole lung tissue is the preferred sampling method
for amplicon-based characterization of murine lung microbiota. Microbiome 9:99.
doi: 10.1186/s40168-021-01055-4

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., and Sadeghi, M.
(2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium,
and arsenic. Front. Pharmacol. 12:643972. doi: 10.3389/fphar.2021.643972

Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A. Y., Gattinger, A., et al. (2019).
Agricultural intensification reduces microbial network complexity and the abundance
of keystone taxa in roots. ISME J. 13, 1722–1736. doi: 10.1038/s41396-019-0383-2

Bastian, M., Heymann, S., and Jacomy, M. (2009). “Gephi: an open source software
for exploring and manipulating networks,” in Proceedings of the International AAAI
Conference on Web and Social Media, 361–362. doi: 10.1609/icwsm.v3i1.13937

Chambers, D. C., Gellatly, S. L., Hugenholtz, P., and Hansbro, P. M. (2014). JTD
special edition ‘Hot Topics in COPD’-The microbiome in COPD. J. Thorac. Dis. 6,
1525–1531. doi: 10.3978/j.issn.2072-1439.2014.11.08

Chen, X. (2022). Correlation between changes of lower respiratory tract flora and lung
injury in rats after mechanical ventilation. Master thesis, Southern Medical University.

Choudhary, S., and Sar, P. (2016). Real-time PCR based analysis of metal resistance
genes in metal resistant Pseudomonas aeruginosa strain J007. J. Basic Microbiol. 56,
688–697. doi: 10.1002/jobm.201500364

Duan, X., Li, J., Li, Y., Xu, Y., Chao, S., and Shi, Y. (2024). Accumulation
of typical persistent organic pollutants and heavy metals in bioretention facilities:
Distribution, risk assessment, and microbial community impact. Environ. Res.
252:119107. doi: 10.1016/j.envres.2024.119107

Duprez, D. A., and Jacobs Jr., D. R. (2018). Lung function decline and
increased cardiovascular risk: quo vadis. J. Am. Coll. Cardiol. 72, 1123–1125.
doi: 10.1016/j.jacc.2018.07.015

Eissa, M. (2024). Genus burkholderia: a double-edged sword with widespread
implications for human health, agriculture, and the environment. J. Biol. Res. Rev. 1:79.
doi: 10.5455/JBRR.20240516055714

Escoll, P., and Buchrieser, C. (2019). Metabolic reprogramming: an innate cellular
defence mechanism against intracellular bacteria? Curr. Opin. Immunol. 60, 117–123.
doi: 10.1016/j.coi.2019.05.009

Feng, K., Peng, X., Zhang, Z., Gu, S., He, Q., Shen, W., et al. (2022). iNAP:
an integrated network analysis pipeline for microbiome studies. imeta 1:e13.
doi: 10.1002/imt2.13

Fuso, L., Pitocco, D., Longobardi, A., Zaccardi, F., Contu, C., Pozzuto, C., et al.
(2012). Reduced respiratory muscle strength and endurance in type 2 diabetes mellitus.
Diabetes Metab. Res. Rev. 28, 370–375. doi: 10.1002/dmrr.2284

Gautam, P. K., Gautam, R. K., Banerjee, S., Chattopadhyaya, M., and Pandey, J. J. N.
S.P. (2016). “Heavymetals in the environment: fate, transport, toxicity and remediation
technologies,” inHeavyMetals: Sources Toxicity And Remediation Techniques, 101–130.

Giambò, F., Italia, S., Teodoro, M., Briguglio, G., Furnari, N., Catanoso, R., et al.
(2021). Influence of toxic metal exposure on the gut microbiota (Review).World Acad.
Sci. J. 3:19. doi: 10.3892/wasj.2021.90

Hashem, M. A., Hasan, M. A., Nayan, A. H., Payel, S., Hasan, M., and Sahen,
M. S. (2021). The environmental impacts of heavy metals in soil, certain plants and
wastewater near industrial area of Brahmanbaria, Bangladesh. Environ. Monit. Assess.
193:688. doi: 10.1007/s10661-021-09497-x

He, X., Qi, Z., Hou, H., Qian, L., Gao, J., and Zhang, X. X. (2020).
Structural and functional alterations of gut microbiome in mice induced by chronic
cadmium exposure. Chemosphere 246:125747. doi: 10.1016/j.chemosphere.2019.
125747

Frontiers inMicrobiology 18 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1615130
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1615130/full#supplementary-material
https://doi.org/10.1186/s12890-018-0747-9
https://doi.org/10.1016/j.plaphy.2019.07.006
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.1007/s00248-024-02445-5
https://doi.org/10.3390/ijerph14010094
https://doi.org/10.1186/s40168-021-01055-4
https://doi.org/10.3389/fphar.2021.643972
https://doi.org/10.1038/s41396-019-0383-2
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.3978/j.issn.2072-1439.2014.11.08
https://doi.org/10.1002/jobm.201500364
https://doi.org/10.1016/j.envres.2024.119107
https://doi.org/10.1016/j.jacc.2018.07.015
https://doi.org/10.5455/JBRR.20240516055714
https://doi.org/10.1016/j.coi.2019.05.009
https://doi.org/10.1002/imt2.13
https://doi.org/10.1002/dmrr.2284
https://doi.org/10.3892/wasj.2021.90
https://doi.org/10.1007/s10661-021-09497-x
https://doi.org/10.1016/j.chemosphere.2019.125747
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ding et al. 10.3389/fmicb.2025.1615130

Heeney, D. D., Gareau, M. G., and Marco, M. L. (2018). Intestinal Lactobacillus
in health and disease, a driver or just along for the ride? Curr. Opin. Biotechnol. 49,
140–147. doi: 10.1016/j.copbio.2017.08.004

Hilty, M., Burke, C., Pedro, H., Cardenas, P., Bush, A., Bossley, C., et al.
(2010). Disordered microbial communities in asthmatic airways. PLoS ONE 5:e8578.
doi: 10.1371/journal.pone.0008578

Huang, Y. J., Nariya, S., Harris, J. M., Lynch, S. V., Choy, D. F., Arron,
J. R., et al. (2015). The airway microbiome in patients with severe asthma:
associations with disease features and severity. J. Allergy Clin. Immunol. 136, 874–884.
doi: 10.1016/j.jaci.2015.05.044

Huang, Y. J., Sethi, S., Murphy, T., Nariya, S., Boushey, H. A., and Lynch, S.
V. (2014). Airway microbiome dynamics in exacerbations of chronic obstructive
pulmonary disease. J. Clin. Microbiol. 52, 2813–2823. doi: 10.1128/JCM.00035-14

Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu,
K., et al. (2018). Biological approaches to tackle heavy metal pollution: a survey of
literature. J. Environ. Manage. 217, 56–70. doi: 10.1016/j.jenvman.2018.03.077

Jin, J., Wang, X., Sha, Y., Wang, F., Huang, X., Zong, H., et al. (2024). Changes in
soil properties and microbial activity unveil the distinct impact of polyethylene and
biodegradable microplastics on chromium uptake by peanuts. Environ. Sci. Pollut. Res.
Int. 31, 53369–53380. doi: 10.1007/s11356-024-34743-3

Jingsheng, H., shuxin, Z.,Weichao, K., and Zhijie, D., Yunmei, Y., chengzhi, L., et al.
(2023). Study on antibacterial peptide BNBDS regulating the innate immune response
of lung against actinobacillus pleuropneumoniae [in Chinese]. China Animal Husb.
Veter. Med. 50, 4261–4269. doi: 10.16431/j.cnki.1671-7236.2023.10.040

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.
45, D353–d361. doi: 10.1093/nar/gkw1092

Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., and
Bonneau, R. A. (2015). Sparse and compositionally robust inference of microbial
ecological networks. PLoS Comput. Biol. 11:e1004226. doi: 10.1371/journal.pcbi.10
04226

Laiman, V., Lo, Y.-C., Chen, H.-C., Yuan, T.-H., Hsiao, T.-C., Chen, J.-K., et al.
(2022). Effects of antibiotics and metals on lung and intestinal microbiome dysbiosis
after sub-chronic lower-level exposure of air pollution in ageing rats. Ecotoxicol.
Environ. Saf. 246:114164. doi: 10.1016/j.ecoenv.2022.114164

Lavanya, M. B., Viswanath, D. S., and Sivapullaiah, P. V. (2024). Phytoremediation:
an eco-friendly approach for remediation of heavy metal-contaminated soils-
A comprehensive review. Environ. Nanotechnol. Monitor. Manag. 22:100975.
doi: 10.1016/j.enmm.2024.100975

Laveneziana, P., and Palange, P. (2012). Physical activity, nutritional
status and systemic inflammation in COPD. Eur. Respir. J. 40, 522–529.
doi: 10.1183/09031936.00041212

Li, H., Hua, J., Li, L., and Wu, Q. (2019). Case analysis and literature review of
corynebacterium striatum pulmonary infection [in Chinese]. Chinese J. Urban Rural
Enter. Hygiene 34, 33–37. doi: 10.16286/j.1003-5052.2019.10.013

Li, N., Qiu, R., Yang, Z., Li, J., Chung, K. F., Zhong, N., et al. (2017). Sputum
microbiota in severe asthma patients: Relationship to eosinophilic inflammation.
Respir. Med. 131, 192–198. doi: 10.1016/j.rmed.2017.08.016

Li, X., Brejnrod, A. D., Ernst, M., Rykær, M., Herschend, J., Olsen, N.
M. C., et al. (2019). Heavy metal exposure causes changes in the metabolic
health-associated gut microbiome and metabolites. Environ. Int. 126, 454–467.
doi: 10.1016/j.envint.2019.02.048

Lin, J., Wang, W., Chen, P., Zhou, X., Wan, H., Yin, K., et al. (2018). Prevalence and
risk factors of asthma in mainland China: the CARE study. Respir. Med. 137, 48–54.
doi: 10.1016/j.rmed.2018.02.010

Liu, T., Zheng, X., Zhang, Q., Wang, Y., and Tang, G. (2024). The effects of Cd2+
and Cu2+ on characteristics of soluble microbial products from activated sludge via
altering expression of cellular metabolism pathways. J. Water Proc. Eng. 66:106050.
doi: 10.1016/j.jwpe.2024.106050

Liu, X. (2022). The effects oflong-term exposure to cadmium in drinking water on
pulmonary impairment in diabetic rats. Master thesis, Soochow University.

Liu, Y., Yu, L., Ji, H., Zhu, M., Liu, Y., Fu, Y., et al. (2022). Association between
urinary metal levels and slow vital capacity in Chinese preschoolers. Hum. Ecol. Risk
Assess. 28, 621–634. doi: 10.1080/10807039.2022.2084029

Long, Z., Huang, Y., Zhang, W., Shi, Z., Yu, D., Chen, Y., et al. (2021). Effect of
different industrial activities on soil heavy metal pollution, ecological risk, and health
risk. Environ. Monit. Assess. 193:20. doi: 10.1007/s10661-020-08807-z

Ma, J., Lu, Y., Chen, F., Li, X., Xiao, D., and Wang, H. (2020). Molecular
ecological network complexity drives stand resilience of soil bacteria to mining
disturbances among typical damaged ecosystems in China. Microorganisms 8:433.
doi: 10.3390/microorganisms8030433

McCarthy, D. J., Chen, Y., and Smyth, G. K. (2012). Differential expression analysis
of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids
Res. 40, 4288–4297. doi: 10.1093/nar/gks042

Morris, A., Beck, J. M., Schloss, P. D., Campbell, T. B., Crothers, K.,
Curtis, J. L., et al. (2013). Comparison of the respiratory microbiome in healthy
nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187, 1067–1075.
doi: 10.1164/rccm.201210-1913OC

Patil, A., Chakraborty, S., Yadav, Y., Sharma, B., Singh, S., and Arya, M. (2024).
Bioremediation strategies and mechanisms of bacteria for resistance against heavy
metals: a review. Bioremediat. J. 2024, 1–33. doi: 10.1080/10889868.2024.2375204

Pearson, S. A., and Cowan, J. A. (2021). Glutathione-coordinated metal
complexes as substrates for cellular transporters. Metallomics 13:mfab015.
doi: 10.1093/mtomcs/mfab015

Popov Aleksandrov, A., Mirkov, I., Tucovic, D., Kulas, J., Zeljkovic, M., Popovic,
D., et al. (2021). Immunomodulation by heavy metals as a contributing factor to
inflammatory diseases and autoimmune reactions: Cadmium as an example. Immunol.
Lett. 240, 106–122. doi: 10.1016/j.imlet.2021.10.003

Prabhakaran, P., Ashraf, M. A., and Aqma, W. S. (2016). Microbial stress
response to heavy metals in the environment. RSC Adv. 6, 109862–109877.
doi: 10.1039/C6RA10966G

Qi, Q., Hu, C., Lin, J., Wang, X., Tang, C., Dai, Z., et al. (2022). Contamination
with multiple heavy metals decreases microbial diversity and favors generalists
as the keystones in microbial occurrence networks. Environ. Pollut. 306:119406.
doi: 10.1016/j.envpol.2022.119406

Saladié, M., Caparrós-Martín, J. A., Agudelo-Romero, P., Wark, P. A. B., Stick, S.
M., and O’Gara, F. (2020). Microbiomic analysis on low abundant respiratory biomass
samples; improved recovery of microbial DNA from bronchoalveolar lavage fluid.
Front. Microbiol. 11:572504. doi: 10.3389/fmicb.2020.572504

Sze, M. A., Utokaparch, S., Elliott, W. M., Hogg, J. C., and Hegele, R. G. (2015).
Loss of GD1-positive Lactobacillus correlates with inflammation in human lungs with
COPD. BMJ Open 5:e006677. doi: 10.1136/bmjopen-2014-006677

Tao, C., Pei, Y., Zhang, L., and Zhang, Y. (2020). Microbial communities respond to
microenvironments in lungs of mice under simulated exposure to cadmium aerosols.
Sci. Total Environ. 710:136300. doi: 10.1016/j.scitotenv.2019.136300

Taylor, S. L., Rogers, G. B., Chen, A. C. H., Burr, L. D.,McGuckin,M. A., and Serisier,
D. J. (2015). Matrix metalloproteinases vary with airway microbiota composition and
lung function in non-cystic fibrosis bronchiectasis. Ann. Am. Thorac. Soc. 12, 701–707.
doi: 10.1513/AnnalsATS.201411-513OC

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., and Sutton, D. J. (2012).
Heavy metal toxicity and the environment. Exper. Suppl. 101, 133–164.
doi: 10.1007/978-3-7643-8340-4_6

Venkataraman, A., Bassis, C. M., Beck, J. M., Young, V. B., Curtis, J. L., Huffnagle,
G. B., et al. (2015). Application of a neutral community model to assess structuring of
the human lung microbiome.MBio 6:02284-14. doi: 10.1128/mBio.02284-14

Wang, C., Wu, H., Zhao, W., Zhu, B., and Yang, J. (2024). Effects of polycyclic
aromatic hydrocarbons on soil bacterial and fungal communities in soils. Diversity 16,
675. doi: 10.3390/d16110675

Wang, L., Cheng, H., Wang, D., Zhao, B., Zhang, J., Cheng, L., et al.
(2019). Airway microbiome is associated with respiratory functions and responses
to ambient particulate matter exposure. Ecotoxicol. Environ. Saf. 167, 269–277.
doi: 10.1016/j.ecoenv.2018.09.079

Wen, P., Feng, S. W., Liang, J.-L., Jia, P., Liao, B., Shu, W. S., et al. (2024). Heavy
metal pollution in farmland soils surrounding mining areas in China and the response
of soil microbial communities. Soil Secur. 17:100173. doi: 10.1016/j.soisec.2024.100173

Wu, L., Cui, F., Ma, J., Huang, Z., Zhang, S., Xiao, Z., et al. (2022). Associations of
multiple metals with lung function in welders by four statistical models. Chemosphere
298:134202. doi: 10.1016/j.chemosphere.2022.134202

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler
4.0: a universal enrichment tool for interpreting omics data. Innovation 2:100141.
doi: 10.1016/j.xinn.2021.100141

Xue, Y., Chu, J., Li, Y., and Kong, X. (2020). The influence of air pollution
on respiratory microbiome: a link to respiratory disease. Toxicol. Lett. 334, 14–20.
doi: 10.1016/j.toxlet.2020.09.007

Zhang, J., Cheng, H., Di Narzo, A., Zhu, Y., Xie, S., Shao, X., et al. (2023). Profiling
microbiota frommultiple sites in the respiratory tract to identify a biomarker for PM2.5
nitrate exposure-induced pulmonary damages. Environ. Sci. Technol. 57, 7346–7357.
doi: 10.1021/acs.est.2c08807

Zheng, L., Yu, Y., Tian, X., He, L., Shan, X., Niu, J., et al. (2023). The
association between multi-heavy metals exposure and lung function in a typical
rural population of Northwest China. Environ. Sci. Pollut. Res. Int. 30, 65646–65658.
doi: 10.1007/s11356-023-26881-x

Frontiers inMicrobiology 19 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1615130
https://doi.org/10.1016/j.copbio.2017.08.004
https://doi.org/10.1371/journal.pone.0008578
https://doi.org/10.1016/j.jaci.2015.05.044
https://doi.org/10.1128/JCM.00035-14
https://doi.org/10.1016/j.jenvman.2018.03.077
https://doi.org/10.1007/s11356-024-34743-3
https://doi.org/10.16431/j.cnki.1671-7236.2023.10.040
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1371/journal.pcbi.1004226
https://doi.org/10.1016/j.ecoenv.2022.114164
https://doi.org/10.1016/j.enmm.2024.100975
https://doi.org/10.1183/09031936.00041212
https://doi.org/10.16286/j.1003-5052.2019.10.013
https://doi.org/10.1016/j.rmed.2017.08.016
https://doi.org/10.1016/j.envint.2019.02.048
https://doi.org/10.1016/j.rmed.2018.02.010
https://doi.org/10.1016/j.jwpe.2024.106050
https://doi.org/10.1080/10807039.2022.2084029
https://doi.org/10.1007/s10661-020-08807-z
https://doi.org/10.3390/microorganisms8030433
https://doi.org/10.1093/nar/gks042
https://doi.org/10.1164/rccm.201210-1913OC
https://doi.org/10.1080/10889868.2024.2375204
https://doi.org/10.1093/mtomcs/mfab015
https://doi.org/10.1016/j.imlet.2021.10.003
https://doi.org/10.1039/C6RA10966G
https://doi.org/10.1016/j.envpol.2022.119406
https://doi.org/10.3389/fmicb.2020.572504
https://doi.org/10.1136/bmjopen-2014-006677
https://doi.org/10.1016/j.scitotenv.2019.136300
https://doi.org/10.1513/AnnalsATS.201411-513OC
https://doi.org/10.1007/978-3-7643-8340-4_6
https://doi.org/10.1128/mBio.02284-14
https://doi.org/10.3390/d16110675
https://doi.org/10.1016/j.ecoenv.2018.09.079
https://doi.org/10.1016/j.soisec.2024.100173
https://doi.org/10.1016/j.chemosphere.2022.134202
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.toxlet.2020.09.007
https://doi.org/10.1021/acs.est.2c08807
https://doi.org/10.1007/s11356-023-26881-x
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

	Effects of combined exposure to heavy metals on lower respiratory flora and its role of lung injury in rats
	1 Introduction
	2 Materials and methods
	2.1 Animal exposure programs
	2.2 Non-invasive lung function assessment in rats
	2.3 Collection of rat bronchoalveolar lavage fluid and lung tissue
	2.4 Lung histopathology
	2.5 Determination of heavy metals in rat lung tissue
	2.6 16S rDNA sequencing of rat alveolar lavage fluid
	2.7 Statistical analysis
	2.8 Microbial ecological networks analysis

	3 Results
	3.1 General status and weight
	3.2 Levels of Ni, Cu, and As in rat lung tissue
	3.3 Lung inflammation and lung function differences
	3.4 Bacterial population structure in alveolar lavage fluid of rats
	3.5 Bacterial diversity in alveolar lavage fluid of rats
	3.6 Correlation of lower respiratory flora with heavy metals and lung function
	3.7 Functional prediction of respiratory tract communities
	3.8 Microbial ecological networks analysis of bacterial interactions in BALF

	4 Discussion
	5 Implications and future perspectives of this study
	6 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


