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Antimicrobial resistance (AMR) is currently a major global problem affecting 

humans, animals, and the environment. The role of wild birds in this 

epidemiological circuit has been the subject of several studies, but it is still 

far from being assessed. This review summarizes findings from 51 studies 

published between 2014 and 2024, examining resistant Escherichia coli (E. coli) 

from wild birds, with a focus on extended-spectrum beta-lactams (ESBLs) and 

other World Health Organization critically important antimicrobials for human 

medicine (WHO CIA List). The analysis reveals higher levels of AMR E. coli in 

wild birds in low and middle-income countries than in high-income countries 

(HICs). Particularly concerning is the high resistance observed to WHO CIA List: 

100% resistance to cefotaxime, ceftazidime, nalidixic acid, gentamicin, and over 

90% resistance to ciprofloxacin. Among the ESBL-producing E. coli, the genes 

coding for ESBLs (blaESBL) were predominant (76.5%, 377/493). Key gaps in the 

existing studies include: limited understanding of the sources of AMR for wild 

birds, limited comparative analyses of AMR in wild birds and other One Health 

sectors, and minimal longitudinal and satellite-tracking or telemetry approaches 

to monitor the persistence and transboundary movements of AMR in these birds. 

To address this, we advocate using standardized sampling methods, longitudinal 

studies incorporating satellite tracking, and whole-genome sequencing to better 

elucidate the role of wild birds in the global dissemination of AMR. Additionally, 

we emphasize the need to strengthen AMR surveillance in wild birds improve 

data reporting, and implement robust environmental management strategies 

within the One Health context to mitigate AMR transmission by wild birds. 
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Introduction 

Antimicrobial resistance (AMR), often referred to as the 
“silent pandemic,” poses a severe threat to global public health 
(Laxminarayan, 2022). While AMR is a naturally occurring 
phenomenon, the widespread overuse and misuse of antimicrobials 
over the last 80 years have dramatically accelerated its emergence 
and spread (Christaki et al., 2020). Although AMR is a worldwide 
challenge aecting developed and developing countries, its 
prevalence diers significantly across regions (Frost et al., 2019). 
Reports show a rapid global increase in AMR and its relentless 
spread between countries (Aljeldah, 2022). The World Health 
Organization (WHO) has warned of a “post-antibiotic era” where 
common, previously treatable bacterial infections could become 
fatal (Shankar and Balasubramanium, 2014). This means that 
the impact of AMR on humans and animals is profound and 
complicated, leading to longer hospital stays, chronic infections, 
increased economic burdens, and increased mortality (Ferraz, 
2024). If unchecked, AMR is projected to cause 10 million deaths 
by 2050 (O’Neill, 2016). 

Escherichia coli (E. coli) is a key species for monitoring 
AMR globally (Anjum et al., 2021). As a member of the 
Enterobacteriaceae, E. coli has developed significant resistance to 
crucial broad-spectrum cephalosporins. This resistance is mainly 
due to plasmid-mediated extended-spectrum beta-lactamases 
(ESBLs) and both chromosomal and plasmid-encoded AmpC beta-
lactamases (pAmpC), exacerbating the fight against AMR (Duggett 
et al., 2020). Interestingly, even though wild birds have limited 
direct exposure to antimicrobials, they have been identified as 
potential reservoirs of resistant E. coli. Often, these birds pick 
up resistant strains when foraging in polluted environments, 
like antimicrobial-treated fields (Blanco and Bautista, 2020), or 
contaminated surface water (Yuan et al., 2021). For instance, 
studies in Egypt found 100% genetic similarity between mcr-1-
producing E. coli from a migratory bird and surface water collected 
from the same trapping sites (Ahmed et al., 2019). This suggests 
that wild birds, through their mobility and ecological adaptability, 
can acquire and spread AMR bacteria and genes to humans, 
livestock, and the environment. 

To combat AMR, the WHO adopted a global action plan 
(GAP) in May 2015. The GAP comprised five interdependent 
objectives: (1) to improve awareness and understanding of AMR 
through eective communication, education and training; (2) to 
strengthen the knowledge and evidence base through surveillance 
and research; (3) to reduce the incidence of infection through 
eective sanitation, hygiene and infection prevention measures;(4) 
to optimize the use of antimicrobial medicines in human and 
animal health; and (5) to develop the economic case for sustainable 
investment that takes into account the needs of all countries and 
to increase investment in new medicines, diagnostic tools, vaccines 
and other interventions. The GAP objectives were adopted as 
national action plans (NAPs) by most countries in their fight against 
AMR (World Health Organization, 2015). 

In 2020, the Quadripartite [the WHO, the Food and Agriculture 
Organization of the United Nations (FAO), the World Organization 
for Animal Health (OIE), and the United Nations Environment 
Programme (UNEP)] was formed. The Quadripartite urged the 
stakeholders, including policy-makers, technical sta, academics, 

researchers, members of civil society, private-sector representatives, 
development partners and donors, within member states to 

move from an early to a sustainable implementation phase 

through a sector-specific programme and a joint collaborative 

One Health approach at local, national, regional and global 
levels, guided by the 2015 GAP. To sustainably balance and 

optimize the health of humans, animals, plants, food production 

and environmental protection and ecosystem interfaces, the 

Quadripartite recommended (1) a robust governance structure to 

ensure accountability and acceleration of NAPs implementation 

in countries, (2) innovations to secure the future, (3) global 
collaborations for more eective action, (4) investments for a 

sustainable response and (5) to strengthen accountability and 

global governance. By 2021, about 84% of member states provided 

annual reports on the implementation of their multi-sectoral NAPs 
against AMR (World Health Organization, UNEP United Nations 
Environment Programme and World Organisation for Animal 
Health, 2023). 

Despite their significant role in spreading AMR, wildlife, 
particularly wild birds, and the environment are often overlooked 

in health security strategies, which tend to primarily focus on 

humans, domestic animals, and plants. However, monitoring the 

carriage of resistant bacteria in wild birds should be a priority 

within the One Health approach to combat AMR (Guardia et al., 
2024). Wild birds utilize eight major migratory routes globally, 
including the prominent East Atlantic, Black Sea-Mediterranean, 
and East Asia-East Africa flyways (Seleem et al., 2021). As birds 
traverse these routes, they can acquire and disseminate AMR 

bacteria and genes across international borders. Notably, Southeast 
Asia is a major hot spot for AMR in animals (Chua et al., 2021). 
Africa, serving as a major flyway for over two billion Palearctic 

migratory birds, plays a crucial role in the seasonal movement 
of these birds across the African-Eurasian flyway. This global 
movement makes migratory birds potential key contributors to the 

worldwide spread of AMR (Guilherme et al., 2023). The first AMR 

strains of E. coli in wildlife were isolated in pigeons in 1975 (Sato 

et al., 1978). Since then, numerous studies in various countries have 

recognized wild birds as potential reservoirs and disseminators of 
antimicrobial-resistant E. coli. 

This systematic review examines the current data on the role 

of migratory and resident wild birds as potential reservoirs of 
resistant E. coli and its associated genes globally. It specifically 

focuses on resistance to ESBL and other WHO CIA List. The 

review further evaluates evidence suggesting wild birds as potential 
disseminators of resistant E. coli, especially in studies that 
genetically link resistant strains found in wild birds to those in 

other One Health sectors. The review analyzes resistance patterns 
by geographic locations, wild bird species, income-indexes of 
countries, socio-economic, behavioral, and political influences 
on the occurrence of AMR in wild birds, and evidence of 
phylogenetic relationships that indicate cross-border transmission 

or involvement in the broader quintessential One Health AMR 

matrix. Finally, based on the analyzed data, the review provides 
recommendations for integrating wild birds into the One Health 

strategies to combat AMR. 
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Materials and methods 

We performed a systematic review following the Preferred 
Reporting Items for Systematic Reviews (PRISMA; Page 
et al., 2021; Supplementary Table 1). The two authors 
defined the research questions, objectives, search strategy, 
and inclusion/exclusion criteria. 

Search strategy 

A literature search was conducted to summarize available data 
on wild birds as potential reservoirs of antimicrobial-resistant 
E. coli across countries. The search focused on publications from 
2014 to 2024 and included publisher databases such as PubMed, 
ProQuest, and Scopus, as well as gray literature from the Google 
Scholar search engine. The search terms included wild birds∗ as 
reservoirs∗ of antimicrobial resistance∗ OR antibiotic resistance∗ 

E. coli∗ . These searches were then refined by merging them with 
each of the following continents: Africa∗ , Europe∗ , Asia∗ , North 
America∗ , South America∗ , and Oceania∗ . Details of the search 
strategy are available in Supplementary Table 2. 

Eligibility criteria 

We aimed to identify peer-reviewed data published from 
2014 to 2024, with no geographical or sampling site limits, that 
investigated AMR E. coli in wild birds. We looked for studies on 
resistant E. coli and the associated genes in dierent wild bird 
species (categorized by their mobility and habitat, i.e., resident vs. 
migratory, and water birds vs. non-water birds). Thus, we included 
only studies providing at least one of the following information: (i) 
wild bird species where resistant (multi-drug, ESBL-producing or 
resistant to one or two antimicrobial classes) E. coli was recovered, 
(ii) wild birds that showed phenotypic resistance to the WHO 
CIA List (iii) wild birds that showed genotypic resistant E. coli to 
the WHO CIA List. Details of inclusion and exclusion criteria are 
provided in Supplementary Table 3. 

Identification and screening of articles 

A total of 135 articles were identified. After removing 
20 duplicates, 115 articles remained. A second screening was 
conducted based on language, where titles and abstracts were 
reviewed, leading to the exclusion of one article written in German. 
The remaining 114 articles were then evaluated for eligibility by 
reviewing their titles and abstracts for scopes and relevance. At 
this stage, 63 articles were excluded as they either did not focus 
on E. coli or only presented data on virulent E. coli. Ultimately, 51 
articles met the eligibility criteria and were included in this review, 
as shown in Figure 1. 

Data extraction 

Data were extracted from pertinent peer-reviewed publications 
that reported the proportions of resistant E. coli strains found in 

wild birds across dierent countries. The extracted information 
was summarized in a Microsoft Excel template (Supplementary 
Table 4). The file included the study continent, region and country, 
the World bank income category of each country, the avian 
mobility patterns (migratory or resident), the sample size, the avian 
species (water or non-water bird), the sample type collected, other 
sampled One Health sectors within the wild birds trapping sites, 
description of the sampling sites, suggested AMR origin in wild 
birds, the proportions of E. coli, antimicrobial susceptibility tests 
performed, the antimicrobials tested, the proportions of resistant 
E. coli [multi drug-resistant (MDR), ESBL-producing and resistant 
to one or two classes of antimicrobials], the molecular typing 
method used to characterize the resistant E. coli strains, the studies 
that characterized ESBL-producing E. coli strains and phylogenetic 
relationships. Phenotypic and molecular data of E. coli resistant to 
ESBLs and WHO CIA List, our major AMR patterns of interest, 
were represented in Supplementary Tables 5, 6. 

Results 

Geographic locations and wild birds 
studied for AMR E. coli 

Studies on resistant E. coli from wild birds were carried out 
across the six continents. The majority of studies originated from 
Europe (37.2%, 19/51), followed by Asia (25.5%, 13/51) (Figure 2A). 
These studies spanned 39 countries, with high-income countries 
(HICs) such as Spain (Alcalá et al., 2016; Martín-Maldonado et al., 
2022), the United States, and Poland (Nowaczek et al., 2021; 
Skarży´ nska et al., 2021) having the highest number of publications 
(Figure 2B). In contrast, there were few publications from most 
low-and middle-income countries (LMICs), as Tanzania (Madoshi 
et al., 2021), Tunisia (Ben Yahia et al., 2018), Pakistan (Mohsin et al., 
2017), and India (Raghav et al., 2022) (Supplementary Table 4). 
Notably, the number of publications from both HICs and LMICs 
did not correspond with the observed frequency of AMR E. coli 
isolates reported. Wild birds in LMICs (Chika et al., 2018; Islam 
et al., 2021, 2022) recorded more AMR E. coli than those in the 
HICs (Zurfluh et al., 2019; Athanasakopoulou et al., 2021, 2022; 
Eckenko et al., 2024) (Supplementary Table 4). An exception to 
this trend was observed in the United States of America (USA), 
where wild birds feeding from commercial feedlots exhibited 
exceptionally high levels of AMR E. coli (Chandler et al., 2020). 
The studies reviewed also diered in the avian species studied. 
According to mobility patterns, migratory species accounted for 
57.4% (355/618) while resident species were 42.6% (263/618). 
Additionally, the studies prioritized non-water birds (terrestrial, 
arboreal, aerial) (57.2%, 308/538) over water bird species (42.8%, 
230/538) (Supplementary Table 4). 

Phenotypic E. coli resistance patterns in 
wild birds to the WHO CIAs for human 
medicine 

Phenotypic screening of resistant E. coli was conducted in 
98% (50/51) of the studies using disk diusion (72.5%, 37/51), 
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FIGURE 1 

Article search flow diagram. 

Epsilometer tests (E-tests) (3.92%, 2/51), microbroth dilution 
(11.8%, 6/51), Vitek-2 system (9.8%, 5/51) and BD Phoenix 
system (2%, 1/51) (Supplementary Table 4). Given the high 
heterogeneity in susceptibility methods, antimicrobials tested, 
avian species, and sample size, a comparison of phenotypic AMR 
prevalence across studies could not be performed. However, 
the percentages of MDR-E. coli, ESBL-producing E. coli, and 
resistance to one or two antimicrobial classes were recorded 
for each study (Supplementary Table 4). Most studies reported 
diverse phenotypic resistance patterns to various WHO CIA List. 
Interestingly, most E. coli strains isolated from the wild birds 
showed susceptibility to antimicrobials used to treat multi-drug-
resistant bacteria such as carbapenems, amikacins, and colistins 
(Supplementary Table 5). 

Molecular E. coli resistance patterns in 
wild birds to the WHO CIAs for human 
medicine 

Antimicrobial resistant genes (ARGs) in E. coli isolates from 
wild birds were identified in 70.6% (36/51) of the studies using 

various molecular techniques (Supplementary Table 4). About 
15.7% (8/51) of the studies used polymerase chain reaction (PCR) 
alone, or in combination with sequencing (39.2%, 20/51). Whole 
genome sequencing (WGS) was applied in 23.5% (12/51) of the 
studies. Most studies (62.7%, 32/51) focused on genes coding 
for extended-spectrum beta-lactamases (blaESBl), which were the 
most extensively researched (76.5%) CIAs. Additionally, non-
beta-lactam resistance genes, associated with aminoglycosides, 
fluoroquinolones, quinolones, and macrolides (also classified 
as WHO CIAs for human medicine) were also identified 
(Supplementary Table 6). 

Origin of AMR E. coli in wild birds 

Approximately 49% (25/51) of the studies suggested various 
human activities as possible sources for the AMR E. coli 
found in wild birds (Supplementary Table 4). These suspected 
sources were linked to landfills (2%, 1/51), contaminated 
carcasses (3.92%, 2/51), abattoirs (2%, 1/51), polluted water 
bodies (5.9%, 3/51), sewage euent (2%, 1/51), nesting areas 
with high-human densities (2%, 1/51), regions of intensive 
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FIGURE 2 

(A) Number of publications of antimicrobial resistance (AMR) Escherichia coli in wild birds per continent. (B) Number of publications of AMR E. coli in 
wild birds per country. 

agriculture where antimicrobials are used in food production 
(11.8%, 6/51) and unspecified human activities (31.4%, 16/51). 
These hypotheses were verified in 27.5% (14/51) phylogenetic 
analyses through sequencing particularly WGS (Haenni et al., 2020; 
Ong et al., 2020; Fuentes-Castillo et al., 2021; Kurittu et al., 2021; 
Batista et al., 2022). 

Evidence of wild birds as potential global 
disseminators of AMR E. coli 

The absence of satellite-tracking to monitor birds’ movement 
from their point of origin, stopovers to their final destinations, 
limited the ability to assess the potential of wild birds in spreading 

AMR across dierent regions. Additionally, most studies (96.1%, 
49/51) were cross-sectional in design, with only two longitudinal 
studies (Dreyer et al., 2022; Prandi et al., 2023). Fortunately, 
phylogenetic relationships in 56.9% (29/51) of the studies were 
also used to compare genetic relatedness of E. coli isolates in wild 
birds and dierent locations or other species in distinct locations 
(Supplementary Table 4). 

Discussion 

Antimicrobial resistance E. coli has been found in wild birds for 
nearly five decades, with the first isolation reported in pigeons in 
1975 (Sato et al., 1978). This review identified 51 studies examining 
AMR E. coli in wild birds, including both migratory and resident 
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populations. Research remains limited in LMICs except in Nigeria, 
Egypt, and Bangladesh. Interestingly, despite fewer studies, wild 
birds in LMICs showed higher levels of AMR E. coli, suggesting a 
link between AMR burden and poor water, sanitation, and hygiene 
(WASH) infrastructure, poor antimicrobial regulation, and limited 
healthcare resources. For example, Bangladesh records extensive 
antimicrobial use in agriculture and minimal waste management 
(Hasan et al., 2014), while Nigeria lacks proper regulations on 
antimicrobial use in both human and veterinary medicine (Fashae 
et al., 2021). In contrast, HICs enforce stricter regulations on 
AMR use and maintain better WASH systems, contributing to 
lower AMR levels (Stedt et al., 2014). However, one HIC study 
recorded a deviation from this trend, where European Starlings 
from commercial feedlots across five USA states showed high 
AMR levels (Chandler et al., 2020). Additionally, most studies in 
both HICs and LMICs focused on non-water birds, probably due 
to; their proximity to human activities such as landfills, farms, 
abattoirs, dump sites, agricultural run-os, urban centers, direct or 
indirect contact with humans, domestic and companion animals, 
and their diverse ecological niches and feeding habits. 

The presence of phenotypic and genotypic resistant E. coli 
in wild birds across all continents highlights their potential role 
as reservoirs for AMR and a public health concern for humans, 
animals, and the environment. A major concern is E. coli’s ability 
to acquire and spread resistances to the WHO CIA List for human 
medicine. ESBL-producing E. coli are particularly problematic as 
mobile genetic elements (MGEs) facilitate the transfer of these 
resistances, making E. coli both a donor and recipient of AMR in 
horizontal gene transfer (Guenther et al., 2017). ESBL-producing 
E. coli, once confined to clinical settings, are now increasingly found 
in wild birds (Guenther et al., 2017). Furthermore, MGEs enable 
eÿcient transfer of these resistance across dierent species and 
ecosystems (Báez et al., 2015), contributing to the rise of extended-
spectrum beta-lactam resistances within the One Health framework 
(Hasan et al., 2016; Atterby et al., 2017; Fahim et al., 2019; Belmahdi 
et al., 2022). Migratory birds may further accelerate this spread 
by carrying AMR genes across regions as white storks migrate 
between Europe and North Africa (Bouaziz et al., 2018), brown-
headed gulls migrate through Tajikistan, Southern China, Pakistan, 
India, Bangladesh, Myanmar, Sri Lanka, Vietnam and Thailand 
(Hasan et al., 2014); franklin’s gulls migrate from North America 
to the Chilean coast (Báez et al., 2015); while dierent migratory 
bird species transit the Arabian Peninsula from Africa, Asia and 
Europe (Elsohaby et al., 2021). Even resident wild birds, though 
not involved in the long-range AMR spread, can contribute to 
local transmission to other One Health sectors (Hasan et al., 2016; 
Oh et al., 2016; Fahim et al., 2019). This calls for preventive and 
sustainable measures under the One Health framework, guided 
by the WHO’s GAPs and the Quadripartite in the fight against 
AMR spread. 

Despite increasing reports of AMR E. coli in wild birds 
globally, the origin of these resistant traits remains largely 
unknown. Only 49% of the studies suggested the potential 
sources of AMR contamination, and a mere 27.5% verified these 
hypotheses. The detection of resistant E. coli even in wild birds 
from remote areas (Atterby et al., 2016), further complicates the 
understanding of transmission pathways. Despite this, numerous 
studies have established a correlation between high levels of AMR 
E. coli in wild birds and human-impacted environments. These 

environments include; agricultural fields (Vogt et al., 2018, 2019; 
Fahim et al., 2019; Blanco and Bautista, 2020; Chandler et al., 
2020; Elsohaby et al., 2021; Anueyiagu et al., 2023), dumps (Stedt 
et al., 2014; Merkeviciene et al., 2018), abattoirs (Fashae et al., 
2021), industrial areas (Stedt et al., 2014), contaminated water 
bodies (Ahmed et al., 2019; Nabil et al., 2020; Yuan et al., 
2021) landfills (Bonnedahl et al., 2014), and areas with high 
human density such as cities (Belmahdi et al., 2022; Tarabai 
et al., 2023) and beaches (Hasan et al., 2014; Hasan et al., 2016; 
Mukerji et al., 2019). Fortunately, some sequencing studies have 
confirmed genetic links between the AMR E. coli isolated in wild 
birds and their hypothesized sources (Supplementary Table 4). 
This evidence strongly suggests that human activities and their 
associated environments are major contributors of AMR in wild 
bird populations. Even in protected areas with minimal human 
interaction (Machado et al., 2018; Gambino et al., 2021; Suenaga 
et al., 2019; Yapicier et al., 2022), studies have found that wild birds 
carry resistant E. coli strains. This suggests two main possibilities: 
either the birds are a natural reservoirs for these resistant strains, 
or migratory birds are the primary way these strains are being 
spread to such isolated regions. Further research is vital to fully 
understand these complex transmission dynamics and develop 
eective mitigation strategies. 

The ubiquity of AMR and their associated genes in the natural 
ecosystems makes it challenging to trace the exchanges of AMR-
associated genes between humans, animals, and the environment, 
hindering the identification of emerging resistant genes and spread 
(Vittecoq et al., 2016; Laborda et al., 2022). Our review data 
indicates wild birds often acquire AMR strains through foraging 
and direct contact with contaminated environments. Water is 
considered a key transmission route of AMR to wild birds. This 
can be through direct consumption of contaminated water or by 
carrying antimicrobial residues on their feathers or legs in the 
case of water birds. This phenomenon was observed with aquatic 
egrets, which transported resistant E. coli from the contaminated 
Jin River to park soil (Wu et al., 2018). These water bodies 
often receive discharge from domestic wastewater treatment plants 
(Fashae et al., 2021), hospital and pharmaceutical wastewaters, and 
agricultural run-os (Elsohaby et al., 2021). Additionally, wild birds 
can acquire AMR from agricultural run-os, which may contain 
sub-therapeutic concentrations of antimicrobials either in manure 
or animal feed. This has been demonstrated by the isolation of 
AMR E. coli in migratory birds transiting through Asfar Lake, a 
large artificial water body formed from the agriculture and livestock 
drainage water of the earthen drainage network in Saudi Arabia 
(Elsohaby et al., 2021). Other significant sources of AMR for the 
birds include untreated landfills (Atterby et al., 2016), dumps, 
abattoirs, and carcass dumps. These sites often contain human and 
animal fecal matter and food waste that might be rich in AMR 
bacteria. It has been suggested that scavengers feeding on livestock 
carcasses might ingest antimicrobials present in such carcasses 
(Blanco and Bautista, 2020). Contaminated soil could be a major 
hot spot of AMR to wild birds and accounts for 30% of AMR 
genes (Han et al., 2022). As wild birds soak up AMR bacteria from 
these contaminated sources, they eventually become “ecological 
sponges,” capable of acquiring and disseminating AMR. The genetic 
similarities in bird isolates and those in environmental samples 
(like surface water) further confirm these acquisition pathways 
(Ahmed et al., 2019; Yuan et al., 2021). 
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Unfortunately, several research gaps significantly hinder 
understanding the origin and spread of AMR E. coli in wild birds. 
Our review reveals a stark lack of longitudinal studies, absence of 
satellite-tracking for studied wild birds, and limited WGS studies. 
The high cost and time required likely contribute to this scarcity. 
Despite these challenges, tracing the origins of AMR in wild birds 
is crucial in informing concerted eorts when developing eective 
preventive measures within the One Health framework. Future 
research should therefore prioritize small-scale and longitudinal 
designs, integration of satellite-tracking, and increased adoption of 
WGS to enable better tracking of the origins and cross-boundary 
movement of AMR in wild bird populations and other One Health 
sectors. By focusing on these areas, researchers can establish a 
robust foundation for informing more eective and sustainable 
strategies to limit the spread of AMR in natural ecosystems. 

Conclusion and recommendations 

These findings confirm that, indeed, wild birds are potential 
reservoirs of resistant E. coli. The observed bioaccumulation of 
resistant E. coli within these avian populations, coupled with 
their ability to disseminate AMR across various One Health 
domains, underscores the urgency to mitigate environmental 
pollution impacts on AMR. Given that wild birds are not directly 
subjected to antimicrobial therapeutic interventions, the eective 
management of AMR in these populations necessitates proactive 
surveillance facilitated by multi-sectoral collaborations under a 
comprehensive One-Health framework. This strategic approach 
aligns intrinsically with the “Zero Pollution Vision for 2050: A 
Healthy Planet for All.” This vision emphasizes that pollution 
is a significant catalyst for AMR, and, conversely, pollution 
abatement is fundamental to ameliorating the AMR crisis. The 
inherent connection between a healthy environment and the 
prevalence of AMR is a core tenet of the One Health concept, 
which acknowledges the indivisible link between human, animal, 
plant, and environmental health. Therefore, safeguarding avian 
populations from AMR through environmental remediation will 
concurrently advance the overarching objectives of One Health and 
contribute to a healthier planet (European Commission, 2021). 
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